JPH0745863A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPH0745863A
JPH0745863A JP20887793A JP20887793A JPH0745863A JP H0745863 A JPH0745863 A JP H0745863A JP 20887793 A JP20887793 A JP 20887793A JP 20887793 A JP20887793 A JP 20887793A JP H0745863 A JPH0745863 A JP H0745863A
Authority
JP
Japan
Prior art keywords
light emitting
layer
electron injection
emitting layer
injection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20887793A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
暁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20887793A priority Critical patent/JPH0745863A/en
Publication of JPH0745863A publication Critical patent/JPH0745863A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent easily deterioration since the current does not flow in concectration by increasing the utilization efficiency of diffusion light at a light emitting region since current spreads within a light emitting layer. CONSTITUTION:A light emitting layer 6b consisting of a p-type semiconductor thin film and an electron injection layer 6a which is constituted by an n-type semiconductor thin film where p-n junction is injected into the light emitting layer 6b are provided. The carrier density of the electron injection layer 6a is smaller than that of the light emitting layer 6b. Therefore, the resistance of the electron injection layer 6a becomes larger than that of the light emitting layer 6b, thus the current spreads within the light emitting layer 6b and hence preventing flowing in concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体発光装置に関し、
例えばページプリンタの感光ドラムの露光用光源として
用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device,
For example, it is used as a light source for exposing a photosensitive drum of a page printer.

【0002】[0002]

【従来の技術】図9、図10に示す半導体発光装置は、
シリコン(Si)やガリウム砒素(GaAs)等の基板
101とメサ形状のLED102とを備えている。その
LED102は、その基板101の一方の主面に接合す
る半導体薄膜により構成されるバッファ層103と、こ
のバッファ層103に接合するn型半導体薄膜により構
成される電子注入層104と、この電子注入層104に
p‐n接合するp型半導体薄膜により構成される発光層
105と、この発光層105に接合するp+ 型半導体薄
膜により構成されるコンタクト層106とから構成され
ている。そのコンタクト層106に非透光性のアノード
電極107が接続され、その基板101の他方の主面に
カソード電極108が接続されている。その両電極10
7、108を介し順方向バイアスを印加することで電子
が正孔と再結合して発光する。この発光は、アノード電
極107が接続される側から外部に取り出されて利用さ
れる。
2. Description of the Related Art The semiconductor light emitting device shown in FIGS.
A substrate 101 made of silicon (Si), gallium arsenide (GaAs) or the like and a mesa-shaped LED 102 are provided. The LED 102 includes a buffer layer 103 made of a semiconductor thin film bonded to one main surface of the substrate 101, an electron injection layer 104 made of an n-type semiconductor thin film bonded to the buffer layer 103, and an electron injection layer. It is composed of a light emitting layer 105 formed of a p-type semiconductor thin film that makes a pn junction with the layer 104, and a contact layer 106 formed of a p + type semiconductor thin film that makes a junction with the light emitting layer 105. A non-translucent anode electrode 107 is connected to the contact layer 106, and a cathode electrode 108 is connected to the other main surface of the substrate 101. Both electrodes 10
By applying a forward bias through 7, 108, electrons recombine with holes and emit light. This emitted light is taken out from the side to which the anode electrode 107 is connected and used.

【0003】[0003]

【発明が解決しようとする課題】上記構成のように非透
光性のアノード電極107が接続される側から発光を外
部に取り出す場合、その電極107により発光が遮られ
るため、充分に発光を外部に取り出すことができなくな
る。これは、図中破線で示すように、電流iがアノード
電極107の直下に集中して流れることによる。特に、
基板上に複数のLEDを整列させることで構成されるL
EDアレイを備える半導体発光装置の場合、各LEDの
サイズは微小になり、例えば、チップ幅Wが50μm程
度であり、且つアノード電極107の幅wが20μm程
度もあるのに対し、アノード電極107からp‐n接合
部までの距離dが1〜2μm程度しかなく、そのため、
発光層105内で電流が拡がるのは困難で光の利用効率
が低くなる。さらに、電流が部分的に集中して流れるた
め、その部分で発光劣化が早く進行して寿命を短縮する
という問題がある。
When the emitted light is taken out from the side to which the non-translucent anode electrode 107 is connected as in the above structure, the emitted light is blocked by the electrode 107, so that the emitted light is sufficiently emitted to the outside. I can't take it out. This is because the current i concentrates and flows right below the anode electrode 107 as shown by the broken line in the figure. In particular,
L composed by arranging a plurality of LEDs on a substrate
In the case of a semiconductor light emitting device including an ED array, the size of each LED is very small, for example, the chip width W is about 50 μm, and the width w of the anode electrode 107 is about 20 μm, while the size of the anode electrode 107 The distance d to the pn junction is only about 1 to 2 μm, so
It is difficult for the current to spread in the light emitting layer 105, and the light utilization efficiency becomes low. Furthermore, since the current flows partially concentratedly, there is a problem that the light emission deterioration progresses rapidly in that part and the life is shortened.

