JPH0746170B2 - f / θ lens - Google Patents

f / θ lens

Info

Publication number
JPH0746170B2
JPH0746170B2 JP62164539A JP16453987A JPH0746170B2 JP H0746170 B2 JPH0746170 B2 JP H0746170B2 JP 62164539 A JP62164539 A JP 62164539A JP 16453987 A JP16453987 A JP 16453987A JP H0746170 B2 JPH0746170 B2 JP H0746170B2
Authority
JP
Japan
Prior art keywords
lens
theta
scanning
thickness
light incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62164539A
Other languages
Japanese (ja)
Other versions
JPS6419315A (en
Inventor
信博 荒木
征雄 坂垣内
耕一 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP16230586A external-priority patent/JPS62201410A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPS6419315A publication Critical patent/JPS6419315A/en
Publication of JPH0746170B2 publication Critical patent/JPH0746170B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0005Optical objectives specially designed for the purposes specified below having F-Theta characteristic

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクシミリ及びレーザプリンター等の輝度
変調を受けたレーザービームにより記録及び読取を行う
装置に用いられるf・θレンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an f.theta. Lens used in an apparatus for recording and reading with a laser beam subjected to luminance modulation such as a facsimile and a laser printer.

従来の技術 f・θレンズは、レーザービームを用いたプリンタ及び
ファクシミリに用いられているが、その原理を第6図に
基いて説明すると、レーザー光源11からのレーザービー
ムを変調器12で画像信号に応じて変調し、この変調した
ビームをビームエキスパンダー13で拡大し、拡大したビ
ームを続いて反射ミラー14により反射させてビームエキ
スパンダー13により拡大し、この拡大したビームに回転
する多面体ミラー15等の偏向器により偏向角θを与え
る。この偏向角θを与えられたレーザービームを焦点距
離fなるf・θレンズ(等速度走査レンズ)16により反
射ミラー17を利用して記録、或は読取媒体等の被走査面
18上に集光させる。このf・θレンズ16は更に等角速度
を有する偏向角θと光軸に直交した記録、或は読取結像
面である被走査面18上の走査速度とが比例関係になるよ
うにf・θレンズ16に歪曲収差を持たせ、常に一様な走
査速度を得るように偏向角θと光軸からの結像の像高Y
の間にY=f・θとなるように設計されている。
2. Description of the Related Art The f.theta. Lens is used in printers and facsimiles that use a laser beam. The principle of the f.theta. Lens will be described with reference to FIG. The beam is expanded by the beam expander 13, the expanded beam is subsequently reflected by the reflection mirror 14 to be expanded by the beam expander 13, and the expanded beam is rotated by a polyhedral mirror 15 or the like. A deflection angle θ is given by the deflector. A laser beam given this deflection angle θ is recorded by an f · θ lens (constant speed scanning lens) 16 having a focal length f using a reflection mirror 17, or a surface to be scanned such as a reading medium.
Focus on 18 The f.theta. Lens 16 is further arranged so that the deflection angle .theta. Having a constant angular velocity and the scanning speed on the surface to be scanned 18 which is a recording or reading image plane orthogonal to the optical axis are in a proportional relationship. The lens 16 has a distortion aberration, and the deflection angle θ and the image height Y of the image formed from the optical axis are set so that a uniform scanning speed is always obtained.
It is designed such that Y = f · θ during the period.

従来のf・θレンズとしては、例えば特開昭55-53308号
公報に記載されているオルソメター型のものや特開昭55
-18613号公報並びに特開昭51-37245号公報に記載されて
いるテレセントリック型のものが知られている。
As a conventional f / θ lens, for example, an ortho-meter type lens described in JP-A-55-53308 or JP-A-55-53308
There are known telecentric types described in JP-A-18613 and JP-A-51-37245.

発明が解決しようとする問題点 しかし、走査長が500mm以上の記録、或は読取を行う場
合、上記従来のテレセントリック型f・θレンズでは、
収差が非常に良く、良好なスポットが得られるが、走査
長以上のレンズ径を必要とし、膨大な大きさのレンズと
なり、実用性に乏しい。
Problems to be Solved by the Invention However, when recording or reading with a scanning length of 500 mm or more, the conventional telecentric f.theta.
Although the aberration is very good and a good spot can be obtained, it requires a lens diameter equal to or longer than the scanning length, which results in an enormous size of the lens, which is not practical.

