JPH0745718B2 - Liquid junction type semiconductor electrode and its use - Google Patents

Liquid junction type semiconductor electrode and its use

Info

Publication number
JPH0745718B2
JPH0745718B2 JP63065040A JP6504088A JPH0745718B2 JP H0745718 B2 JPH0745718 B2 JP H0745718B2 JP 63065040 A JP63065040 A JP 63065040A JP 6504088 A JP6504088 A JP 6504088A JP H0745718 B2 JPH0745718 B2 JP H0745718B2
Authority
JP
Japan
Prior art keywords
type semiconductor
junction type
semiconductor electrode
liquid
liquid junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63065040A
Other languages
Japanese (ja)
Other versions
JPH01240692A (en
Inventor
正夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP63065040A priority Critical patent/JPH0745718B2/en
Publication of JPH01240692A publication Critical patent/JPH01240692A/en
Publication of JPH0745718B2 publication Critical patent/JPH0745718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定な液接合型半導体電極並びに該液接合型
半導体電極を用いた電解方法、光電池及びエネルギー蓄
積装置に関する。
TECHNICAL FIELD The present invention relates to a stable liquid junction type semiconductor electrode, an electrolysis method using the liquid junction type semiconductor electrode, a photovoltaic cell, and an energy storage device.

〔発明の背景〕[Background of the Invention]

半導体を電解質溶液に浸漬して界面近くにショットキー
型接合を生ぜしめたものはいわゆる液接合型半導体と呼
ばれるが、この半導体表面に光照射することにより色々
な化学反応を起させることができることが知られてい
る。
A semiconductor in which a semiconductor is immersed in an electrolyte solution to cause a Schottky junction near the interface is called a liquid junction semiconductor, and it is possible to cause various chemical reactions by irradiating the surface of this semiconductor with light. Are known.

たとえば液接合型のn型半導体では、価電子帯と伝導体
の電子準位が、表面から内部に向って正の方向に曲る。
この表面にバンド巾以上のエネルギーの光を照射する
と、価電子帯の電子が励起されて伝導体に上り、一方価
電子帯には正孔が残るが、上記の液接合のために、伝導
体の電子は内部に向って移動し、価電子帯の正孔は表面
に向って移動するので、いわゆる光電荷分離が生ずるこ
とになる。このようにして分離した電子と正孔を適当な
化合物にわたしてやり、還元と酸化反応を起させてやれ
ば、光で化学反応を誘起できたことになる。この典型的
な例として、光で水を還元及び酸化して水素と酸素を得
るいわゆる水の光分解が挙げられる。たとえば、n型酸
化チタン(TiO2)半導体電極を電解質水溶液に浸漬し、
対極として白金を用い、半導体表面に紫外光照射する
と、伝導帯に上った電子は半導体内部を経て対極に移動
して、そこでプロトンを還元して水素を発生し(式
1)、一方価電子帯に残った正孔はTiO2表面に移動して
そこで水を酸化して酸素を発生する(式2)ので、結果
的に水を分解したことになる(式3)。
For example, in a liquid junction type n-type semiconductor, the valence band and the electron level of a conductor bend in a positive direction from the surface toward the inside.
When this surface is irradiated with light having an energy higher than the band width, electrons in the valence band are excited and rise to the conductor, while holes remain in the valence band. Electrons move toward the inside, and holes in the valence band move toward the surface, so that so-called photocharge separation occurs. If the electrons and holes separated in this way are given to an appropriate compound to cause a reduction and an oxidation reaction, it means that a chemical reaction can be induced by light. A typical example of this is so-called photolysis of water in which water is reduced and oxidized by light to obtain hydrogen and oxygen. For example, by dipping an n-type titanium oxide (TiO 2 ) semiconductor electrode in an aqueous electrolyte solution,
When platinum is used as the counter electrode and the surface of the semiconductor is irradiated with ultraviolet light, the electrons that have risen to the conduction band move to the counter electrode through the inside of the semiconductor, where the protons are reduced to generate hydrogen (Equation 1). The holes remaining in the band move to the surface of TiO 2 and oxidize water there to generate oxygen (Equation 2), resulting in the decomposition of water (Equation 3).