【0004】本発明は、上記技術的課題を解決すること
のできる半導体発光装置を提供することを目的とする。
It is an object of the present invention to provide a semiconductor light emitting device which can solve the above technical problems.

【0005】[0005]

【課題を解決するための手段】本発明の半導体発光装置
は、p型半導体薄膜により構成される発光層と、この発
光層にp‐n接合するn型半導体薄膜により構成される
電子注入層とを備え、その電子注入層のキャリヤ密度は
発光層のキャリヤ密度よりも小さくされていることを特
徴とする。
A semiconductor light emitting device according to the present invention comprises a light emitting layer formed of a p-type semiconductor thin film, and an electron injection layer formed of an n-type semiconductor thin film that makes a pn junction with the light emitting layer. And the carrier density of the electron injection layer is smaller than the carrier density of the light emitting layer.

【0006】[0006]

【作用】本発明の構成によれば、電子注入層は発光層よ
りもキャリヤ密度が小さいので、電子注入層の抵抗は発
光層の抵抗よりも大きくなり、順方向バイアスを印加す
ると電流は発光層内で拡がり部分的に集中して流れるの
が防止される。
According to the structure of the present invention, since the electron injection layer has a smaller carrier density than that of the light emitting layer, the resistance of the electron injection layer becomes larger than the resistance of the light emitting layer. It is prevented from spreading inside and flowing partially concentrated.

【0007】[0007]

【実施例】図1に示す本発明の第1実施例に係る半導体
発光装置は、シリコン基板1とメサ形状のLED2とを
備え、そのLED2は、シリコン基板1の一方の主面側
に列をなして形成されたものの一つである。そのLED
2は、例えば、図2に示すMOCVD(有機金属気相エ
ピタキシー)装置20により製造される。そのMOCV
D装置20は、石英製のリアクタ21と、このリアクタ
21にバルブ22を介し配管接続されるAl( CH3 )
3 の供給源29と、Ga (CH3 ) 3 の供給源30と、
AsH3 の供給源31と、Zn( CH3 ) 2 の供給源3
2と、SiH4 の供給源33と、トリメチルインジウム
(In (CH5 ) 3 ) の供給源34と、キャリアガスと
して用いられるH2 の供給源35と、そのH2 の純化装
置36と、そのリアクタ21の内部を加熱するために用
いられる高周波コイル37と、そのリアクタ21の内部
でシリコン基板1を支持する支持体38と、そのリアク
タ21からの排出ガスの処理装置39とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor light emitting device according to a first embodiment of the present invention shown in FIG. 1 comprises a silicon substrate 1 and a mesa-shaped LED 2, and the LEDs 2 are arranged in rows on one main surface side of the silicon substrate 1. It is one of those formed. The LED
2 is manufactured by, for example, the MOCVD (metal organic vapor phase epitaxy) apparatus 20 shown in FIG. That MOCV
The D device 20 includes a quartz reactor 21 and Al (CH 3 ) pipe-connected to the reactor 21 via a valve 22.
A source 29 of 3, a source 30 of Ga (CH 3) 3,
AsH 3 supply source 31 and Zn (CH 3 ) 2 supply source 3
2, a supply source 33 of SiH 4 , and trimethylindium
(In (CH 5 ) 3 ) source 34, H 2 source 35 used as a carrier gas, H 2 purifier 36, and high-frequency coil used to heat the inside of the reactor 21. 37, a support 38 that supports the silicon substrate 1 inside the reactor 21, and a treatment device 39 for the exhaust gas from the reactor 21.

