JPH074699B2 - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPH074699B2
JPH074699B2 JP27718586A JP27718586A JPH074699B2 JP H074699 B2 JPH074699 B2 JP H074699B2 JP 27718586 A JP27718586 A JP 27718586A JP 27718586 A JP27718586 A JP 27718586A JP H074699 B2 JPH074699 B2 JP H074699B2
Authority
JP
Japan
Prior art keywords
workpiece
machining
electric discharge
block
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27718586A
Other languages
Japanese (ja)
Other versions
JPS63134123A (en
Inventor
健夫 佐藤
武 水谷
勝利 米持
明美 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27718586A priority Critical patent/JPH074699B2/en
Publication of JPS63134123A publication Critical patent/JPS63134123A/en
Publication of JPH074699B2 publication Critical patent/JPH074699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、機械加工が困難な細径のピンを製作するのに
適する放電加工装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electric discharge machining apparatus suitable for manufacturing a pin having a small diameter that is difficult to machine.

従来の技術 切削加工、あるいは研削加工が困難な直径1mm以下の細
径のピンの加工には、しばしば放電加工が用いられてい
る。例えば、特開昭57−33922号公報に記載されている
ような放電による微細加工用の装置において、微細穴放
電加工技術、電気加工技術Vol.8.NO21(佐藤)に記載さ
れているような加工電極側面を成形用ブロックと対向さ
せて放電を行い加工する方式、あるいはマイクロ放電加
工の高精度化、昭和59年度精機学会秋季大会学術講演会
論文集(増沢)に記載されている走行ワイヤを用いて加
工する方式が知られている。以下、上記従来の各方式に
ついて図面を参照しながら説明する。
2. Description of the Related Art Electric discharge machining is often used for machining pins with a diameter of 1 mm or less, which are difficult to cut or grind. For example, in an apparatus for fine machining by electric discharge as described in Japanese Patent Laid-Open No. 57-33922, a fine hole electric discharge machining technique and an electric machining technique Vol. A method of machining by performing electric discharge by facing the side of the machining electrode to the molding block, or improving the precision of micro electric discharge machining, using the running wire described in the proceedings of the Annual Meeting of the Precision Machinery Society of 1984 (Masawa). A method of processing by using is known. Hereinafter, each of the above conventional methods will be described with reference to the drawings.

第5図は被加工物側面を成形ブロックと対向させ、放電
により加工を行う方式の説明図である。図中、101は被
加工物となる円筒、102は被加工物101のホルダー、103
は成形ブロックであり、成形ブロック103及び被加工物1
01は加工液中に浸されている。そして被加工物101と成
形ブロック103間に加工電圧を印加し、被加工物101の位
置を固定のまま、成形ブロック103を徐々に被加工物101
側へ近付け、これらの間隔が放電ギャップ長以内に近付
くと放電が始まり、被加工物101の放電エリアAの径方
向の減少が生じる。一定の放電ギャップを保ちながらさ
らに成形ブロック103を被加工物101に近付けると、送り
量に比例して被加工物101の径方向の加工(減少)が進
むこととなり、被加工物101が希望の径となるまで送り
込みを繰り返す。
FIG. 5 is an explanatory diagram of a system in which the side surface of the workpiece is opposed to the molding block and machining is performed by electric discharge. In the figure, 101 is a cylinder to be a workpiece, 102 is a holder of the workpiece 101, 103
Is a forming block, and the forming block 103 and the workpiece 1
01 is immersed in the working fluid. Then, a machining voltage is applied between the workpiece 101 and the molding block 103, and the molding block 103 is gradually moved to the workpiece 101 while the position of the workpiece 101 is fixed.
When the distance is closer to the side, and the distance between them approaches within the discharge gap length, the discharge starts, and the discharge area A of the workpiece 101 decreases in the radial direction. When the forming block 103 is brought closer to the workpiece 101 while maintaining a constant discharge gap, the radial machining (reduction) of the workpiece 101 progresses in proportion to the feed amount, and the workpiece 101 becomes the desired shape. Repeat feeding until the diameter is reached.