また、オルソメター型f・θレンズは、画角が全角で60
°程度の広角なレンズとなることから、走査長が大きく
なるとしても、コンパクトなレンズ形状となり、走査長
の長い走査系については最も適したレンズであるが、上
記従来の構成では、走査長が500mm以上になると、高次
非点収差が増大し、走査方向に一様なビームスポットに
はならないという欠点があり、また、500mm以下の走査
長についてもサジタル方向の像画の湾曲量が大きく、ス
ポット径が21μm以下のものでは、走査方向に一様なス
ポットとならないという欠点があった。
Also, the angle of view of the ortho-meter type f / θ lens is 60
Since the lens has a wide angle of about 0 °, it has a compact lens shape even if the scanning length becomes large, and is the most suitable lens for a scanning system having a long scanning length. When it is 500 mm or more, there is a drawback that high-order astigmatism increases, and a uniform beam spot is not formed in the scanning direction.Moreover, even for a scanning length of 500 mm or less, the amount of curvature of the image in the sagittal direction is large, If the spot diameter is 21 μm or less, there is a drawback that the spot is not uniform in the scanning direction.

そこで、本発明は、従来技術の以上のような問題点を解
決するもので、長い走査長においても、サジタル方向の
像画湾曲を最小にし、また等速度走査性を有し、また明
るく高解像なf・θレンズを提供しようとするものであ
る。
Therefore, the present invention solves the above-mentioned problems of the prior art, minimizes the image curvature in the sagittal direction even at a long scanning length, has a constant speed scanning property, and is bright and has a high resolution. It is intended to provide an image f / θ lens.

問題点を解決するための手段 本発明は、上記問題点を解決するために、光線入射側に
凹面を向けた正のメニスカスレンズである第1レンズ
と、光線入射側に凹面を向けた負のメニスカスレンズで
ある第2レンズと、いずれも光線入射側に凹面を向けた
正のメニスカスレンズである第3レンズ、第4レンズ及
び第5レンズとからなる5群5枚構成のレンズ系で、次
の各条件を満足することを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a positive meniscus lens having a concave surface on the light incident side and a negative lens having a concave surface on the light incident side. A lens system having a five-group, five-element configuration including a second lens, which is a meniscus lens, and a third lens, which is a positive meniscus lens with a concave surface facing the light incident side, a fourth lens, and a fifth lens. It is characterized by satisfying each condition of.

(1)0.90<|r2/r3|<1.02 (2)0.007f<d4<0.050f (3)−1.3f<r5<−0.43f (4)0.008f<|d3/n2+d4+d5/n3+d6+d7/n4+d8+d9
/n5|<0.12f (ただし、r2,r3,r5はそれぞれ第1レンズの出射側の
面、第2レンズの入射側の面、第3レンズの入射側の
面、d3,d5,d7,d9はそれぞれ第2レンズのレンズ厚、第
3レンズのレンズ厚、第4レンズのレンズ厚、第5レン
ズのレンズ厚、n2,n3,n4,n5はそれぞれ第2レンズの屈
曲率、第3レンズの屈折率、第4レンズの屈折率、第5
レンズの屈折率、d4,d6,d8はそれぞれ第2レンズと第3
レンズの面(空気)間隔、第3レンズと第4レンズの面
(空気)間隔、第4レンズと第5レンズの面(空気)間
隔、fは全系の焦点距離である。) 本発明のf・θレンズは、f・θレンズの特徴である負
の歪曲収差を発生させ、fを全系の焦点距離、θを偏向
角、Y′を結像位置の光軸からの距離としたときの等速
度走査性を示す の値が雰に近くなるようにしたものである。さらには、
小さいFナンバーにおいて回折限界に近いスポット径を
得るため、球面収差を良好に補正し、また、焦点深度が
小さい値となっても走査方向に一様なスポット形状とな
るようにサジタル方向の像画のたおれを補正したもので
ある。
(1) 0.90 <| r 2 / r 3 | <1.02 (2) 0.007f <d 4 <0.050f (3) −1.3f <r 5 <−0.43f (4) 0.008f <| d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9
/ n 5 | <0.12f (where r 2 , r 3 and r 5 are the exit surface of the first lens, the entrance surface of the second lens, the entrance surface of the third lens, d 3 , d 5 , d 7 , and d 9 are the lens thickness of the second lens, the lens thickness of the third lens, the lens thickness of the fourth lens, the lens thickness of the fifth lens, and n 2 , n 3 , n 4 , n 5 are The refractive index of the second lens, the refractive index of the third lens, the refractive index of the fourth lens, and the fifth lens, respectively.
The refractive indices of the lenses, d 4 , d 6 , and d 8 , are the second lens and the third lens, respectively.
Lens surface (air) distance, third lens and fourth lens surface (air) distance, fourth lens and fifth lens surface (air) distance, and f is the focal length of the entire system. The f.theta. Lens of the present invention produces negative distortion which is a characteristic of the f.theta. Lens, f is the focal length of the entire system, .theta. Is the deflection angle, and Y'is from the optical axis of the image forming position. Shows constant velocity scanning when distance The value of is close to the atmosphere. Moreover,
In order to obtain a spot diameter close to the diffraction limit at a small F number, spherical aberration is satisfactorily corrected, and even if the depth of focus is small, the image in the sagittal direction has a uniform spot shape in the scanning direction. This is a correction of the strain.