【0008】そのMOCVD装置20によりLED2を
形成するには、まず、基板1の一方の主面1a上にバッ
ファ層3を構成する半導体結晶をエピタキシャル成長さ
せる。このバッファ層3は、例えば、GaAsの成長層
の温度を昇降させるサイクルを複数回繰り返して熱応力
を加えたり、インジウムガリウム砒素(InGaAs)
の成長層とGaAsの成長層とを交互に複数回繰り返し
て成長させることで歪超格子層を形成し、転位を低減す
ることで構成できる。
In order to form the LED 2 by the MOCVD apparatus 20, first, the semiconductor crystal forming the buffer layer 3 is epitaxially grown on the one main surface 1a of the substrate 1. The buffer layer 3 is subjected to, for example, a cycle in which the temperature of the growth layer of GaAs is raised and lowered a plurality of times to apply thermal stress, or indium gallium arsenide (InGaAs).
And a GaAs growth layer are alternately and repeatedly grown a plurality of times to form a strained superlattice layer and reduce dislocations.

【0009】次に、そのバッファ層3の上にn型半導体
薄膜により構成される電子注入層6aを形成し、この電
子注入層6aの上にp型半導体薄膜により構成される発
光層6bを形成する。その電子注入層6aと発光層6b
とは、例えば、アルミニウムガリウム砒素(AlGaA
s)結晶をエピタキシャル成長させることで形成でき
る。この際、その電子注入層6aのキャリヤ密度を発光
層6bのキャリヤ密度よりも小さくする。その電子注入
層6aのキャリヤ密度は、電流を拡げて発光劣化を小さ
くするという本発明の効果を奏するために、発光層6b
のキャリヤ密度の1/10以下で、上限は1×1016
-3とするのが好ましい。なお、電子注入層6aのキャ
リヤ密度が1×1015cm-3より小さく、発光層6bの
1/10000よりも小さくなると、抵抗が過大になっ
て発光時の電圧が、1つのLEDに10mAの電流を流
すとして2Vを超えてしまうので、下限は1×1015
-3で発光層の1/10000とするのが良い。そのキ
ャリヤ密度の制御のため、発光層6bにはアクセプタが
ドーピングされ、電子注入層6aはノンドープ層とされ
る。すなわち、AsH3 、Ga( CH3 ) 3 およびAl
( CH3 ) 3 をリアクタ21に供給してAlGaAs結
晶を成長させる際に、発光層6bの形成時にはZn( C
3 ) 2 をリアクタ21に供給することでZnをドープ
する。また、電子注入層6aの形成時には、通常のn型
半導体薄膜を形成するのであればSiH4 ガスをリアク
タに供給してSiをドープするのを、Siをドープせ
ず、成長条件で電子注入層6aのキャリヤ密度を制御し
てn型半導体薄膜を形成する。すなわち、Ga( C
3 ) 3 、Al( CH3 ) 3 中に存在する微量のSi、
S等の不純物により、n型半導体が得られる。また、G
a( CH3 ) 3 、Al( CH3 )3 中の炭素(C)をア
クセプターとして補償させることにより、キャリヤ密度
をコントロールできる。例えば、発光波長が700nm
程度の赤色LEDを構成するためにAlX Ga1-X As
の組成をx=0.3程度とした場合、発光層6bのキャ
リヤ密度はZnをアクセプタとすると1×1016cm-3
〜2×1019cm-3程度の範囲で制御でき、電子注入層
6aのキャリヤ密度はノンドープ層とした場合は1×1
17cm-3以下にできる。なお、電子注入層6aのキャ
リヤ密度は、x=0.4とした場合、Siをドナーとす
ると1×1016cm-3〜1×1017cm-3程度の範囲で
制御できる。
Next, an electron injection layer 6a made of an n-type semiconductor thin film is formed on the buffer layer 3, and a light emitting layer 6b made of a p-type semiconductor thin film is formed on the electron injection layer 6a. To do. The electron injection layer 6a and the light emitting layer 6b
Is, for example, aluminum gallium arsenide (AlGaA).
s) It can be formed by epitaxially growing a crystal. At this time, the carrier density of the electron injection layer 6a is made lower than that of the light emitting layer 6b. The carrier density of the electron injection layer 6a has the effect of the present invention that the current is expanded to reduce the deterioration of light emission, so that the light emitting layer 6b is formed.
The carrier density is less than 1/10 and the upper limit is 1 × 10 16 c
It is preferably m -3 . When the carrier density of the electron injection layer 6a is smaller than 1 × 10 15 cm −3 and smaller than 1/10000 of the light emitting layer 6b, the resistance becomes excessive and the voltage during light emission is 10 mA per LED. The lower limit is 1 × 10 15 c, because it exceeds 2 V when a current is passed.
It is good to set it to m / -3 and 1/10000 of the light emitting layer. In order to control the carrier density, the light emitting layer 6b is doped with an acceptor, and the electron injection layer 6a is a non-doped layer. That is, AsH 3 , Ga (CH 3 ) 3 and Al
When (CH 3 ) 3 is supplied to the reactor 21 to grow an AlGaAs crystal, Zn (C 3
Zn is doped by supplying H 3 ) 2 to the reactor 21. Further, when the electron injection layer 6a is formed, if a normal n-type semiconductor thin film is to be formed, SiH 4 gas is supplied to the reactor to dope Si. An n-type semiconductor thin film is formed by controlling the carrier density of 6a. That is, Ga (C
H 3) 3, Al (CH 3) Si traces present in 3,
An impurity such as S gives an n-type semiconductor. Also, G
a a (CH 3) 3, Al ( CH 3) in 3 carbon (C) by compensating as acceptors, can control the carrier density. For example, the emission wavelength is 700 nm
Al X Ga 1-X As to form a red LED
, The carrier density of the light emitting layer 6b is 1 × 10 16 cm −3 when Zn is an acceptor.
The carrier density of the electron injection layer 6a can be controlled in the range of about 2 × 10 19 cm −3 , and is 1 × 1 when the non-doped layer is used.
It can be 0 17 cm -3 or less. The carrier density of the electron injection layer 6a can be controlled within a range of about 1 × 10 16 cm −3 to 1 × 10 17 cm −3 when Si is a donor when x = 0.4.

