JPH0746391Y2 - Water treatment filter - Google Patents
Water treatment filterInfo
- Publication number
- JPH0746391Y2 JPH0746391Y2 JP1989089016U JP8901689U JPH0746391Y2 JP H0746391 Y2 JPH0746391 Y2 JP H0746391Y2 JP 1989089016 U JP1989089016 U JP 1989089016U JP 8901689 U JP8901689 U JP 8901689U JP H0746391 Y2 JPH0746391 Y2 JP H0746391Y2
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- water treatment
- water
- carbon layer
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【考案の詳細な説明】 (産業上の利用分野) この考案は水道水などに含まれる塩素を吸着し低減させ
る水処理用フィルタに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a water treatment filter for adsorbing and reducing chlorine contained in tap water and the like.
(従来の技術) 塩素を含有させた水道水などから使用前に塩素を吸着し
塩素含有量を低減させるのに、活性炭を用いた水処理用
のフィルタがある。この場合フィルタを通過した処理水
は、使用時までの雑菌の発生などを防ぐため残存塩素量
の下限値があり、また塩素臭感じさせないための上限値
があって条件により適宜に設定される(例えば0.2ppm以
上〜0.3ppm以下等)。処理水の塩素含有量はこの間の値
になるように維持される必要がある。(Prior Art) There is a filter for water treatment using activated carbon for adsorbing chlorine from tap water containing chlorine before use to reduce the chlorine content. In this case, the treated water that has passed through the filter has a lower limit value of the residual chlorine amount in order to prevent the generation of bacteria before use, and an upper limit value to prevent the smell of chlorine from being set, and is appropriately set depending on the conditions ( For example, 0.2 ppm or more and 0.3 ppm or less). The chlorine content of the treated water needs to be maintained at a value within this range.
第2図にこのような従来の水処理用フィルタ21を示す。
水の入口23、出口24を有する容器22内に活性炭層25が多
孔の支持板26、27で挟持されて固定されている。水道水
は入口23から入り活性炭層25で塩素が吸着され出口24か
ら使用個所へ流出する。FIG. 2 shows such a conventional water treatment filter 21.
An activated carbon layer 25 is sandwiched and fixed by porous support plates 26, 27 in a container 22 having a water inlet 23 and an outlet 24. Tap water enters through the inlet 23, adsorbs chlorine in the activated carbon layer 25, and flows out through the outlet 24 to the point of use.
(考案が解決しようとする課題) このような水処理用フィルタは、使用に伴ない活性炭の
吸着性能が低下し、残存塩素量が順次増加し上記上限を
超えるに至るので、できるだけ容量を大にしてフィルタ
の寿命を長くすることが望ましい。(Problems to be solved by the invention) With such a water treatment filter, the adsorbing performance of activated carbon is deteriorated as it is used, and the amount of residual chlorine gradually increases to exceed the above upper limit. It is desirable to increase the filter life.
しかし第2図のような従来のものでは収納する活性炭層
を多くすると、使用初期には塩素吸着量が大(脱塩素効
率が大)で処理水に残存すべき塩素量が上記の下限以下
となり雑菌繁殖などのおそれ生ずる。従って水の流量に
対し特定量以上の活性炭を用いることができず、これに
よって水処理フィルタの寿命が比較的短く制限される。However, in the conventional type as shown in Fig. 2, if the activated carbon layer to be stored is increased, the amount of chlorine adsorbed is large (the dechlorination efficiency is high) at the beginning of use and the amount of chlorine that should remain in the treated water becomes less than the above lower limit. There is a risk of bacterial growth. Therefore, it is not possible to use more than a certain amount of activated carbon for the flow rate of water, which limits the life of the water treatment filter to be relatively short.