第7図及び第8図は各々走行ワイヤを用いた加工装置の
全体図及び加工方式の説明図である。ワイヤ201及び被
加工物202間で放電され、被加工物202は取り代△dだ
け、走行するワイヤ201に重り代を持った状態で上方よ
り下方へ送られながら外周の加工が行われる。ワイヤ20
1は、低速で常にガイドローラ203上を走行するため、ワ
イヤ201の放電エリアは更新される。
FIG. 7 and FIG. 8 are an overall view of a processing apparatus using traveling wires and an explanatory view of a processing method, respectively. The workpiece 201 is discharged between the wire 201 and the workpiece 202, and the workpiece 202 is processed from the upper side to the lower side while the wire 201 running has a weight allowance for the machining allowance Δd and the outer periphery is processed. Wire 20
In No. 1, the traveling area on the guide roller 203 is always low, so that the discharge area of the wire 201 is updated.

発明が解決しようとする問題点 しかしながら、前者における被加工物101側面を成形ブ
ロック103と対向させる加工方式では、放電により被加
工物101側のみが消耗せず、割合が少ない成形ブロック1
03も消耗し、第6図に示すように成形ブロック103に溝1
04が形成される。このため、繰り返し加工を行う場合に
は成形ブロック103をシフトして新しい面を使う必要が
ある。従って成形ブロック103の端から端まで溝104が形
成されてしまった時点で寿命となり、成形ブロック103
を新たに交換することとなり、作業効率の低下を招く。
また成形ブロック103の交換作業が入るため、NC制御に
より無人運転に対応させることも著しく困難となる。さ
らに放電領域が加工長さと等しくなるため、対向面全体
で放電が生じるため、先端部での放電集中が生じ、加工
代を多く取る程、被加工物101はその先端部が細くなる
テーパ状に形成されるなどの問題点を有している。
Problems to be Solved by the Invention However, in the former processing method in which the side surface of the workpiece 101 faces the molding block 103, only the workpiece 101 side is not consumed by electric discharge, and the molding block 1 has a small proportion.
03 also wears out, and as shown in FIG.
04 is formed. For this reason, it is necessary to shift the molding block 103 and use a new surface when performing repeated machining. Therefore, when the groove 104 is formed from one end of the forming block 103 to the end, the life is reached, and the forming block 103
Will be replaced anew, resulting in a decrease in work efficiency.
Further, since the replacement work of the molding block 103 is required, it is extremely difficult to support unmanned operation by NC control. Further, since the electric discharge area is equal to the machining length, electric discharge is generated on the entire facing surface, so that electric discharge is concentrated at the tip portion, and as the machining allowance is increased, the workpiece 101 is tapered so that the tip portion becomes thinner. It has problems such as being formed.

一方、後者における走行ワイヤ201による加工では、ワ
イヤ201が走行しているため、常に新しい面(円筒ワイ
ヤの場合には、線に近付く)と被加工物202が放電する
こととなるため、上記のように被加工物がテーパ状にな
るという問題は生じない。またワイヤ201は50mm/MINと
低速度で走行し、リールには数千mのワイヤ201が巻か
れているため、寿命の点でも問題はない。しかし、加工
装置全体としては、ワイヤ201の走行装置、ブレーキ、
ステージの移動に追従するための追従機構が必要とな
り、装置として複雑になり、コストも高くなるという問
題点を有している。
On the other hand, in the latter machining with the traveling wire 201, since the wire 201 is traveling, a new surface (in the case of a cylindrical wire, it approaches the line) and the work piece 202 are always discharged. As described above, the problem that the workpiece is tapered does not occur. The wire 201 runs at a low speed of 50 mm / MIN, and the reel is wound with the wire 201 of several thousand m, so there is no problem in terms of life. However, as a whole processing device, the traveling device of the wire 201, the brake,
Since a follow-up mechanism for following the movement of the stage is required, the device becomes complicated and the cost becomes high.

そこで、本発明は、上記従来例の問題点を解決するもの
であって、繰り返し加工を行っても成形ブロックの成形
面を常に平面に保つことができ、また被加工物を真直性
良好に加工することができ、さらには簡単な構成で、NC
自動化が可能な放電加工装置を提供しようとするもので
ある。
Therefore, the present invention is to solve the above-mentioned problems of the conventional example, the molding surface of the molding block can always be kept flat even after repeated machining, and the workpiece can be machined with good straightness. Can be even easier with NC
It is intended to provide an electric discharge machine that can be automated.