4H+ +4e- → 2H2 (1)2H2O+4h+ → O2+4H+ (2) 2H2O → 2H2+O2 (3) このとき同時に外部導線に光電流が発生する。 4H + + 4e - → 2H 2 (1) 2H 2 O + 4h + → O 2 + 4H + (2) 2H 2 O → 2H 2 + O 2 (3) light current is generated in the same time external conductors this time.

p型半導体を電解質溶液に浸漬したときには、表面近く
にできるバンドの曲がりはn型と逆になるので、光照射
で半導体中に生じた電子は半導体表面に向って移動し、
正孔は内部に向って移動する。
When a p-type semiconductor is immersed in an electrolyte solution, the band bending near the surface is opposite to that of the n-type, so that the electrons generated in the semiconductor by light irradiation move toward the semiconductor surface,
The holes move toward the inside.

このような液接合型半導体を用いて、光による酸化、還
元反応を利用して、光分解のみならず、光による有機合
成反応など色々な光化学反応を行なうことができる。
Using such a liquid junction type semiconductor, various photochemical reactions such as an organic synthetic reaction by light can be performed not only by photolysis by utilizing oxidation and reduction reaction by light.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、従来安定に使える半導体は、バンド巾が
3eV以上の、紫外光しか利用できない材料に限られてお
り、可視光を吸収できる半導体は光照射下で不活性化し
てしまい使えないことが大きな問題として残されてい
た。
However, conventional semiconductors that can be used stably have a bandwidth
It is limited to materials that can only use ultraviolet light of 3 eV or more, and semiconductors that can absorb visible light have been left as a major problem because they cannot be used because they are inactivated under light irradiation.

〔課題を解決するための手段〕 そこで本発明者は、このような不安定な可視領域の半導
体を安定化して用いるために、被覆高分子膜中に分散し
た金属の化合物または錯体を利用することを考え、本発
明の完成に到ったものである。
[Means for Solving the Problems] Therefore, the present inventor uses a compound or complex of a metal dispersed in a coated polymer film in order to stabilize and use such an unstable semiconductor in the visible region. In view of the above, the present invention has been completed.

すなわち本発明は、水の酸化触媒となりうる少なくとも
1種のレドックス剤が分散せしめられた高分子又は粘土
の膜で被覆されていることを特徴とする液接合型半導体
電極に関する。
That is, the present invention relates to a liquid junction type semiconductor electrode characterized by being coated with a film of a polymer or clay in which at least one redox agent which can serve as a water oxidation catalyst is dispersed.

また本発明は、水の酸化触媒となりうるマンガンの錯体
が分散せしめられた高分子又は粘土の膜で被覆されてい
ることを特徴とする上記の液接合型半導体電極に関す
る。
The present invention also relates to the above liquid-bonded semiconductor electrode, characterized in that it is coated with a polymer or clay film in which a manganese complex that can serve as an oxidation catalyst for water is dispersed.

また本発明は、水の酸化触媒となりうるルテニウムの錯
体が分散せしめられたポリアニオン高分子膜又は粘土の
膜で被覆されていることを特徴とする上記の液接合型半
導体電極に関する。
The present invention also relates to the above liquid junction type semiconductor electrode, which is characterized in that it is coated with a polyanionic polymer film or a clay film in which a ruthenium complex which can serve as an oxidation catalyst for water is dispersed.

また本発明は、上記の何れかの液接合型半導体電極を対
極とともに電解質溶液に浸漬し、該液接合型半導体電極
に−0.7〜+1.0V(vs.NHE)の範囲の電圧を印加しなが
ら可視光を照射することを特徴とする電解質溶液の電気
分解法に関する。
Further, the present invention is to immerse any of the liquid junction type semiconductor electrodes described above together with a counter electrode in an electrolyte solution, and apply a voltage in the range of −0.7 to +1.0 V (vs. NHE) to the liquid junction type semiconductor electrodes. The present invention relates to an electrolysis method of an electrolyte solution, which is characterized by irradiating visible light.

また本発明は、上記の何れかの液接合型半導体電極を対
極とともに電解質溶液に浸漬してなる複数の電解槽を直
列につなぎ、各電解槽の該液接合型半導体電極に可視光
を照射することを特徴とする電解質溶液の電気分解法に
関する。
Further, the present invention is to connect a plurality of electrolytic cells formed by dipping any of the liquid junction type semiconductor electrodes described above together with a counter electrode in an electrolyte solution in series, and irradiate the liquid junction type semiconductor electrodes of each electrolytic cell with visible light. The present invention relates to an electrolytic solution electrolysis method characterized by the above.