その対策として活性炭量を比較的多量に収納するととも
にバイパス通路を設け、使用初期における活性炭の過大
な塩素吸着をバイパス流によって補なうことが考えられ
る。例えば第3図の水処理フィルタ31のように水の入口
33、出口34を有する容器32内に多孔の支持板36、37に挟
持された活性炭層35を設けるとともに、活性炭層35を貫
通してパイプ状のバイパス通路38を設け一部の水を通過
させる。図中39はバイパス通路断面積を決定するオリフ
ィスである。しかしこのような水処理フィルタ31は、活
性炭量を増加した割には寿命が延長されず早期に上記上
限に達してしまう。これは、使用に伴なって活性炭の塩
素吸着作用が飽和状態に近づいて鈍化するとともに、水
中に含まれる塵埃等の固形の粒子が活性炭に付着するこ
とにより吸着作用を阻害しかつ活性炭層の流体抵抗を増
加させる(以下これを目詰まりと云う)から、その分だ
けバイパス通路の流量比率が増加することによるもので
ある。As a countermeasure against this, it is considered that a relatively large amount of activated carbon is stored and a bypass passage is provided so that excessive chlorine adsorption of activated carbon at the initial stage of use is compensated by a bypass flow. For example, a water inlet such as the water treatment filter 31 in FIG.
33, an activated carbon layer 35 sandwiched between porous support plates 36, 37 is provided in a container 32 having an outlet 34, and a pipe-shaped bypass passage 38 is provided through the activated carbon layer 35 to allow a part of water to pass therethrough. . In the figure, 39 is an orifice that determines the cross-sectional area of the bypass passage. However, the life of such a water treatment filter 31 is not extended for the increased amount of activated carbon, but the upper limit is reached early. This is because the chlorine adsorption action of activated carbon becomes dull as it approaches saturation, and solid particles such as dust contained in water adhere to the activated carbon to inhibit the adsorption action and the fluid of the activated carbon layer. This is because the resistance is increased (hereinafter referred to as clogging), and the flow rate ratio of the bypass passage is increased accordingly.
そこでこの考案はバイパス通路の濾材の目詰まりを順次
に進行させて活性炭層とバイパス通路との流量配分比率
を適宜に調整することにより、残存塩素量が上限値に達
する時期を遅らせるものである。Therefore, this invention delays the time when the residual chlorine amount reaches the upper limit value by advancing the clogging of the filter medium in the bypass passage in order and adjusting the flow distribution ratio between the activated carbon layer and the bypass passage appropriately.
(課題を解決するための手段) この考案の水処理フィルタは、入口、出口を有する容器
内に活性炭層を配設するとともに、前記入口および出口
を挿通し活性炭層を貫通するパイプを設け、パイプ内に
濾材支持体を設けて入口側と出口側を区画する濾材を装
着することによりバイパス通路を形成したものである。(Means for Solving the Problems) In the water treatment filter of the present invention, an activated carbon layer is disposed in a container having an inlet and an outlet, and a pipe that penetrates the activated carbon layer through the inlet and the outlet is provided. A bypass passage is formed by providing a filter medium support therein and mounting a filter medium that partitions the inlet side and the outlet side.
(作用) この考案の水処理フィルタは、水入口から流入した水を
活性炭層とバイパス通路とに分かれて通過させ、水出口
から使用個所へ送出する。活性炭層は比較的多量の活性
炭が収容してあり、通過した水は残存塩素分がきわめて
少なくなるが、バイパス通路を通過する水と合わせる
と、出口における処理水の残存塩素分が設定された目標
値の下限を超えるように設定されている。(これは全通
路断面積に対するバイパスの通路断面積の比率、および
濾材の濾孔径の細かさを選んで初期の流量比率を定めれ
ばよい。) 使用に伴なって順次活性炭の吸着性能が低下して処理水
の残存塩素量の増加(脱塩素効率が低下)する傾向とな
り、さらに活性炭の目詰まりによりこの傾向は助長され
る。しかしバイパスの濾材のほうが目詰まりの進行が速
いから、流量の配分比率は、活性炭層を通過する流量分
が初期よりも増加してゆき、前記の脱塩素効率の低下を
補なように配分が変化する。このことにより出口におけ
る処理水の残存塩素量は比較的安定して維持され全体と
しての残存塩素量の増加(脱塩素効率の低下)は少な
く、上限に達するまでの期間が長くなる。(Operation) In the water treatment filter of the present invention, the water flowing in from the water inlet is divided into the activated carbon layer and the bypass passage to pass through, and is discharged from the water outlet to the use place. The activated carbon layer contains a relatively large amount of activated carbon, and the amount of residual chlorine in the water that passed through is extremely small. However, when combined with the water that passes through the bypass passage, the residual chlorine in the treated water at the target is set. It is set to exceed the lower limit of the value. (This may be determined by selecting the ratio of the bypass passage cross-sectional area to the total passage cross-sectional area and the fineness of the filter pore size of the filter medium to determine the initial flow rate ratio.) The adsorbing performance of activated carbon gradually decreases with use. Then, the amount of residual chlorine in the treated water tends to increase (dechlorination efficiency decreases), and this tendency is promoted by clogging of activated carbon. However, since the bypass filter media progresses faster in clogging, the distribution ratio of the flow rate increases so that the flow rate passing through the activated carbon layer increases from the initial rate, and the distribution is distributed so as to compensate for the above-mentioned decrease in dechlorination efficiency. Change. As a result, the residual chlorine amount of the treated water at the outlet is maintained relatively stable, the increase in the residual chlorine amount (decrease in dechlorination efficiency) as a whole is small, and the period until the upper limit is reached becomes long.