問題点を解決するための手段 そして上記問題点を解決するための本発明の技術的な手
段は、被加工物を鉛直方向に移動する手段と、被加工物
の下方に配置され、放電加工液が満たされた加工槽と、
この加工槽内に固定され、上記被加工物の加工長さより
狭い幅の突出部を有し、この突出部に平坦な成形面が形
成された成形ブロックと、上記加工槽を水平面内で直交
する2方向に移動する手段と、上記被加工物と成形ブロ
ック間で放電させる加工電源と、上記被加工物の成形ブ
ロックに対する鉛直方向送りの移動速度と成形ブロック
の水平面内方向送りの移動速度を比例的に制御する制御
手段を具備したものである。
Means for Solving the Problems And technical means of the present invention for solving the above-mentioned problems include means for vertically moving a work piece, and an electric discharge machining solution arranged below the work piece. A processing tank filled with
The processing block is fixed in the processing tank, and has a protruding portion having a width narrower than the processing length of the workpiece, and the processing tank is orthogonal to the forming block in which a flat forming surface is formed on the protruding portion. A means for moving in two directions, a machining power source for causing an electric discharge between the work piece and the forming block, and a moving speed of the work piece in the vertical direction and a moving speed of the forming block in the horizontal plane are proportional. It is equipped with a control means for controlling the movement.

作用 本発明は、上記構成により、被加工物の長さ方向の送り
と成形ブロックの送りを同時に、かつ一走の比で制御
し、被加工物の長さ方向の加工を成形ブロックの突出部
の成形面に対し、全長に亘って順次位置変化させながら
行うことができるので、繰り返し加工後も成形ブロック
の消耗後の成形面の形状を平面に保つことができ、また
被加工物の加工済みの部分は成形面より離脱するので、
加工されず、被加工物を真直性良好に加工することがで
きる。
Effect The present invention has the above-described configuration and controls the feed in the length direction of the work piece and the feed of the forming block at the same time and at a single running ratio, so that the work in the length direction of the work piece is protruded from the forming block. Since it can be performed while sequentially changing the position of the molding surface over the entire length, the shape of the molding surface after consumption of the molding block can be kept flat even after repeated machining, and the processed workpiece has already been processed. Since the part of is separated from the molding surface,
The workpiece can be processed without being processed with good straightness.

実 施 例 以下、図面を参照しながら本発明の実施例について詳細
に説明する。
Examples Hereinafter, examples of the present invention will be described in detail with reference to the drawings.

第1図乃至第4図は本発明の一実施例における放電加工
装置を示し、第1図は全体斜視図、第2図は被加工物と
ブロックの拡大斜視図、第3図(a)、(b)及び第4図は加
工動作説明図である。
1 to 4 show an electric discharge machining apparatus according to an embodiment of the present invention, FIG. 1 is an overall perspective view, FIG. 2 is an enlarged perspective view of a workpiece and a block, FIG. 3 (a), (b) and FIG. 4 are explanatory views of the machining operation.