また本発明は、上記の何れかの液接合型半導体電極を対
極とともに電解質溶液に浸漬してなる複数の電解槽が直
列につながれており、該液接合型半導体電極が光照射可
能なよう露出されていることを特徴とする光電池に関す
る。
Further, the present invention, a plurality of electrolytic cells formed by dipping any of the above liquid junction type semiconductor electrodes in an electrolyte solution together with a counter electrode are connected in series, and the liquid junction type semiconductor electrodes are exposed so that light irradiation is possible. The present invention relates to a photovoltaic cell.

また本発明は、上記の何れかの液接合型半導体電極を対
極とともに電解質溶液に浸漬してなる電解槽及び電気分
解によって発生したガスを貯蔵するタンクを含むことを
特徴とするエネルギー蓄積装置に関する。
The present invention also relates to an energy storage device including an electrolytic cell formed by immersing any of the liquid junction type semiconductor electrodes described above together with a counter electrode in an electrolyte solution and a tank for storing gas generated by electrolysis.

以下、本発明について更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

i)本発明の原理 バンドギャップの小さい半導体を用いた液接合型光素子
が不活性化してしまうことは、特にn−型半導体を用い
た場合に問題となる。この不活性化は、光照射によって
生じた正孔が半導体表面に到達し、そこで半導体自身を
酸化的に溶解してしまったり、不活性な酸化被膜を作っ
たりすることによって生じるものである。
i) Principle of the present invention Inactivation of a liquid junction type optical element using a semiconductor having a small band gap is a problem particularly when an n-type semiconductor is used. This inactivation is caused by the holes generated by light irradiation reaching the surface of the semiconductor, which oxidatively dissolves the semiconductor itself, or forms an inactive oxide film.

この不活性化を防止するためには、正孔を速やかに半導
体表面から移動させて、必要な酸化反応を起こさせてや
ればよい。本発明においては、このためにルテニウムの
錯体やマンガンの錯体等のレドックス剤を分散させた高
分子又は粘土の膜で半導体を被覆して安定化させるので
ある。
In order to prevent this inactivation, it is sufficient that holes are quickly moved from the semiconductor surface to cause a necessary oxidation reaction. For this reason, in the present invention, the semiconductor is coated with a polymer or clay film in which a redox agent such as a ruthenium complex or a manganese complex is dispersed to stabilize the semiconductor.

ii)液接合型半導体電極の材料及び製造法 次に本発明の液接合型光素子を製造するために用いる材
料及び製造法について説明する。
ii) Material and Manufacturing Method of Liquid Junction Type Semiconductor Electrode Next, materials and manufacturing method used for manufacturing the liquid bond type optical element of the present invention will be described.

イ)半導体 本発明の目的は、特にn型半導体の場合に問題となる不
活性化を防止することにあるが、p型半導体を用いても
よい。
A) Semiconductor The object of the present invention is to prevent inactivation, which is a problem particularly in the case of an n-type semiconductor, but a p-type semiconductor may be used.

また本発明に用いられる半導体は、可視光を吸収できる
ものでなければならず、従ってバンド幅が3eV以下の半
導体が用いられる。例えば、硫化カドミウム、リン化イ
ンジウム、セレン化カドミウム、ヒ化ガリウム、シリコ
ン、リン化ガリウム等を挙げることができる。
Further, the semiconductor used in the present invention must be one capable of absorbing visible light, and therefore a semiconductor having a band width of 3 eV or less is used. For example, cadmium sulfide, indium phosphide, cadmium selenide, gallium arsenide, silicon, gallium phosphide and the like can be mentioned.