この場合パイパス通路はパイプによって活性炭層と遮断
され、活性炭層の途中から処理水がバイパス通路へ出入
りして混合することがないから、バイパス通路と活性炭
量の流量配分の推移を検出して、全体としての塩素残存
量を計画的に管理制御することが容易である。In this case, the bypass passage is blocked from the activated carbon layer by the pipe, and the treated water does not flow into and out of the bypass passage in the middle of the activated carbon layer, so the transition of the flow distribution of the bypass passage and the activated carbon amount is detected, and It is easy to systematically manage and control the residual chlorine content.
(実施例) 第1図にこの考案の実施例を示す。水処理フィルタ1
は、水の入口3、出口4を有する筒状の容器2に多孔の
支持板6、7で挟持して球状の活性炭を収容し活性炭層
5を形成させてある。多孔の支持板6、7を連結し活性
炭層5を貫通するパイプ11を設け、入口3、出口4を連
通させるとともに、パイプ11内にリング状の濾材支持体
10を設けて濾材9を装着し、バイパス通路8が形成され
る。この例では活性炭層95gr、バイパス通路断面積は全
通路断面積の20%、濾材は公称濾孔径3μのものであ
る。(Embodiment) FIG. 1 shows an embodiment of the present invention. Water treatment filter 1
Is a cylindrical container 2 having a water inlet 3 and a water outlet 4, and is sandwiched by porous support plates 6 and 7 to contain spherical activated carbon and form an activated carbon layer 5. A pipe 11 that connects the porous support plates 6 and 7 and penetrates the activated carbon layer 5 is provided to connect the inlet 3 and the outlet 4 and a ring-shaped filter medium support is provided in the pipe 11.
A bypass passage 8 is formed by providing the filter medium 9 with the filter medium 10 installed. In this example, the activated carbon layer 95 gr, the bypass passage cross-sectional area is 20% of the total passage cross-sectional area, and the filter medium has a nominal pore size of 3 μ.
上記の水処理フィルタに塩素濃度Co=1ppmの水を流量q
=1.8l/minで通水した結果を第4図に示す。曲線Bは活
性炭75grを収容しバイパスを設けない従来のもの(第2
図)であり、初期において下限M(0.2ppm)を超えない
ために75gr以下でなければならず、上限N(0.3ppm)ま
での寿命もl(累計処理水量Q1)の如く短いことが判か
る。この場合活性炭を95grにすると(C−線)初期にお
いて脱塩素効率が高すぎて(90%)残存塩素量が下限Mp
pm以下となり不適当である。曲線Aはこの考案のものの
特性を示す。初期にはバイパスの作用によって全体とし
ての脱塩素効率は70%となり残存塩素量の上限N(0.3p
pm)となる。Water with a chlorine concentration Co = 1ppm in the water treatment filter above q
Fig. 4 shows the results of water flow at = 1.8 l / min. Curve B is the conventional one containing 75gr of activated carbon and no bypass (second
Fig.), And it must be 75gr or less in order not to exceed the lower limit M (0.2ppm) in the initial stage, and the life up to the upper limit N (0.3ppm) is as short as 1 (cumulative treated water amount Q 1 ). Light In this case, if the activated carbon is set to 95 gr (C-line), the dechlorination efficiency is too high in the initial stage (90%), and the residual chlorine amount becomes the lower limit Mp.
It is less than pm, which is inappropriate. Curve A shows the characteristics of this invention. In the initial stage, due to the action of bypass, the overall dechlorination efficiency becomes 70%, and the upper limit of the residual chlorine amount N (0.3 p
pm).