第1図に示すように被加工物1はホルダ2に保持され、
ホルダ2は回転手段3に回転可能に保持されている。回
転手段3は支持台4に支持され、支持台4は鉛直方向
(Z軸)移動手段5と連続されている。鉛直方向移動手
段5は支柱6に可動台7が鉛直方向に放電可能に支持さ
れ、可動台7がモータ8、送りねじ9などよりなる駆動
手段により鉛直方向に放電される。被加工物1の下方に
は加工槽10が設けられ、加工槽10は放電加工液11が満た
され、加工槽10内には成形ブロック12が固定されて放電
加工液11に浸されている。成形ブロック12は特に第2図
より明らかなように上端に水平方向の突条12aが形成さ
れ、突条12aの先端面が平担な成形面12bに形成されてい
る。本実施例では成形面12bの巾dは被加工物1の加工
長さlの約1/10に設定されている。加工槽10は水平面内
で直交する2方向(X軸、Y軸)の移動手段13、14上に
取付けられる。Y軸移動手段14は固定台15上に可動台16
がY軸方向に移動可能に支持され、可動台16がモータ1
7、送りねじ(図示省略)などの駆動手段によりY軸方
向に移動される。X軸移動手段13はY軸移動手段14の可
動台16上に固定台18が取付けられ、この固定台18上に可
動台19がX軸方向に移動可能に支持され、可動台19がモ
ータ20、送りねじ(図示省略)などの駆動手段によりX
軸方向に移動される。被加工物1を保持したホルダ2と
成形ブロック12には被加工物を1次電極とし、成形ブロ
ック12を2次電極として加工電源21が接続されている。
鉛直方向(Z軸)移動手段5のモータ8はZ軸ドライバ
22に接続され、X軸移動手段13のモータ20とY軸移動手
段14のモータ17はX、Y軸ドライバ23に接続され、Z軸
ドライバ22とX、Y軸ドライバ23は制御手段24に接続さ
れ、被加工物1の鉛直方向(Z軸)の移動速度と成形ブ
ロック12の水平面内方向(X軸)の移動速度が比例的に
制御されるようになっている。
The work piece 1 is held by a holder 2 as shown in FIG.
The holder 2 is rotatably held by the rotating means 3. The rotating means 3 is supported by a support base 4, and the support base 4 is continuous with the vertical (Z-axis) moving means 5. In the vertical direction moving means 5, a movable table 7 is supported on a column 6 so that the movable table 7 can be discharged in the vertical direction, and the movable table 7 is discharged in the vertical direction by driving means including a motor 8 and a feed screw 9. A machining tank 10 is provided below the work piece 1, the machining tank 10 is filled with an electric discharge machining liquid 11, and a forming block 12 is fixed in the machining tank 10 and immersed in the electric discharge machining liquid 11. As is particularly apparent from FIG. 2, the molding block 12 has a horizontal projection 12a formed at the upper end thereof, and the tip end surface of the projection 12a is formed as a flat molding surface 12b. In this embodiment, the width d of the molding surface 12b is set to about 1/10 of the processing length l of the workpiece 1. The processing tank 10 is mounted on moving means 13 and 14 in two directions (X axis and Y axis) orthogonal to each other in a horizontal plane. The Y-axis moving means 14 has a movable base 16 on a fixed base 15.
Is movably supported in the Y-axis direction, and the movable table 16 is used for the motor 1
7. It is moved in the Y-axis direction by driving means such as a feed screw (not shown). In the X-axis moving means 13, a fixed base 18 is mounted on a movable base 16 of the Y-axis moving means 14, a movable base 19 is supported on the fixed base 18 so as to be movable in the X-axis direction, and the movable base 19 is a motor 20. , X by a driving means such as a feed screw (not shown)
Moved axially. A machining power supply 21 is connected to the holder 2 holding the work piece 1 and the forming block 12 with the work piece as a primary electrode and the forming block 12 as a secondary electrode.
The motor 8 of the vertical (Z-axis) moving means 5 is a Z-axis driver.
22, the motor 20 of the X-axis moving means 13 and the motor 17 of the Y-axis moving means 14 are connected to the X and Y axis drivers 23, and the Z axis driver 22 and the X and Y axis drivers 23 are connected to the control means 24. The moving speed of the workpiece 1 in the vertical direction (Z axis) and the moving speed of the forming block 12 in the horizontal plane (X axis) are proportionally controlled.

次に上記実施例の加工動作について説明する。Next, the processing operation of the above embodiment will be described.

第3図(a)は被加工物1を回転させながら加工する場合
の説明用正面図、同図(b)はその底面図である。
FIG. 3 (a) is a front view for explanation when processing the workpiece 1 while rotating it, and FIG. 3 (b) is a bottom view thereof.