そのために本発明のf・θレンズは、上記の4つの条件
を満足するようにしてある。
Therefore, the f.theta. Lens of the present invention satisfies the above four conditions.

条件(1)において|r2/r3|が上限の1.02を超えると球
面収差がオーバーとなり、正の方向に倒れてしまい、逆
に下限の0.90以下となると球面収差がアンダーになり過
ぎる。
Under the condition (1), if | r 2 / r 3 | exceeds the upper limit of 1.02, the spherical aberration becomes excessive and falls in the positive direction, and conversely, if it becomes lower than 0.90, the spherical aberration becomes too under.

条件(2)においてd4が上限の0.050fを超えるとメリジ
オナル像画が正の方向へ倒れると共に、サジタル方向の
高次非点収差が大きくなり、像画の湾曲量が大きくなっ
てしまう。また下限の0.007fより小さくなると、メリジ
オナル像画が負の方向へ倒れ、サジタル方向との非点収
差が大きくなり、さらに歪曲収差が小さくなる。
When d 4 exceeds the upper limit of 0.050f in the condition (2), the meridional image is tilted in the positive direction, the high-order astigmatism in the sagittal direction is increased, and the amount of curvature of the image is increased. If the lower limit of 0.007f is not reached, the meridional image will tilt in the negative direction, increasing the astigmatism with respect to the sagittal direction and further reducing distortion.

条件(3)においてr5が下限の−1.3f以下になるとサジ
タル方向の高次非点収差が増大し、像画湾曲量が増え
る。また上限の−0.43fを超えるとメリジオナル方向と
サジタル方向の非点隔差が増大し、さらに歪曲収差が減
少する。
When r 5 is equal to or lower than the lower limit of −1.3f in the condition (3), high-order astigmatism in the sagittal direction increases, and the amount of image curvature increases. When the upper limit of −0.43f is exceeded, the astigmatic difference between the meridional direction and the sagittal direction increases, and the distortion aberration further decreases.

条件(4)においてr3からr10までの全体を空気に置き
換えたときの長さが上限の0.12fを超えるとサジタル方
向の湾曲が増大し、下限の0.08f以下となると歪曲収差
が小さくなり、fθ特性がとれなくなる。
In condition (4), when the entire length from r 3 to r 10 is replaced with air, the sagittal curvature increases when the length exceeds the upper limit of 0.12f, and the distortion decreases when the length becomes less than the lower limit of 0.08f. , Fθ characteristics cannot be obtained.

作用 本発明は、負メニスカスレンズを含む5群5枚構成で、
絞りに対しコンセントリックな形状とし、かつ全長を短
くすることにより、長い走査長においても、サジタル方
向の像画湾曲を最小にすることができ、また等速度走査
性を有し、また明るい高解像を得ることができる。
Action The present invention has a five-group, five-element configuration including a negative meniscus lens,
By concentrating the aperture and shortening the overall length, the image curvature in the sagittal direction can be minimized even at a long scanning length, and it has a constant speed scanning property and a bright high resolution. You can get a statue.

実施例 以下に本発明の実施例を示す。Examples Examples of the present invention will be shown below.