ロ)レドックス剤 膜中に分散させるレドックス剤は反応の目的に沿って選
ばれる。一例として水を可視光分解するためには、Ru
O2、MnO2などの金属酸化物、ルテニウムレッド(〔(NH
34Ru・O−Ru(NH3−O−Ru(NH36+)、ペ
ンタアンミンルテニウム錯体(〔Ru(NH33+)、
テトラキス(ビピリジン)−μ−オキソ・ジルテニウム
錯体 テトラキス(ビピリジン)ジ−μ−オキソ−ジマンガン
錯体 などを水を酸化する触媒として皮膜中に分散させ、半導
体を被覆する。
(B) Redox agent The redox agent to be dispersed in the film is selected according to the purpose of the reaction. As an example, to decompose water into visible light, Ru
Metal oxides such as O 2 and MnO 2 , ruthenium red (((NH
3) 4 Ru · O-Ru (NH 3) 4 -O-Ru (NH 3) 5 ] 6+), penta ammine ruthenium complex ([Ru (NH 3) 5] 3+),
Tetrakis (bipyridine) -μ-oxo diruthenium complex Tetrakis (bipyridine) di-μ-oxo-dimanganese complex Etc. are dispersed in the film as a catalyst for oxidizing water to coat the semiconductor.

これらのレドックス剤を高分子膜中に分散させる方法
は、半導体上に高分子膜を被覆したものをレドックス剤
水溶液中に浸漬することにより吸着させたり、予め共有
結合でレドックス剤を導入した高分子を合成した後、膜
化したり、あるいはレドックス剤と高分子の混合分散溶
液を作ってこれから膜化するなどの方法がある。
The method of dispersing these redox agents in the polymer film is to absorb the redox agent by coating the semiconductor film coated with the polymer film in an aqueous solution of the redox agent, or to introduce a redox agent by a covalent bond in advance. After synthesizing, there is a method of forming a film, or forming a mixed dispersion solution of a redox agent and a polymer to form a film from this.

また粘土膜中にレドックス剤を分散させるには、吸着や
混合キャスト法を用いることができる。
In order to disperse the redox agent in the clay film, adsorption or mixed casting method can be used.

ハ)被覆膜 本発明に用いる高分子膜の材料としては、ナフィオン、
ポリスチレンスルホン酸ナトリウム、ポリアクリル酸、
ポリメタクリル酸、ポリメチルメタクリル酸、ポリビニ
ルアルコール、ポリビニルピリジン、ポリビニルピリジ
ニウム、コラーゲン、セルロース、絹などの合成あるい
は天然高分子が挙げられる。合成高分子は単独重合体あ
るいは共重合体としても用いることができ、また溶解や
剥離を抑えるために適当な架橋剤で架橋して用いること
ができる。これらはキャスト法やスピンコート法などで
半導体上に膜化される。
C) Coating film As the material of the polymer film used in the present invention, Nafion,
Sodium polystyrene sulfonate, polyacrylic acid,
Examples thereof include synthetic or natural polymers such as polymethacrylic acid, polymethylmethacrylic acid, polyvinyl alcohol, polyvinylpyridine, polyvinylpyridinium, collagen, cellulose and silk. The synthetic polymer can be used as a homopolymer or a copolymer, and can be used after being crosslinked with an appropriate crosslinking agent in order to suppress dissolution and peeling. These are formed into a film on the semiconductor by a casting method, a spin coating method, or the like.

被覆膜としては粘土の膜を用いられ、たとえばカオリ
ン、モンモリロナイトなどが挙げられる。これらは微粒
子を水懸濁液として半導体上にのせ、乾燥することによ
り膜化できる。被覆膜の厚さは、0.1μm〜500μmが適
当である。
A clay film is used as the coating film, and examples thereof include kaolin and montmorillonite. These can be formed into a film by placing fine particles as a water suspension on a semiconductor and drying. The appropriate thickness of the coating film is 0.1 μm to 500 μm.

iii)電解質溶液 本発明に用いる電解質溶液としては、水のみを用いた場
合電気分解によって水素と酸素を得ることができ、また
ハロゲン化水素の水溶液を用いた場合は、水素とハロゲ
ン分子を得ることが出来る。これらの使用が光エネルギ
ーを化学エネルギーに変えて蓄積するという理由から特
に好ましいが、この他アルカリ金属やアルカリ土類金属
の塩等の水溶液を電解質溶液として本発明に用いること
ができる。
iii) Electrolyte solution As the electrolyte solution used in the present invention, hydrogen and oxygen can be obtained by electrolysis when only water is used, and hydrogen and halogen molecules are obtained when an aqueous solution of hydrogen halide is used. Can be done. The use of these is particularly preferable because it converts light energy into chemical energy and accumulates it, but in addition to this, an aqueous solution of a salt of an alkali metal or an alkaline earth metal can be used as an electrolyte solution in the present invention.

iv)電気分解法 本発明の電気分解法を用いて種々の電解質溶液を電気分
解することができるが、例えば水を分解して水素と酸素
を得たり、ハロゲン化水素を分解してハロゲンと水素を
得たりすることができる。
iv) Electrolysis method Various electrolyte solutions can be electrolyzed using the electrolysis method of the present invention. For example, water is decomposed to obtain hydrogen and oxygen, or hydrogen halide is decomposed to generate halogen and hydrogen. Can be obtained.