【0010】その電子注入層6aのバンドギャップを発
光層6bのバンドギャップよりも大きくすることで、順
方向バイアス印加時に発光層6bの正孔が電子注入層6
a側に拡散するのを防止し、発光層6bの正孔密度を高
くして発光効率を高くするのが好ましい。発光層6bを
Ala Ga1-a Asにより構成し、電子注入層6aをA
b Ga1-b Asにより構成する場合は、b>aとする
ことで、電子注入層6aのバンドギャップは発光層6b
のバンドギャップよりも大きくなる。また、その発光層
6bの組成は、0<a<0.4とするのが好ましい。こ
れは、Ala Ga1-a Asの場合はaが約0.45を超
えると直接遷移型半導体から間接遷移型半導体に変わる
ため、aの値が大きくなるに従い発光効率が低下し、実
用に供しえるaの上限は0.4程度であることによる。
By making the band gap of the electron injection layer 6a larger than the band gap of the light emitting layer 6b, holes in the light emitting layer 6b become positive when the forward bias is applied.
It is preferable to prevent diffusion to the a side and increase the hole density of the light emitting layer 6b to increase the light emission efficiency. The light emitting layer 6b is made of Al a Ga 1-a As, and the electron injection layer 6a is made of A a Ga 1 -a As.
When configuring a l b Ga 1-b As is, b> With a, the band gap of the electron injection layer 6a emitting layer 6b
Is larger than the band gap of. The composition of the light emitting layer 6b is preferably 0 <a <0.4. This is because in the case of Al a Ga 1-a As, when a exceeds about 0.45, the direct transition type semiconductor changes to the indirect transition type semiconductor, so that the luminous efficiency decreases as the value of a increases, and it becomes practical. This is because the upper limit of a that can be provided is about 0.4.