第1図は本発明のf・θレンズの基本構成を示す。本発
明のf・θレンズは光線入射側に凹面を向けた正のメニ
スカスレンズである第1レンズ1、第3レンズ3、第4
レンズ4及び第5レンズ5と光線入射側に凹面を向けた
負のメニスカスレンズである第2レンズ2とからなる5
群5枚構成となっている。以下に詳細を示す。ただし、
r1は第1レンズ1の入射側の面、r2は第1レンズ1の出
射側の面、r3は第2レンズ2の入射側の面、r4は第2レ
ンズ2の出射側の面、r5は第3レンズ3の入射側の面、
r6は第3レンズ3の出射側の面、r7は第4レンズ4の入
射側の面、r8は第4レンズ4の出射側の面、r9は第5レ
ンズ5の入射側の面、r10は第5レンズ5の出射側の
面、d1、d3、d5、d7、d9はそれぞれ第1、第2、第3、
第4、第5レンズ1、2、3、4、5のレンズ厚、d2
d4、d6、d8はそれぞれ第1レンズ1と第2のレンズ2の
面間隔、第2レンズ2の第3レンズ3の面間隔、第3レ
ンズ3と第4レンズ4の面間隔、第4レンズ4と第5レ
ンズ5の面間隔、n1、n2、n3、n4、n5はそれぞれ第1、
第2、第3、第4、第5レンズ1、2、3、4、5の屈
折率、fは全系の焦点距離、Fはレンズ系のFナンバ
ー、Yは像高、λは波長である。
FIG. 1 shows the basic configuration of the f.theta. Lens of the present invention. The f.theta. Lens of the present invention is a positive meniscus lens having a concave surface on the light incident side, which is a first lens 1, a third lens 3, and a fourth lens.
A lens 5 including a lens 4 and a fifth lens 5 and a second lens 2 which is a negative meniscus lens having a concave surface facing the light incident side.
It consists of 5 pieces. Details are shown below. However,
r 1 is the entrance side surface of the first lens 1, r 2 is the exit side surface of the first lens 1, r 3 is the entrance side surface of the second lens 2, and r 4 is the exit side surface of the second lens 2. Surface, r 5 is the surface on the incident side of the third lens 3,
r 6 is the exit side surface of the third lens 3, r 7 is the entrance side surface of the fourth lens 4, r 8 is the exit side surface of the 4th lens 4, and r 9 is the entrance side of the 5th lens 5. Surface, r 10 is the surface on the exit side of the fifth lens 5, and d 1 , d 3 , d 5 , d 7 , and d 9 are the first, second, third, and
The lens thickness of the fourth and fifth lenses 1, 2 , 3, 4, and 5, d 2 ,
d 4 , d 6 and d 8 are the surface spacing between the first lens 1 and the second lens 2, the surface spacing between the third lens 3 of the second lens 2 and the surface spacing between the third lens 3 and the fourth lens 4, respectively. The surface distance between the fourth lens 4 and the fifth lens 5, n 1 , n 2 , n 3 , n 4 and n 5 are respectively the first and
Refractive indices of the second, third, fourth, and fifth lenses 1, 2, 3, 4, and 5, f is the focal length of the entire system, F is the F number of the lens system, Y is the image height, and λ is the wavelength. is there.

〈実施例1〉 r1=−0.14191 d1=0.011785 n1=1.63613 r2=−0.11008 d2=0.014000 r3=−0.10999 d3=0.024934 n2=1.56459 r4=−0.69993 d4=0.015998 r5=−0.65254 d5=0.023998 n3=1.61985 r6=−0.29656 d6=0.001315 r7=−0.67047 d7=0.03000 n4=1.46300 r8=−0.29104 d8=0.0004 r9=−1.65163 d9=0.0334 n5=1.49668 r10=−0.36443 f=1,F/23.7,Y=0.526,λ=632.8nm |r2/r3|=1.0008 |d3/n2+d4+d5/n3+d6+d7/n4+d8+d9/n5|=0.0913 第2図(a)〜(c)は上記実施例1の球面収差、非点
収差、歪曲収差の補正状態を示している。
<Example 1> r 1 = -0.14191 d 1 = 0.011785 n 1 = 1.63613 r 2 = -0.11008 d 2 = 0.014000 r 3 = -0.10999 d 3 = 0.024934 n 2 = 1.56459 r 4 = -0.69993 d 4 = 0.015998 r 5 = -0.65254 d 5 = 0.023998 n 3 = 1.61985 r 6 = -0.29656 d 6 = 0.001315 r 7 = -0.67047 d 7 = 0.03000 n 4 = 1.46300 r 8 = -0.29104 d 8 = 0.0004 r 9 = -1.65163 d 9 = 0.0334 n 5 = 1.49668 r 10 = -0.36443 f = 1, F / 23.7, Y = 0.526, λ = 632.8nm | r 2 / r 3 | = 1.0008 | d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9 / n 5 | = 0.0913 FIG. 2 (a) ~ (c) shows spherical aberration of example 1, astigmatism, the correction state of the distortion.