本発明の液接合型半導体電極を単独で用いて対極ととも
に電解質溶液に浸漬する場合は、液接合型半導体電極
に、−0.7〜+1.0V(vs.NHE:NHEとは、標準水素電極で
ある)の電圧を印加しながら光照射を行う必要がある。
When the liquid junction type semiconductor electrode of the present invention is used alone and immersed in an electrolyte solution together with a counter electrode, the liquid junction type semiconductor electrode is -0.7 to +1.0 V (vs. NHE: NHE is a standard hydrogen electrode). It is necessary to perform light irradiation while applying the voltage of 1).

その理由は、−0.7V以下では、水の電解還元による水素
発生が起こってしまい、また+1.0V以上では、水の電解
酸化による酸素発生が起こってしまうからである。
The reason is that at −0.7 V or less, hydrogen generation by electrolytic reduction of water occurs, and at +1.0 V or more, oxygen generation by electrolytic oxidation of water occurs.

しかし、上記の電解槽を複数用いて直列につなげば、電
圧をかけなくとも電気分解を行うことができる。この場
合、直列につなぐ電解槽は、2個〜5個の範囲であるこ
とが好ましい。5個以上をつないだ場合は、過剰な電圧
を生じ、電極が損なわれるからである。
However, if a plurality of the above electrolytic cells are connected in series, electrolysis can be performed without applying a voltage. In this case, the number of electrolytic cells connected in series is preferably 2 to 5. This is because if 5 or more are connected, an excessive voltage is generated and the electrodes are damaged.

v)光電池 複数の上記の電解槽を用いて光電池とすることができ
る。この場合も、同様の理由から直列につなぐ電解槽
は、2個〜5個の範囲であることが好ましい。
v) Photocell A photocell can be made using a plurality of the electrolytic cells described above. Also in this case, the number of electrolytic cells connected in series is preferably 2 to 5 for the same reason.

vi)エネルギー蓄積装置 上記の電解槽又は光電池に電気分解により発生したガス
の貯蔵タンクを設けることにより、エネルギー蓄積装置
として用いることができる。例えば水を水素と酸素に分
解して蓄積し、水素ガスを燃焼させてエネルギーを取り
出した後、再生した水を原料として再使用することがで
きる。宇宙船等の閉鎖空間において、光電池兼用のエネ
ルギー蓄積装置として用いることが有効である。
vi) Energy storage device By providing a storage tank for gas generated by electrolysis in the above electrolytic cell or photovoltaic cell, it can be used as an energy storage device. For example, water can be decomposed and accumulated into hydrogen and oxygen, hydrogen gas can be burned to extract energy, and then regenerated water can be reused as a raw material. In a closed space such as a spacecraft, it is effective to use it as an energy storage device that also serves as a photocell.

〔発明の効果〕〔The invention's effect〕

本発明の液接合型半導体電極は、安定であり、それゆえ
本発明の液接合型半導体電極を用いて寿命の長い電解装
置、光電池、エネルギー蓄積装置等を製造することがで
きる。
The liquid-junction type semiconductor electrode of the present invention is stable, and therefore, the liquid-junction type semiconductor electrode of the present invention can be used to manufacture an electrolysis device, a photovoltaic cell, an energy storage device and the like having a long life.

実施例1 n型硫化カドミウム半導体電極の表面に、ナフィオン溶
液(5wt%)を2μ/mm2の割合でキャストし、乾燥し
てナフィオン被覆膜を得る。これを温風で乾燥した後
に、ルテニウムレッドの1mM水溶液に1時間浸漬するこ
とにより、錯体をナフィオン膜中に吸着させる。この修
飾半導体の光特性を電解質溶液中でサイクリックボルタ
モグラム(CV)により調べると、安定なCVを与え、また
定電位下で定常的な光電流を与えることからn−CdSが
安定化されたことがわかる。
Example 1 A Nafion solution (5 wt%) was cast at a rate of 2 μ / mm 2 on the surface of an n-type cadmium sulfide semiconductor electrode and dried to obtain a Nafion coating film. This is dried with warm air and then immersed in a 1 mM aqueous solution of ruthenium red for 1 hour to adsorb the complex into the Nafion membrane. When the optical characteristics of this modified semiconductor were examined by a cyclic voltammogram (CV) in an electrolyte solution, it was found that n-CdS was stabilized because a stable CV was given and a constant photocurrent was given at a constant potential. I understand.