今、被加工物1の加工長さをl、径方向の取り代を△D
(直径では2×△D)とする。そこで、まず、被加工物
1を鉛直方向移動手段5の作動により成形ブロック12の
成形面12bの巾dと同じ長さd′だけ成形ブロック12の
上面より下降させると共に、X軸移動手段13の作動によ
り加工槽10及び成形ブロック12をX軸方向に移動させ、
成形ブロック12の側端面より△Dだけ離れた位置にセ
ットする。しかる後、加工槽10、すなわち成形ブロック
12をX軸移動手段13の作動により被加工物1と成形ブロ
ック12間で放電が開始する相対位置へ一定の速度Vb
で、移動する。そして加工電源21より被加工物1と成形
ブロック12に加工電力を供給し、放電を開始した後は、
成形ブロック12の移動速度はそのままで、被加工物1を
回転手段3により回転させながら鉛直方向(Z軸)移動
手段5の作動によりVeの速度で成形ブロック12側へ送
る。つまり、被加工物1は径方向の減少と長さ方向の加
工が同時進行することとなる。当然、成形ブロック12側
も消耗することとなるが、本実施例ではVbとVeの比を被
加工物1の長まl、成形ブロック12の長さLとした時、
Vb/Ve=L/lとなるよう制御手段24により制御されてい
る。従って被加工物1の長さ加工が終了した時点で、成
形ブロック12の成形面12bの右端まで移動し終え、の
状態となり、成形ブロック12の成形面12bは左端から右
端まで一走の比率で消耗するため、繰り返し加工を行っ
ても従来例のように溝は生じず、常に平面を保つことと
なる。また径方向の加工が終了した部分では、成形面12
bの下方へ離脱し、放電が生じないため長さ方向の全長
に亘って真直性の良い加工を行うことができる。第4図
に加工前の成形ブロック12の形状を破線で、加工後の形
状を実線で示した。
Now, the processing length of the work piece 1 is 1, and the machining allowance in the radial direction is ΔD.
(2 × ΔD in diameter). Therefore, first, the workpiece 1 is lowered by the operation of the vertical moving means 5 from the upper surface of the forming block 12 by the same length d ′ as the width d of the forming surface 12b of the forming block 12 and the X-axis moving means 13 is operated. The working tank 10 and the molding block 12 are moved in the X-axis direction by the operation,
The molding block 12 is set at a position away from the side end surface of the molding block by ΔD. Then, the processing tank 10, that is, the forming block
When the X-axis moving means 13 is operated, 12 is moved to a relative position where electric discharge is started between the workpiece 1 and the forming block 12, and a constant velocity Vb
Then move. Then, after the machining power is supplied from the machining power source 21 to the workpiece 1 and the molding block 12 to start the discharge,
While moving the forming block 12 at the same speed, the workpiece 1 is sent to the forming block 12 side at a speed of Ve by the operation of the vertical (Z-axis) moving means 5 while being rotated by the rotating means 3. That is, the workpiece 1 is simultaneously reduced in the radial direction and machined in the length direction. Naturally, the forming block 12 side is also consumed, but in this embodiment, when the ratio of Vb to Ve is the length 1 of the workpiece 1 and the length L of the forming block 12,
It is controlled by the control means 24 so that Vb / Ve = L / l. Therefore, when the length machining of the work piece 1 is completed, the movement to the right end of the forming surface 12b of the forming block 12 is completed, and the state becomes, and the forming surface 12b of the forming block 12 moves from the left end to the right end at a ratio of one run. Since it is consumed, a groove is not formed unlike the conventional example even if it is repeatedly processed, and a flat surface is always maintained. In addition, at the part where the radial processing is finished, the forming surface 12
Since it separates to the lower side of b and no discharge occurs, it is possible to perform machining with good straightness over the entire length in the length direction. In FIG. 4, the shape of the forming block 12 before processing is shown by a broken line, and the shape after processing is shown by a solid line.

なお、上記実施例では被加工物1を回転させて真円状に
加工する場合について説明したが、被加工物1を回転さ
せない場合についても、成形ブロック12の端面を平面に
保ったままでの加工が可能である。
In the above embodiment, the case where the workpiece 1 is rotated to be processed into a perfect circle has been described. However, even when the workpiece 1 is not rotated, processing is performed with the end surface of the molding block 12 kept flat. Is possible.