順次濾材の目詰まりにより活性炭層への流量配分が増加
するとともに活性炭自体の吸着性能低下が生じて流量配
分の増加と相殺され、N〜M(0.3〜0.2ppm)の範囲に
維持される期間が長い(累計水処理量Qが大)ことを示
している。The flow rate distribution to the activated carbon layer increases sequentially due to the clogging of the filter medium, and the adsorption performance of the activated carbon itself deteriorates, which is offset by the increase in the flow rate distribution, and the period during which it is maintained in the range of N to M (0.3 to 0.2 ppm) It is long (the cumulative water treatment amount Q is large).
第5図は本考案の他の実施例の線図であり、活性炭層95
r、バイパス通路断面積40%、濾材の公称濾孔直径30μ
の場合の例を示す。図中曲線Dはこの考案の水処理フィ
ルタの特性を示すもの、曲線Eは活性炭95grを用いたバ
イパスのない従来の水処理フィルタの特性を示すもので
ある。この例では処理水の残存塩素量の維持範囲を脱塩
素効率で表わして40〜60%に維持しようとするものであ
る。FIG. 5 is a diagram of another embodiment of the present invention, in which the activated carbon layer 95
r, bypass passage cross-sectional area 40%, nominal media filter pore diameter 30μ
An example in the case of is shown. In the figure, a curve D shows the characteristics of the water treatment filter of the present invention, and a curve E shows the characteristics of a conventional water treatment filter using 95 gr of activated carbon without a bypass. In this example, the range of maintaining the residual chlorine content of the treated water is represented by dechlorination efficiency and is intended to be maintained at 40 to 60%.
尚、この考案にかかる実験値を次に示す。表1によれ
ば、濾材の目詰まりが順次にバイパス通路の流量を制限
し、吸着性能の低下した活性炭層の流量分担を増加させ
て、全体としての脱塩素効率が安定して維持されること
が判かる。The experimental values according to this invention are shown below. According to Table 1, the clogging of the filter medium sequentially limits the flow rate of the bypass passage, increases the flow rate sharing of the activated carbon layer with reduced adsorption performance, and maintains the overall dechlorination efficiency stably. Is understood.
(考案の効果) この考案の水処理フィルタは、活性炭層と濾材を有する
バイパス通路とを設けることにより、使用初期において
はバイパス作用により残存塩素量の過度の低下を防ぎ、
使用に伴なう活性炭の吸着性能低下に対しては、順次に
濾材の目詰まりを進行させることによりバイパス流量を
減らして活性炭層への流量配分を増加させ、処理水の残
存塩素量を維持するようにしたので、多量の活性炭を収
納したうえ初期から目標範囲内に安定した塩素効率を示
し、これを長期に維持させることができる。すなわち長
寿命あるいは多量の処理能力のある水処理フィルタとす
ることができる。またバイパス通路は、活性炭層から処
理水が出入りして混入することがなく、原水のままの塩
素含有率を保つので、両者の目詰まりの進行状況から流
量配分の推移を検出し、全体としての塩素残存量を計画
的に管理することが容易にできる。 (Effect of the Invention) The water treatment filter of the present invention is provided with the activated carbon layer and the bypass passage having the filter medium, thereby preventing an excessive decrease in the residual chlorine amount due to the bypass action in the initial stage of use,
To reduce the adsorption performance of activated carbon that accompanies use, the filter material is gradually clogged to reduce the bypass flow rate and increase the flow rate distribution to the activated carbon layer to maintain the residual chlorine content of the treated water. By doing so, it is possible to store a large amount of activated carbon and to show stable chlorine efficiency within the target range from the initial stage, which can be maintained for a long period of time. That is, a water treatment filter having a long life or a large treatment capacity can be obtained. In addition, since the bypass passage does not mix the treated water into and out of the activated carbon layer and keeps the chlorine content as it is in the raw water, the transition of the flow rate distribution is detected from the progress of clogging of the two and the overall flow rate is detected. It is possible to easily manage the residual chlorine amount systematically.