実施例2 実施例1において安定化されたn−CdSを作用極とし、
白金対極銀参照電極を0.MKNO3と10mMHNO3を含む10mlの
水溶液中に浸漬し、セルは密閉してガス導入と気体サン
プリング用のシリコン栓を設ける。水中にアルゴンガス
を2時間吹込んだ後に、−0.3V(vs、Ag)の電位をn−
CdSに印加し、500nmの可視光をn−CdS上に照射した。
照射にともない光電流を生ずるとともにCdSおよび対極
上で気泡の発生がみられた。
Example 2 Using n-CdS stabilized in Example 1 as a working electrode,
Immersing the platinum counter electrode and silver reference electrode in an aqueous solution of 10ml containing 0.MKNO 3 and 10mMHNO 3, the cell provided a silicone stopper for introducing gas and gas sampling was sealed. After blowing argon gas into the water for 2 hours, the potential of -0.3V (vs, Ag) was changed to n-.
It was applied to CdS and irradiated with visible light of 500 nm on n-CdS.
Photocurrent was generated with irradiation, and bubbles were observed on CdS and the counter electrode.

8時間光照射後、気相からサンプリングしてガスクロマ
トグラフで調べたところ、水素と酸素が2:1の割合で発
生したことが認識され、水が可視光分解されたことが明
らかである。なお水分解の効率は照射光当り約15%であ
った。
After irradiation with light for 8 hours, sampling from the gas phase and examination by gas chromatography revealed that hydrogen and oxygen were generated at a ratio of 2: 1, and it was clear that water was decomposed by visible light. The water splitting efficiency was about 15% per irradiation light.

実施例3 実施例1において、ルテニウムレッドの代りにテトラキ
ス(ビピリジン)−ジμオキソ−ジマンガン錯体を用い
たほかは実施例1と同様にしてn−CdSを安定化し、実
施例2と同様に水の可視光分解を行なったところ、光電
流を生ずるとともに照射光当り9%の効率で水素と酸素
を得た。
Example 3 In Example 1, n-CdS was stabilized in the same manner as in Example 1 except that tetrakis (bipyridine) -diμoxo-dimanganese complex was used in place of ruthenium red, and water was added in the same manner as in Example 2. Was subjected to visible light decomposition to generate photocurrent and obtain hydrogen and oxygen at an efficiency of 9% per irradiation light.

実施例4 実施例2において、電解質水溶液として0.1MHCl水溶液
を用い、照射光として500Wキセノンランプからの400〜8
00nmの光を用いたほかは実施例2と全く同様に光反応を
行なったところ、光電流を生ずるとともに3%の高率で
HClを水素と塩素に分解した。
Example 4 In Example 2, 0.1 M HCl aqueous solution was used as the electrolyte aqueous solution, and 400 to 8 from a 500 W xenon lamp was used as irradiation light.
When a photoreaction was carried out in the same manner as in Example 2 except that light of 00 nm was used, a photocurrent was generated and at a high rate of 3%.
HCl was decomposed into hydrogen and chlorine.

実施例5 カオリン粘土の水懸濁液をn−CdS電極上にのせて乾燥
することにより、膜厚約100μmの粘土膜を作った。こ
の粘土膜被覆n−CdSを、トリス(2,2′−ビピリジン)
ルテニウム(II)錯体10mMと(Ru(NH33+1mMとを
含む混合水溶液に30分間浸漬して両錯体を吸着させた。
この修飾半導体の光特性を実施例1のようにして調べた
ところ、n−CdSが安定化されたことがわかった。
Example 5 An aqueous suspension of kaolin clay was placed on an n-CdS electrode and dried to form a clay film having a thickness of about 100 μm. This clay film-coated n-CdS was treated with tris (2,2'-bipyridine)
Both complexes were adsorbed by immersing in a mixed aqueous solution containing 10 mM of ruthenium (II) complex and (Ru (NH 3 ) 5 ] 3 + 1 mM for 30 minutes.
When the optical characteristics of this modified semiconductor were examined as in Example 1, it was found that n-CdS was stabilized.