またNC制御により加工を行う場合には、成形ブロック12
が平面を保ち続けることができるため、成形ブロック12
の側面位置を加工槽10のY方向移動により接触感知、あ
るいは放電開始点の座標検出により△Dを定めることに
より、成形ブロック12の消耗を問題とせず加工が可能と
なる。
Also, when machining is performed by NC control, the molding block 12
Molding block 12
By detecting the side surface position of the machining tank 10 by moving the machining tank 10 in the Y direction or determining ΔD by detecting the coordinates of the discharge start point, machining can be performed without causing the wear of the molding block 12 to be a problem.

発明の効果 以上述べたように本発明によれば、鉛直方向移動手段に
よる被加工物の長さ方向の送りと水平面内の移動手段に
よる成形ブロックの送りを同時に、かつ一定の比で制御
し、被加工物の長さ方向の加工を成形ブロックの突出部
の成形面に対し、全長に亘って順次位置変化させながら
行うことができるので、繰り返し加工後も成形ブロック
の消耗後の成形面の形状を平面に保つことができ、また
成形ブロックの成形面は被加工物の加工長さより狭い幅
であるので、被加工物の加工済みの部分は成形面より離
脱し、加工されないので、被加工物を真直性良好に加工
することができる。さらには特別の付属機構を備える必
要がないので、簡単な構成で、NC自動化が可能となる。
As described above, according to the present invention, the feed in the longitudinal direction of the workpiece by the vertical moving means and the feed of the forming block by the moving means in the horizontal plane are controlled simultaneously and at a constant ratio, Since the workpiece can be machined in the longitudinal direction while the position of the projecting portion of the molding block is sequentially changed over the entire length, the shape of the molding surface after consumption of the molding block even after repeated machining Can be kept flat, and since the forming surface of the forming block is narrower than the processing length of the work piece, the processed part of the work piece separates from the forming surface and is not processed. Can be processed with good straightness. Furthermore, since it is not necessary to provide a special accessory mechanism, NC automation is possible with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は本発明の一実施例における放電加工
装置を示し、第1図は全体斜視図、第2図は要部拡大斜
視図、第3図(a)、(b)及び第4図は加工動作説明図、第
5図は従来の放電加工方式の一例を示す説明用斜視図、
第6図は第5図に示した放電加工方式による加工後の成
形ブロックの消耗形態を示す斜視図、第7図は従来の走
行ワイヤ方式による加工装置の全体図、第8図はその加
工方式説明図である。 1……被加工物、3……回転手段、5……鉛直方向移動
手段、10……加工槽、11……放電加工液、12……成形ブ
ロック、12a……突出部、12b……成形面、13……X軸移
動手段、14……Y軸移動手段、24……制御手段。
1 to 4 show an electric discharge machine in one embodiment of the present invention. FIG. 1 is an overall perspective view, FIG. 2 is an enlarged perspective view of essential parts, and FIGS. 3 (a), (b) and 4 is a machining operation explanatory view, FIG. 5 is an explanatory perspective view showing an example of a conventional electric discharge machining method,
FIG. 6 is a perspective view showing the consumption pattern of the molding block after machining by the electric discharge machining method shown in FIG. 5, FIG. 7 is an overall view of a conventional traveling wire type machining apparatus, and FIG. 8 is its machining method. FIG. 1 ... Workpiece, 3 ... Rotating means, 5 ... Vertical moving means, 10 ... Machining tank, 11 ... EDM fluid, 12 ... Molding block, 12a ... Projection, 12b ... Molding Surface, 13 ... X-axis moving means, 14 ... Y-axis moving means, 24 ... Control means.