第1図はこの考案の水処理フィルタの実施例の図、第2
図は従来の水処理フィルタ、第3図は従来のものにバイ
パス通路を付加した水処理フィルタの図である。第4
図、第5図は水処理フィルタの特性を示す線図である。 3……入口、4……出口、5……活性炭層 8……バイパス通路、9……濾材 A、D……本考案の水処理フィルタの特性曲線 B、C、E……従来の水処理フィルタの特性曲線 M……ppm下限値、N……ppm上限値FIG. 1 is a diagram of an embodiment of the water treatment filter of the present invention, and FIG.
FIG. 3 is a view of a conventional water treatment filter, and FIG. 3 is a view of a water treatment filter in which a bypass passage is added to the conventional one. Fourth
FIG. 5 is a diagram showing the characteristics of the water treatment filter. 3 ... Inlet, 4 ... Outlet, 5 ... Activated carbon layer 8 ... Bypass passage, 9 ... Filter medium A, D ... Characteristic curve of water treatment filter of the present invention B, C, E ... Conventional water treatment Filter characteristic curve M ... ppm lower limit, N ... ppm upper limit
Claims (1)
を設けるとともに、活性炭層を貫通し前期入口および出
口に連通するパイプを設け、パイプ内に濾材支持体を設
けて、濾材支持体に、パイプ内を入口側と出口側に区画
する濾材を装着してバイパス通路を形成させた水処理用
フィルタ。1. An activated carbon layer is provided in a container having an inlet and an outlet, a pipe penetrating the activated carbon layer and communicating with the previous inlet and outlet is provided, and a filter medium support is provided in the pipe to provide a filter medium support, A water treatment filter in which a bypass passage is formed by mounting a filter medium that divides a pipe into an inlet side and an outlet side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989089016U JPH0746391Y2 (en) | 1989-07-28 | 1989-07-28 | Water treatment filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989089016U JPH0746391Y2 (en) | 1989-07-28 | 1989-07-28 | Water treatment filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0332992U JPH0332992U (en) | 1991-03-29 |
JPH0746391Y2 true JPH0746391Y2 (en) | 1995-10-25 |
Family
ID=31638610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989089016U Expired - Lifetime JPH0746391Y2 (en) | 1989-07-28 | 1989-07-28 | Water treatment filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746391Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5582071B2 (en) * | 2011-03-08 | 2014-09-03 | トヨタ紡織株式会社 | Ion exchanger |
JP6124426B1 (en) * | 2016-01-13 | 2017-05-10 | 株式会社ナチュラルウィル | Filter for water purifier |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6197095A (en) * | 1984-10-19 | 1986-05-15 | Kotobuki Kogyo Kk | Body construction of city water cleaning up device |
-
1989
- 1989-07-28 JP JP1989089016U patent/JPH0746391Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0332992U (en) | 1991-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7459083B1 (en) | Method for controlling fouling of a membrane filter | |
He et al. | The performance of BAF using natural zeolite as filter media under conditions of low temperature and ammonium shock load | |
Tekerlekopoulou et al. | Ammonia, iron and manganese removal from potable water using trickling filters | |
US5746921A (en) | Fluidized bed aquarium filtration method | |
US5759400A (en) | Reticulated foam structured fluid treatment element | |
US4732674A (en) | Water purifier | |
US20120132575A1 (en) | Foam water treatment system | |
US5766475A (en) | Waste water disposal system | |
JPH0746391Y2 (en) | Water treatment filter | |
JP4661583B2 (en) | Water purifier and water purification method | |
KR20110084939A (en) | Water-purifying cartridge and water purifier | |
JP4560810B2 (en) | Nitrate ion removal equipment | |
JP4394504B2 (en) | Biological filtration equipment | |
JPH105743A (en) | Water purifying filter | |
JP5089211B2 (en) | Water purification method | |
CA2488572A1 (en) | Water conditioning system | |
Moore et al. | Development of a novel lightweight media for biological aerated filters (BAFs) | |
CN203639265U (en) | Running water purification filter element | |
JP4066348B2 (en) | Virus removal method and apparatus | |
EP3003020A1 (en) | Aquarium filter | |
JP2003170185A (en) | Septic tank having filtration equipment and method of cleaning water to be treated by filter | |
CA2164932A1 (en) | Process and apparatus for biological treatment of water | |
JPS61136488A (en) | Water quality adjusting material | |
WO2020202808A1 (en) | Water treatment apparatus | |
JPH1028964A (en) | Water purifier |