実施例6 実施例1において安定化した修飾n−CdS電極を白金対
極とともに、1MHBrを含む水溶液に浸漬して構成される
電解槽を3個直列につなぎ、修飾n−CdS上に可視光照
射したところ、光電流を生ずるとともに、照射光当り4
%の効率でHBrが分解され、水素と臭素を生成した。
Example 6 Three modified electrolytic n-CdS electrodes, which were stabilized in Example 1, were immersed in an aqueous solution containing 1 MHBr together with a platinum counter electrode and connected in series, and the modified n-CdS was irradiated with visible light. However, with the generation of photocurrent, 4
HBr was decomposed to produce hydrogen and bromine with an efficiency of%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 14/00 P // H01L 29/872 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01M 14/00 P // H01L 29/872

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】水の酸化触媒となりうる少なくとも1種の
レドックス剤が分散せしめられた高分子又は粘土の膜で
被覆されていることを特徴とする液接合型半導体電極。
1. A liquid junction type semiconductor electrode characterized by being coated with a film of polymer or clay in which at least one redox agent which can serve as an oxidation catalyst of water is dispersed.
【請求項2】水の酸化触媒となりうるマンガンの錯体が
分散せしめられた高分子又は粘土の膜で被覆されている
ことを特徴とする請求項(1)記載の液接合型半導体電
極。
2. A liquid junction type semiconductor electrode according to claim 1, which is coated with a film of a polymer or clay in which a complex of manganese which can serve as an oxidation catalyst of water is dispersed.
【請求項3】水の酸化触媒となりうるルテニウムの錯体
が分散せしめられたポリアニオン高分子膜又は粘土の膜
で被覆されていることを特徴とする請求項(1)記載の
液接合型半導体電極。
3. The liquid-junction type semiconductor electrode according to claim 1, which is coated with a polyanion polymer film or a clay film in which a ruthenium complex that can serve as an oxidation catalyst for water is dispersed.
【請求項4】請求項(1)〜(3)の何れか1項記載の
液接合型半導体電極を参照電極とともに電解質溶液に浸
漬し、該液接合型半導体電極に−0.7〜+1.0V(vs.NH
E)の範囲の電圧を印加しながら可視光を照射すること
を特徴とする電解質溶液の電気分解法。
4. The liquid junction type semiconductor electrode according to any one of claims (1) to (3) is immersed in an electrolyte solution together with a reference electrode, and the liquid junction type semiconductor electrode has a -0.7 to +1.0 V ( vs. NH
An electrolysis method for an electrolytic solution, which comprises irradiating visible light while applying a voltage in the range E).
【請求項5】請求項(1)〜(3)の何れか1項記載の
液接合型半導体電極を対極とともに電解質溶液に浸漬し
てなる複数の電解槽を直列につなぎ、各電解槽の該液接
合型半導体電極に可視光を照射することを特徴とする電
解質溶液の電気分解法。
5. A plurality of electrolytic cells formed by immersing the liquid-junction type semiconductor electrode according to claim 1 in an electrolyte solution together with a counter electrode are connected in series, and An electrolysis method of an electrolytic solution, which comprises irradiating a liquid junction type semiconductor electrode with visible light.
【請求項6】請求項(1)〜(3)の何れか1項記載の
液接合型半導体電極を対極とともに電解質溶液に浸漬し
てなる複数の電解槽が直列につながれており、該液接合
型半導体電極が光照射可能なように露出されていること
を特徴とする光電池。
6. A plurality of electrolytic cells, which are obtained by immersing the liquid-junction type semiconductor electrode according to any one of claims 1 to 3 in an electrolyte solution together with a counter electrode, are connected in series, and the liquid-bonding is performed. Photovoltaic cell, characterized in that the type semiconductor electrode is exposed for light irradiation.
【請求項7】請求項(1)〜(3)の何れか1項記載の
液接合型半導体電極を対極とともに電解質溶液に浸漬し
てなる電解槽及び電気分解によって発生したガスを貯蔵
するタンクを含むことを特徴とするエネルギー蓄積装
置。
7. An electrolytic cell formed by immersing the liquid junction type semiconductor electrode according to any one of claims 1 to 3 in an electrolyte solution together with a counter electrode, and a tank for storing gas generated by electrolysis. An energy storage device comprising:
JP63065040A 1988-03-18 1988-03-18 Liquid junction type semiconductor electrode and its use Expired - Lifetime JPH0745718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065040A JPH0745718B2 (en) 1988-03-18 1988-03-18 Liquid junction type semiconductor electrode and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065040A JPH0745718B2 (en) 1988-03-18 1988-03-18 Liquid junction type semiconductor electrode and its use