フロントページの続き (72)発明者 田中 明美 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (56)参考文献 特開 昭61−203226(JP,A) 特開 昭62−114824(JP,A)Front Page Continuation (72) Inventor Akemi Tanaka 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Matsushita Giken Co., Ltd. (56) Reference JP-A-61-203226 (JP, A) JP-A-62 -114824 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被加工物を鉛直方向に移動する手段と、被
加工物の下方に配置され、放電加工液が満たされた加工
槽と、この加工槽内に固定され、上記被加工物の加工長
さより狭い幅の突出部を有し、この突出部に平坦な成形
面が形成された成形ブロックと、上記加工槽を水平面内
で直交する2方向に移動する手段と、上記被加工物と成
形ブロック間で放電させる加工電源と、上記被加工物の
成形ブロックに対する鉛直方向送りの移動速度と成形ブ
ロックの水平面内方向送りの移動速度を比例的に制御す
る制御手段を具備したことを特徴とする放電加工装置。
1. A means for moving a workpiece vertically, a machining tank disposed below the workpiece and filled with an electric discharge machining fluid, and fixed in the machining tank, A molding block having a protrusion having a width narrower than the machining length, and a flat molding surface formed on the protrusion; a means for moving the machining tank in two directions orthogonal to each other in a horizontal plane; and the workpiece. A machining power source for discharging between the molding blocks; and a control means for proportionally controlling the moving speed of the workpiece in the vertical direction with respect to the molding block and the moving speed of the molding block in the horizontal plane. EDM equipment.
【請求項2】被加工物の鉛直方向移動速度Veと成形ブロ
ックの移動速度Vbの比が被加工物の加工長さをl、成形
ブロックの成形面の長さをLとした時、Vb/Ve=L/lで与
えられる特許請求の範囲第1項記載の放電加工装置。
2. The ratio of the vertical moving speed Ve of the workpiece to the moving speed Vb of the forming block is Vb /, where the processing length of the workpiece is l and the forming surface length of the forming block is L. The electric discharge machine according to claim 1, which is given by Ve = L / l.
【請求項3】被加工物が回転手段により回転される特許
請求の範囲第1項または第2項記載の放電加工装置。
3. The electric discharge machining apparatus according to claim 1, wherein the workpiece is rotated by a rotating means.
JP27718586A 1986-11-20 1986-11-20 Electric discharge machine Expired - Lifetime JPH074699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27718586A JPH074699B2 (en) 1986-11-20 1986-11-20 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27718586A JPH074699B2 (en) 1986-11-20 1986-11-20 Electric discharge machine

Publications (2)

Publication Number Publication Date
JPS63134123A JPS63134123A (en) 1988-06-06
JPH074699B2 true JPH074699B2 (en) 1995-01-25

Family

ID=17579991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27718586A Expired - Lifetime JPH074699B2 (en) 1986-11-20 1986-11-20 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPH074699B2 (en)

Also Published As

Publication number Publication date
JPS63134123A (en) 1988-06-06

Similar Documents

Publication Publication Date Title
CN103286397B (en) Wire electrical discharge machine and wire electrical discharge method for reducing machining damage
US4596640A (en) Shaping method and apparatus using an axially moving continuous elongated tool
US4353785A (en) Method of and apparatus for wire-cut machining workpieces of non-planar surface contours
EP2845677B1 (en) Numerical control apparatus for controlling wire electric discharge machine which performs taper machining
US4386248A (en) Electrical machining method and apparatus for forming a 3D surface contour in a workpiece with a traveling-wire electrode
GB2055661A (en) Apparatus for making a hollow die set
EP0125812B1 (en) A machining centre
JPH074699B2 (en) Electric discharge machine
GB2057952A (en) Wire-cut electroerosion machining with contour-following wire
US4629856A (en) Traveling-wire backing support EDM method and apparatus
GB2062526A (en) '3D' contour electro-erosion machining method and apparatus
JPH079261A (en) Method and device for wire electric discharge machining
US4479044A (en) Electrode assembly for travelling-wire electroerosion machine
JPH04764B2 (en)
JPH0641067B2 (en) Wire cut electrical discharge machining method and device
JP4247932B2 (en) Wire electrical discharge machine
JPS59196126A (en) Machining center for electric discharge machining
JP2001328029A (en) Sending mechanism of wire electrode in wire electric discharge machine
JPS6339734A (en) Wire electric spark machining device
JPS63120023A (en) Electric-discharge machine
JPS61288926A (en) Electric discharge machine
JPS60249533A (en) Electrode apparatus for electric discharge machining
JP2023124534A (en) Wire electric discharge machining method and wire electric discharging machine
JPH0259239A (en) Numerically controlled machine tool with electro-discharge machine function
JPS6357121A (en) Electric discharge cutter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term