〈実施例2〉 r1=−0.14778 d1=0.016187 n1=1.63613 r2=−0.11102 d2=0.012378 r3=−0.10963 d3=0.011426 n2=1.57216 r4=−0.48942 d4=0.034216 r5=−0.57131 d5=0.021900 n3=1.63613 r6=−0.31700 d6=0.000952 r7=−0.77127 d7=0.036183 n4=1.51509 r8=−0.29422 d8=0.000952 r9=−1.80914 d9=0.033136 n5=1.51509 r10=−0.48847 f=1,F/23.06,Y=0.526,λ=632.8nm |r2/r3|=1.0127 |d3/n2+d4+d5/n3+d6+d7/n4+d8+d9/n5|=0.1025 第3図(a)〜(c)は上記実施例2の球面収差、非点
収差、歪曲収差の補正状態を示している。
<Example 2> r 1 = -0.14778 d 1 = 0.016187 n 1 = 1.63613 r 2 = -0.11102 d 2 = 0.012378 r 3 = -0.10963 d 3 = 0.011426 n 2 = 1.57216 r 4 = -0.48942 d 4 = 0.034216 r 5 = -0.57131 d 5 = 0.021900 n 3 = 1.63613 r 6 = -0.31700 d 6 = 0.000952 r 7 = -0.77127 d 7 = 0.036183 n 4 = 1.51509 r 8 = -0.29422 d 8 = 0.000952 r 9 = -1.80914 d 9 = 0.033136 n 5 = 1.51509 r 10 = -0.48847 f = 1, F / 23.06, Y = 0.526, λ = 632.8nm | r 2 / r 3 | = 1.0127 | d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9 / n 5 | = 0.1025 FIG. 3 (a) ~ (c) shows spherical aberration of example 2, the astigmatism, the correction state of the distortion.

〈実施例3〉 r1=−0.16353 d1=0.025636 n1=1.65575 r2=−0.15022 d2=0.034608 r3=−0.15740 d3=0.010254 n2=1.57215 r4=−0.55501 d4=0.009075 r5=−0.60500 d5=0.041530 n3=1.63613 r6=−0.33480 d6=0.001282 r7=−0.71652 d7=0.050143 n4=1.63613 r8=−0.35890 d8=0.001282 r9=−1.99112 d9=0.042300 n5=1.63613 r10=−0.62792 f=1,F/17.93,Y=0.526,λ=632.8nm |r2/r3|=0.9544 |d3/n2+d4+d5/n3+d6+d7/n4+d8+d9/n5|=0.1000 第4図(a)〜(c)は上記実施例3の球面収差、非点
収差、歪曲収差の補正状態を示している。
<Example 3> r 1 = -0.16353 d 1 = 0.025636 n 1 = 1.65575 r 2 = -0.15022 d 2 = 0.034608 r 3 = -0.15740 d 3 = 0.010254 n 2 = 1.57215 r 4 = -0.55501 d 4 = 0.009075 r 5 = -0.60500 d 5 = 0.041530 n 3 = 1.63613 r 6 = -0.33480 d 6 = 0.001282 r 7 = -0.71652 d 7 = 0.050143 n 4 = 1.63613 r 8 = -0.35890 d 8 = 0.001282 r 9 = -1.99112 d 9 = 0.042300 n 5 = 1.63613 r 10 = -0.62792 f = 1, F / 17.93, Y = 0.526, λ = 632.8nm | r 2 / r 3 | = 0.9544 | d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9 / n 5 | = 0.1000 FIG. 4 (a) ~ (c) shows spherical aberration of example 3, the astigmatism, the correction state of the distortion.