【0011】その発光層6bの上にアクセプタが高濃度
にドープされたp+ 型半導体薄膜により構成されるコン
タクト層6cが接合され、各半導体薄膜3、6a、6
b、6cはメサ形状にエッチングされた後にパッシベー
ション膜7によって被覆され、そのコンタクト層6cに
非透光性のアノード電極8aが接合されると共に基板1
の他方の主面1bにカソード電極8bが接続される。
Onto the light emitting layer 6b is joined a contact layer 6c composed of a p + type semiconductor thin film in which an acceptor is highly doped, and each semiconductor thin film 3, 6a, 6 is formed.
b and 6c are covered with a passivation film 7 after being etched into a mesa shape, and a non-translucent anode electrode 8a is bonded to the contact layer 6c and the substrate 1
The cathode electrode 8b is connected to the other main surface 1b.

【0012】上記構成によれば、電子注入層6aのキャ
リヤ密度を発光層6bのキャリヤ密度の1/10以下と
しても、発光層6bと電子注入層6aとはp‐n接合す
るので、両電極8a、8bを介し順方向バイアスを印加
することで、電子注入層6aから発光層6bに拡散した
電子が正孔と再結合して発光する。この際、電子注入層
6aは発光層6bよりもキャリヤ密度が小さいので、そ
の抵抗は発光層6bの抵抗よりも大きくなり、図1に破
線矢印で示すように、電流iは発光層6b内で拡がり部
分的に集中して流れるのが防止される。これにより、ア
ノード電極107が接続される側から発光を外部に取り
出す場合であっても光の利用効率を高くでき、さらに、
電流が部分的に集中して流れることによる早期劣化を防
止できる。
According to the above structure, even if the carrier density of the electron injection layer 6a is set to 1/10 or less of the carrier density of the light emitting layer 6b, the light emitting layer 6b and the electron injection layer 6a form a pn junction. By applying a forward bias through 8a and 8b, the electrons diffused from the electron injection layer 6a to the light emitting layer 6b are recombined with the holes to emit light. At this time, since the electron injection layer 6a has a smaller carrier density than the light emitting layer 6b, the resistance thereof becomes larger than the resistance of the light emitting layer 6b, and as shown by a broken line arrow in FIG. It is possible to prevent the spread and the partial concentrated flow. This makes it possible to increase the light use efficiency even when the emitted light is taken out from the side to which the anode electrode 107 is connected.
It is possible to prevent premature deterioration due to a partial flow of current.