Publications (2)

Publication Number Publication Date
JPH01240692A JPH01240692A (en) 1989-09-26
JPH0745718B2 true JPH0745718B2 (en) 1995-05-17

Family

ID=13275450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065040A Expired - Lifetime JPH0745718B2 (en) 1988-03-18 1988-03-18 Liquid junction type semiconductor electrode and its use

Country Status (1)

Country Link
JP (1) JPH0745718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO129496A0 (en) * 1996-07-26 1996-08-22 Broken Hill Proprietary Company Limited, The Photoelectrochemical cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011149A (en) * 1975-11-17 1977-03-08 Allied Chemical Corporation Photoelectrolysis of water by solar radiation
JPS562623A (en) * 1979-06-21 1981-01-12 Matsushita Electric Ind Co Ltd Electrode
JPS58133788A (en) * 1982-02-01 1983-08-09 Semiconductor Energy Lab Co Ltd Electrolyte solution
JPS5953354A (en) * 1982-09-14 1984-03-28 Taihei Mach Works Ltd Method and device for controlling conveyance of sheet
JPS59175566A (en) * 1983-03-24 1984-10-04 Rikagaku Kenkyusho Semiconductor electrode covered by film of high molecular compound

Also Published As

Publication number Publication date
JPH01240692A (en) 1989-09-26

Similar Documents

Publication Publication Date Title
Erbs et al. Visible-light-induced oxygen generation from aqueous dispersions of tungsten (VI) oxide
CA1234777A (en) Electrochemical photocatalytic structure
White et al. Electrochemical investigation of photocatalysis at cadmium sulfide suspensions in the presence of methylviologen
Sarnowska et al. Highly efficient and stable solar water splitting at (Na) WO3 photoanodes in acidic electrolyte assisted by non‐noble metal oxygen evolution catalyst
US4427749A (en) Product intended to be used as a photocatalyst, method for the preparation of such product and utilization of such product
JP3309131B2 (en) Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same
JPH1092477A (en) Organic coloring matter intensified type oxide semi-conductor electrode and solar cell including the same
Rao et al. Photoelectrochemical studies on dye‐sensitized particulate ZnO thin‐film photoelectrodes in nonaqueous media
Ohno et al. Photocatalyzed production of hydrogen and iodine from aqueous solutions of iodide using platinum-loaded TiO2 powder
Amano et al. Photoelectrochemical gas–electrolyte–solid phase boundary for hydrogen production from water vapor
JP4406689B2 (en) Equipment for producing hydrogen and oxygen by water photolysis
Harris et al. Corrosion suppression on rutile anodes by high energy redox reactions
EP0105623A2 (en) Electrolytic photodissociation of chemical compounds by iron oxide electrodes
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
JP2011045826A (en) Golden cluster modified metal oxide semiconductor, photoelectrode using the same, and photoelectric transducer having the photoelectrode
Frank et al. Polymer-modified electrodes, catalysis and water-splitting reactions
JP2017125242A (en) Electrode for reductive reaction and reaction device prepared therewith
Desilvestro et al. Photoredox reactions on semiconductors at open circuit. Reduction of iron (3+) on tungsten (VI) oxide electrodes and particle suspensions
JPS60434B2 (en) Hydrogen generation method
Li et al. Involvement of coordination chemistry during electron transfer in the stabilization of the pyrite (FeS2) photoanode
JPS61290355A (en) Electrochemical gas sensor
JPH0745718B2 (en) Liquid junction type semiconductor electrode and its use
JP6694646B2 (en) Method and apparatus for producing hydrogen peroxide
JPH0235037B2 (en)
Sfaelou et al. Quantum dot sensitized titania as visible-light photocatalyst for solar operation of photofuel cells