〈実施例4〉 r1=−0.15710 d1=0.022840 n1=1.65575 r2=−0.17420 d2=0.042600 r3=−0.15720 d3=0.025700 n2=1.57215 r4=−0.38420 d4=0.009420 r5=−0.46900 d5=0.032000 n3=1.65575 r6=−0.37000 d6=0.001000 r7=−0.64000 d7=0.038000 n4=1.65575 r8=−0.34080 d8=0.001000 r9=−1.68000 d9=0.053400 n5=1.65575 r10=−0.57000 f=1,F/14.80,Y=0.410,λ=632.8nm |r2/r3|=0.936 |d3/n2+d4+d5/n3+d6+d7/n4+d8+d9/n5|=0.1023 第5図(a)〜(c)は上記実施例4の球面収差、非点
収差、歪曲収差の補正状態を示している。
<Example 4> r 1 = -0.15710 d 1 = 0.022840 n 1 = 1.65575 r 2 = -0.17420 d 2 = 0.042600 r 3 = -0.15720 d 3 = 0.025700 n 2 = 1.57215 r 4 = -0.38420 d 4 = 0.009420 r 5 = -0.46900 d 5 = 0.032000 n 3 = 1.65575 r 6 = -0.37000 d 6 = 0.001000 r 7 = -0.64000 d 7 = 0.038000 n 4 = 1.65575 r 8 = -0.34080 d 8 = 0.001000 r 9 = -1.68000 d 9 = 0.053400 n 5 = 1.65575 r 10 = -0.57000 f = 1, F / 14.80, Y = 0.410, λ = 632.8nm | r 2 / r 3 | = 0.936 | d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9 / n 5 | = 0.1023 FIG. 5 (a) ~ (c) shows spherical aberration of example 4, astigmatism, the correction state of the distortion.

発明の効果 以上要するに、本発明によれば、負メニスカスレンズを
含む5群5枚構成で、絞りに対しコンセントリックな形
状とし、かつ全長を短くすることにより、長い走査長に
おいても、サジタル方向の像画湾曲を最小にすることが
でき、また等速度走査性を有し、また明るい高解像を得
ることができる。
EFFECTS OF THE INVENTION In summary, according to the present invention, by using a five-group, five-element configuration including a negative meniscus lens, a concentric shape with respect to the diaphragm and a shortened overall length, even in a long scanning length, the sagittal direction is reduced. Image curvature can be minimized, uniform scanning characteristics can be obtained, and bright high resolution can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるf・θレンズの断面
図、第2図は本発明の第1の実施例におけるf・θレン
ズの収差曲線図、第3図は本発明の第2の実施例におけ
るf・θレンズの収差曲線図、第4図は、本発明の第3
の実施例におけるf・θレンズの収差曲線図、第5図は
本発明の第4の実施例におけるf・θレンズの収差曲線
図、第6図は走査光学系を示す斜視図である。 1……第1レンズ、2……第2レンズ、3……第3レン
ズ、4……第4レンズ、5……第5レンズ、11……レー
ザー光源、12……変調器、13……ビームエキスパンダ
ー、14……反射ミラー、15……多面体ミラー、16……f
・θレンズ、17……反射ミラー、18……被走査面。
FIG. 1 is a sectional view of an f.theta. Lens according to an embodiment of the present invention, FIG. 2 is an aberration curve diagram of the f.theta. Lens according to the first embodiment of the present invention, and FIG. 3 is a second view of the present invention. 4 is an aberration curve diagram of the f.theta. Lens in the example of FIG.
FIG. 5 is an aberration curve diagram of the f.theta. Lens in the embodiment of FIG. 5, FIG. 5 is an aberration curve diagram of the f.theta. Lens in the fourth embodiment of the present invention, and FIG. 6 is a perspective view showing the scanning optical system. 1 ... First lens, 2 ... Second lens, 3 ... Third lens, 4 ... Fourth lens, 5 ... Fifth lens, 11 ... Laser light source, 12 ... Modulator, 13 ... Beam expander, 14 …… Reflecting mirror, 15 …… Polyhedral mirror, 16 …… f
・ Θ lens, 17 …… Reflecting mirror, 18 …… Surface to be scanned.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光線入射側に凹面を向けた正のメニスカス
レンズである第1レンズと、光線入射側に凹面を向けた
負のメニスカスレンズである第2レンズと、いずれも光
線入射側に凹面を向けた正のメニスカスレンズである第
3レンズ、第4レンズ及び第5レンズとからなる5群5
枚構成のレンズ系で、次の各条件を満足することを特徴
とするf・θレンズ。 (1)0.90<|r2/r3|<1.02 (2)0.007f<d4<0.050f (3)−1.3f<r5<−0.43f (4)0.08f<|d3/n2+d4+d5/n3+d6+d7/n4+d8+d9/
n5|<0.12f (ただし、r2,r3,r5はそれぞれ第1レンズの出射側の
面、第2レンズの入射側の面、第3レンズの入射側の
面、d3,d5,d7,d9はそれぞれ第2レンズのレンズ厚、第
3レンズのレンズ厚、第4レンズのレンズ厚、第5レン
ズのレンズ厚、n2,n3,n4,n5はそれぞれ第2レンズの屈
折率、第3レンズの屈折率、第4レンズの屈折率、第5
レンズの屈折率、d4,d6,d8はそれぞれ第2レンズと第3
レンズの面間隔、第3レンズと第4レンズの面間隔、第
4レンズと第5レンズの面間隔、fは全系の焦点距離で
ある。)
1. A first lens, which is a positive meniscus lens having a concave surface on the light incident side, and a second lens, which is a negative meniscus lens having a concave surface on the light incident side, both having a concave surface on the light incident side. 5 group 5 consisting of a third lens, a fourth lens and a fifth lens, which are positive meniscus lenses facing each other
An f · θ lens characterized by satisfying the following conditions in a lens system having a single-lens configuration. (1) 0.90 <| r 2 / r 3 | <1.02 (2) 0.007f <d 4 <0.050f (3) −1.3f <r 5 <−0.43f (4) 0.08f <| d 3 / n 2 + d 4 + d 5 / n 3 + d 6 + d 7 / n 4 + d 8 + d 9 /
n 5 | <0.12f (where r 2 , r 3 and r 5 are the exit surface of the first lens, the entrance surface of the second lens, the entrance surface of the third lens, d 3 and d 5 , 5 , d 7 , and d 9 are the lens thickness of the second lens, the lens thickness of the third lens, the lens thickness of the fourth lens, the lens thickness of the fifth lens, and n 2 , n 3 , n 4 , n 5 , respectively. Refractive index of second lens, third lens, fourth lens, fifth
The refractive indices of the lenses, d 4 , d 6 , and d 8 , are the second lens and the third lens, respectively.
The surface distance between the lenses, the surface distance between the third lens and the fourth lens, the surface distance between the fourth lens and the fifth lens, and f are the focal lengths of the entire system. )
JP62164539A 1986-07-10 1987-07-01 f / θ lens Expired - Lifetime JPH0746170B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16230586A JPS62201410A (en) 1985-11-08 1986-07-10 F-theta lens
JP61-162305 1986-07-10