【0013】電子注入層6aのキャリヤ密度を小さくす
ることで発光層6bに注入される電子が不足して必要な
発光強度を得られないような場合は、図3の第2実施例
に係る半導体発光装置のように、発光層6bとで電子注
入層6aを挟むようにn型半導体薄膜により構成される
補助電子注入層6dを形成し、その補助電子注入層6d
のキャリヤ密度を電子注入層6aのキャリヤ密度よりも
大きくし、電子注入層6aの厚さを電子の拡散長以下に
するため1μm以下にするのがよい。図4の(1)は、
第2実施例における順方向バイアス印加時におけるエネ
ルギー帯図を示し、図4の(2)は、第2実施例におけ
るバイアス無印加時におけるエネルギー帯図を示し、E
c は最小伝導帯エネルギーを、EFnはn型半導体層6
a、6dのフェルミ準位を、EFpは発光層6bのフェル
ミ準位を、Ev は最大価電子帯エネルギーを示す。その
発光層6bの正孔hを発光層6bに閉じ込めるため、電
子注入層6aのバンドギャップEgaは発光層6bのバン
ドギャップEgbよりも大きくされている。その補助電子
注入層6dから電子eを発光層6bに図中矢印Jで示す
ように注入することで、電子注入層6aの電子eの注入
が不十分であっても充分な発光強度を得ることができ
る。その補助電子注入層6dのバンドギャップEgcは特
に制限されず、発光層6bのバンドギャップEgbより小
さくしてもよく、例えば、発光層6bおよび電子注入層
6aをAlGaAsにより構成する場合に、補助電子注
入層6dをGaAsによって構成してもよい。この補助
電子注入層6dのキャリヤ密度を制御するため、電子注
入層6aを構成する半導体薄膜を成長させる際に、Si
4 ガスをリアクタに供給してSiをドナーとしてドー
プする。他は上記実施例と同様で同一部分は同一符号で
示す。
When the carrier density of the electron injecting layer 6a is reduced and the number of electrons injected into the light emitting layer 6b is insufficient and the required light emission intensity cannot be obtained, the semiconductor according to the second embodiment of FIG. Like a light emitting device, an auxiliary electron injection layer 6d composed of an n-type semiconductor thin film is formed so as to sandwich the electron injection layer 6a with the light emitting layer 6b, and the auxiliary electron injection layer 6d is formed.
It is preferable to make the carrier density of the electron injection layer 6a higher than the carrier density of the electron injection layer 6a and set the thickness of the electron injection layer 6a to 1 μm or less in order to make the diffusion length of the electrons or less. 4 (1) is
An energy band diagram when a forward bias is applied in the second embodiment is shown, and (2) of FIG. 4 shows an energy band diagram when no bias is applied in the second embodiment, and
c is the minimum conduction band energy, and E Fn is the n-type semiconductor layer 6
The Fermi levels of a and 6d, E Fp the Fermi level of the light emitting layer 6b, and E v the maximum valence band energy. In order to confine the holes h of the light emitting layer 6b in the light emitting layer 6b, the band gap E ga of the electron injection layer 6a is made larger than the band gap E gb of the light emitting layer 6b. By injecting electrons e from the auxiliary electron injection layer 6d into the light emitting layer 6b as indicated by an arrow J in the figure, sufficient emission intensity can be obtained even if the injection of the electrons e in the electron injection layer 6a is insufficient. You can The band gap E gc of the auxiliary electron injection layer 6d is not particularly limited and may be smaller than the band gap E gb of the light emitting layer 6b. For example, when the light emitting layer 6b and the electron injection layer 6a are made of AlGaAs, The auxiliary electron injection layer 6d may be made of GaAs. In order to control the carrier density of the auxiliary electron injection layer 6d, when the semiconductor thin film forming the electron injection layer 6a is grown, Si
H 4 gas is supplied to the reactor to dope Si as a donor. Others are the same as the above-mentioned embodiment, and the same portions are denoted by the same reference numerals.

【0014】図5に示す本発明の第3実施例に係る半導
体発光装置の発光層6bは、電子閉じ込め層6b′と発
光層6b″とから構成され、その電子閉じ込め層6b′
はAl0.40Ga0.60Asからなりキャリヤ密度は5×1
17cm-3であり、発光層6b″はAl0.35Ga0.65
sからなりキャリヤ密度は5×1017cm-3であり、電
子注入層6aは厚さが1.0μmでキャリヤ密度が5×
1015cm-3のAl0.40Ga0.60Asからなり、補助電
子注入層6dはGaAsからなりキャリヤ密度は5×1
16cm-3である。他は上記第2実施例と同様で同一部
分は同一符号で示す。
The light emitting layer 6b of the semiconductor light emitting device according to the third embodiment of the present invention shown in FIG. 5 is composed of an electron confining layer 6b 'and a light emitting layer 6b ", and the electron confining layer 6b'.
Is Al 0.40 Ga 0.60 As and has a carrier density of 5 × 1.
0 17 cm -3 , and the light emitting layer 6b ″ is made of Al 0.35 Ga 0.65 A
s and has a carrier density of 5 × 10 17 cm −3 , and the electron injection layer 6 a has a thickness of 1.0 μm and a carrier density of 5 ×.
10 15 cm -3 of Al 0.40 Ga 0.60 As, the auxiliary electron injection layer 6d is GaAs, and the carrier density is 5 × 1.
It is 0 16 cm -3 . Others are the same as those in the second embodiment, and the same parts are designated by the same reference numerals.

【0015】図6は、第3実施例の半導体発光装置のア
ノード電極8aが接続される側から発光を外部に取り出
した場合において、その発光位置と発光強度との関係を
示したものである。そのLED2の幅Wは50μm、そ
のアノード電極8aの幅wは15μm、そのLED2の
長さQは60μm、そのアノード電極8aの長さqは4
0μmとし、幅方向の発光位置と発光強度との関係を示
した。また、図7は、電子注入層のキャリヤ密度が1×
1017cm-3である以外は第3実施例の半導体発光装置
と同一構成の比較例に係る半導体発光装置において、そ
の発光位置と発光強度との関係を示したものである。そ
の図6と図7とを比較することで、本発明によれば、発
光領域が拡がるため光の利用効率を高くできるのを確認
できる。図8は、上記第3実施例と比較例に係る半導体
発光装置における通電時間と発光強度との関係を5つの
サンプルについて測定した結果を示し、これより、本発
明によれば、電流が部分的に集中して流れることがない
ため長時間に亘り発光強度の低下がなく早期劣化を防止
できるのを確認できる。
FIG. 6 shows the relationship between the light emission position and the light emission intensity when the light emission is taken out from the side to which the anode electrode 8a of the semiconductor light emitting device of the third embodiment is connected. The width W of the LED 2 is 50 μm, the width w of the anode electrode 8a is 15 μm, the length Q of the LED 2 is 60 μm, and the length q of the anode electrode 8a is 4 μm.
It was set to 0 μm, and the relationship between the emission position in the width direction and the emission intensity was shown. Further, FIG. 7 shows that the carrier density of the electron injection layer is 1 ×.
The semiconductor light emitting device according to the comparative example having the same structure as that of the semiconductor light emitting device of the third embodiment except for 10 17 cm −3 shows the relationship between the light emitting position and the light emitting intensity. By comparing FIG. 6 and FIG. 7, it can be confirmed that according to the present invention, since the light emitting region is expanded, the light utilization efficiency can be increased. FIG. 8 shows the results of measuring the relationship between the energization time and the emission intensity in the semiconductor light emitting devices according to the third example and the comparative example with respect to five samples. It can be confirmed that the light emission intensity does not decrease for a long time and the early deterioration can be prevented because the light does not flow concentratedly in the air.

【0016】なお、本発明は上記実施例に限定されな
い。例えば、LEDを構成する半導体はAlX Ga1-X
Asに限定されず、GaAsX 1-X 等の他の半導体に
より構成してもよく、この場合も電子注入層のキャリヤ
密度は発光層のキャリヤ密度の1/10以下で1×10
15cm-3〜1×1016cm-3にするのがよい。また、電
子注入層6aをノンドープ層とせずSi等の不純物をド
ープしてもよいが、1×1015cm-3〜1×1016cm
-3程度のキャリヤ密度の低い範囲では、キャリヤ密度の
制御を行なう上ではノンドープ層とした方が有利であ
る。
The present invention is not limited to the above embodiment. For example, the semiconductor that constitutes the LED is Al X Ga 1-X
The carrier density of the electron injection layer is not limited to As and may be made of other semiconductor such as GaAs X P 1-X.
It is good to set it to 15 cm −3 to 1 × 10 16 cm −3 . Further, the electron injection layer 6a may be doped with impurities such as Si instead of being a non-doped layer, but it is 1 × 10 15 cm −3 to 1 × 10 16 cm.
In the low carrier density range of about -3 , it is advantageous to use a non-doped layer for controlling the carrier density.

【0017】[0017]

【発明の効果】本発明の半導体発光装置によれば、発光
層内で電流を拡げて光の利用効率を高くでき、さらに、
電流が部分的に集中して流れることがないため早期劣化
を防止できる。
According to the semiconductor light emitting device of the present invention, it is possible to spread the current in the light emitting layer and increase the light utilization efficiency.
Since the current does not flow partially concentratedly, it is possible to prevent early deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の半導体発光装置の断面構
成を示す図
FIG. 1 is a diagram showing a cross-sectional structure of a semiconductor light emitting device according to a first embodiment of the invention.

【図2】本発明の実施例の半導体薄膜の形成用MOCV
D装置の構成を示す図
FIG. 2 is a MOCV for forming a semiconductor thin film according to an embodiment of the present invention.
The figure which shows the structure of D device

【図3】本発明の第2実施例の半導体発光装置の断面構
成を示す図
FIG. 3 is a diagram showing a sectional configuration of a semiconductor light emitting device according to a second embodiment of the present invention.