Publications (2)

Publication Number Publication Date
JPS6419315A JPS6419315A (en) 1989-01-23
JPH0746170B2 true JPH0746170B2 (en) 1995-05-17

Family

ID=15751979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62164539A Expired - Lifetime JPH0746170B2 (en) 1986-07-10 1987-07-01 f / θ lens

Country Status (1)

Country Link
JP (1) JPH0746170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454729B (en) 2013-06-28 2014-10-01 玉晶光電股份有限公司 Optical imaging lens and the application of the lens of the electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553308A (en) * 1978-10-16 1980-04-18 Olympus Optical Co Ltd Lens for equal speed scanning

Also Published As

Publication number Publication date
JPS6419315A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JPS6226444B2 (en)
US4707085A (en) Fθ lens for use in light beam scanner
JPS6125129B2 (en)
JPS6148684B2 (en)
US6236512B1 (en) Collimator lens and light-scanning apparatus using the same
JPH0310924B2 (en)
JP2584640B2 (en) Scanning optical system such as laser beam printer
JPH0727123B2 (en) Surface tilt correction scanning optical system
US4755030A (en) Lens for facsimile or laser printer
JPH0746169B2 (en) Fθ lens for optical beam scanning device
JPH0746170B2 (en) f / θ lens
JPH0990216A (en) Telecentric ftheta lens
JP2702516B2 (en) fθ lens
JPH07104483B2 (en) Constant velocity scanning lens
JP2511904B2 (en) Optical beam scanning device
JPS61175607A (en) Scanning optical system
JP2576095B2 (en) Telecentric f / θ lens
JPS635736B2 (en)
JP2000002848A (en) Scanning optical device
JP2558255B2 (en) Telecentric f / θ lens
JPS62201410A (en) F-theta lens
JP2716428B2 (en) Surface tilt correction scanning optical system
JP2840340B2 (en) Telecentric fθ lens
JPH04107517A (en) Light source unit and lens used for same
JPS62153910A (en) Beam condenser lens