【図4】本発明の第2実施例の半導体発光装置のエネル
ギー帯図
FIG. 4 is an energy band diagram of a semiconductor light emitting device according to a second embodiment of the present invention.

【図5】本発明の第3実施例の半導体発光装置の断面構
成を示す図
FIG. 5 is a diagram showing a cross-sectional structure of a semiconductor light emitting device of a third embodiment of the present invention.

【図6】本発明の第3実施例の半導体発光装置の発光特
性を示す図
FIG. 6 is a diagram showing light emission characteristics of a semiconductor light emitting device according to a third embodiment of the present invention.

【図7】比較例の半導体発光装置の発光強度と発光位置
との関係を示す図
FIG. 7 is a diagram showing a relationship between a light emission intensity and a light emitting position of a semiconductor light emitting device of a comparative example.

【図8】本発明の第3実施例の半導体発光装置と比較例
の発光強度と通電時間との関係を示す図
FIG. 8 is a graph showing the relationship between the emission intensity and the energization time of the semiconductor light emitting device of the third embodiment of the present invention and the comparative example.

【図9】従来例の半導体発光装置の断面構成を示す図FIG. 9 is a diagram showing a sectional configuration of a conventional semiconductor light emitting device.

【図10】従来例の半導体発光装置の平面構成を示す図FIG. 10 is a diagram showing a planar configuration of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

6a 電子注入層 6b 発光層 6a Electron injection layer 6b Light emitting layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 p型半導体薄膜により構成される発光層
と、この発光層にp‐n接合するn型半導体薄膜により
構成される電子注入層とを備え、その電子注入層のキャ
リヤ密度は発光層のキャリヤ密度よりも小さくされてい
る半導体発光装置。
1. A light emitting layer formed of a p-type semiconductor thin film, and an electron injection layer formed of an n-type semiconductor thin film that makes a pn junction with the light emitting layer, and the carrier density of the electron injection layer is light emission. A semiconductor light emitting device being made smaller than the carrier density of the layer.
JP20887793A 1993-07-29 1993-07-29 Semiconductor light emitting device Pending JPH0745863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20887793A JPH0745863A (en) 1993-07-29 1993-07-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20887793A JPH0745863A (en) 1993-07-29 1993-07-29 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPH0745863A true JPH0745863A (en) 1995-02-14

Family

ID=16563601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20887793A Pending JPH0745863A (en) 1993-07-29 1993-07-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPH0745863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038381A (en) * 2011-07-13 2013-02-21 Canon Inc Led element, led element array and method for driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013038381A (en) * 2011-07-13 2013-02-21 Canon Inc Led element, led element array and method for driving the same

Similar Documents

Publication Publication Date Title
JP2650744B2 (en) Light emitting diode
US6107648A (en) Semiconductor light emitting device having a structure which relieves lattice mismatch
JP2009004569A (en) Group iii nitride-based semiconductor light emitting element
US5313078A (en) Multi-layer silicon carbide light emitting diode having a PN junction
US5329141A (en) Light emitting diode
JP2002050790A (en) Compound semiconductor light-emitting diode array
JP2856374B2 (en) Semiconductor light emitting device and method of manufacturing the same
US5272362A (en) Semiconductor light emitting device
JP3763701B2 (en) Gallium nitride semiconductor light emitting device
JPH0745863A (en) Semiconductor light emitting device
JPH05243613A (en) Light-emitting device and its manufacture
JP3792817B2 (en) GaAsP epitaxial wafer and manufacturing method thereof
JP3854073B2 (en) LED array and LED head
JPH08213653A (en) Semiconductor device having contact resistance reducing layer
JPH0897466A (en) Light emitting device
JP2912781B2 (en) Semiconductor light emitting device
JPH04364080A (en) Light emitting diode
JP3548654B2 (en) Semiconductor light emitting device
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode
JP3057547B2 (en) Green light emitting diode
JP2912782B2 (en) Semiconductor light emitting device
JPH07169993A (en) Semiconductor structure and semiconductor light-emitting device
US20010010375A1 (en) Gallium phosphide semiconductor configuration and production method
JPH0349282A (en) Semiconductor luminescent device