JPH0745296A - Electrolyte plate for molten carbonate fuel cell - Google Patents

Electrolyte plate for molten carbonate fuel cell

Info

Publication number
JPH0745296A
JPH0745296A JP5190634A JP19063493A JPH0745296A JP H0745296 A JPH0745296 A JP H0745296A JP 5190634 A JP5190634 A JP 5190634A JP 19063493 A JP19063493 A JP 19063493A JP H0745296 A JPH0745296 A JP H0745296A
Authority
JP
Japan
Prior art keywords
plate
nickel
electrolyte
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5190634A
Other languages
Japanese (ja)
Inventor
Naoya Nakanishi
直哉 中西
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5190634A priority Critical patent/JPH0745296A/en
Publication of JPH0745296A publication Critical patent/JPH0745296A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To increasingly improve a cell life characteristic by providing a hole part for moving an ion and reaction gas and holed nickel plate for impeding growth of a nickel metal precipitated from a cathode side, in an electrolytic plate. CONSTITUTION:An electrolytic plate 1 comprises three sheets of porous electrolytic holding sheets 1a for holding a molten carbonate electrolyte and a holed nickel plate 1b, and the plate 1b is interposed between the first/second sheets 1a as viewed from a side of an anode 2. The anode 2 is formed of a nickel sintered unit, and in the other surface of the plate 1, a cathode 3 formed of a lithium peroxide nickel sintered unit is provided. By providing the plate 1b in the plate 1, dendrite-shaped metal nickel, made to grow from a side of the cathode 3 to cause a short-circuit, can be impeded. Further, moving an ion and reaction gas in the plate 1 for electrochemical reaction is prevented from interfering because of passing through a hole part of the plate 1b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型燃料電池
に関し詳しくはその電解質板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell, and more particularly to an electrolyte plate thereof.

【0002】[0002]

【従来の技術】一般に、溶融炭酸塩型燃料電池は、単セ
ルとガス分離板とを交互に積層してなる電池スタックの
各周面に、反応ガス給排用マニホールドが取り付けられ
た構造を成す。前記単セルは、電解質である炭酸リチウ
ム、炭酸カリウム等の混合アルカリ金属炭酸塩を、多孔
質セラミック材中に保持した電解質板を介して、ニッケ
ル焼結体よりなるアノードと、酸化ニッケル焼結体を主
体とするカソードが配された構造である。そして、作動
時には、上記アノードには水素を主体とする燃料ガス
が、カソードには空気と炭酸ガスとの混合ガスが各々供
給されるようになっている。
2. Description of the Related Art Generally, a molten carbonate fuel cell has a structure in which a reaction gas supply / discharge manifold is attached to each peripheral surface of a battery stack formed by alternately stacking single cells and gas separation plates. . The single cell comprises an anode made of a nickel sintered body and a nickel oxide sintered body via an electrolyte plate in which a mixed alkali metal carbonate such as lithium carbonate or potassium carbonate as an electrolyte is held in a porous ceramic material. This is a structure in which a cathode mainly composed of is arranged. During operation, the fuel gas mainly containing hydrogen is supplied to the anode, and the mixed gas of air and carbon dioxide gas is supplied to the cathode.

【0003】上記構造の電池に上記ガスが供給される
と、アノード、カソード、及び、電池全体としては、下
記反応式(1)〜(3)にしめすような反応が生じる。 1/2O2 +CO2 +2e- → CO3 2- ・・・・(1) H2 +CO3 2- → H2 O+CO2 +2e- ・・・・(2) H2 +1/2O2 → H2 O ・・・・(3) 上記3つの化学式より明らかなように、カソードで酸素
と二酸化炭素とが消費されて炭酸イオンが生成し、この
炭酸イオンがアノードに移行して水素と反応し、水と二
酸化炭素となるような反応である。
When the above-mentioned gas is supplied to the battery having the above structure, the following reactions (1) to (3) occur in the anode, the cathode and the battery as a whole. 1 / 2O 2 + CO 2 + 2e - → CO 3 2- ···· (1) H 2 + CO 3 2- → H 2 O + CO 2 + 2e - ···· (2) H 2 + 1 / 2O 2 → H 2 O ... (3) As is clear from the above three chemical formulas, oxygen and carbon dioxide are consumed at the cathode to generate carbonate ions, and the carbonate ions are transferred to the anode to react with hydrogen to form water. It is a reaction that produces carbon dioxide.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記反応が
生じる際に、カソードでは、下記反応式(4)に示すよ
うに電極材料である酸化ニッケルの一部が二酸化炭素と
反応して、ニッケルイオンとなり電解質中に溶出する。 NiO+CO2 → Ni2++CO3 2- ・・・・・(4) このように電解質中に溶出したニッケルイオンは、アノ
ード側から拡散してきた水素と反応し、金属ニッケルに
還元され、カソード近傍で析出し始める。この析出した
金属ニッケルはデンドライト状に成長する。この成長が
進行し続けると、遂にはカソード側から成長したデンド
ライト状の金属ニッケルがアノード側にまで達してしま
い、アノード、カソード間での短絡を招き、電池特性が
劣化し、電池寿命が短くなってしまうという問題があっ
た。
When the above reaction occurs, a part of nickel oxide, which is an electrode material, reacts with carbon dioxide at the cathode, as shown in the following reaction formula (4), to generate nickel ions. And elutes in the electrolyte. NiO + CO 2 → Ni 2+ + CO 3 2- (4) The nickel ions eluted in the electrolyte in this way react with the hydrogen that has diffused from the anode side, are reduced to metallic nickel, and near the cathode. It begins to precipitate. The deposited metallic nickel grows like a dendrite. If this growth continues, finally the dendrite-like metallic nickel grown from the cathode side reaches the anode side, causing a short circuit between the anode and the cathode, degrading the battery characteristics and shortening the battery life. There was a problem that it would end up.

【0005】本発明は、上記問題点に鑑み、電池特性の
劣化を抑制することができ、且つ電池寿命特性を飛躍的
に向上させることのせできる溶融炭酸塩型燃料電池の電
解質板を提供することを目的とする。
In view of the above problems, the present invention provides an electrolyte plate for a molten carbonate fuel cell which can suppress deterioration of cell characteristics and can dramatically improve cell life characteristics. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明では、溶融炭酸塩型燃料電池のアノードとカソ
ードとの間に介在する電解質板において、上記電解質板
の電解質中にはイオン、反応ガスの移動の為の孔部と、
カソード側から析出するニッケル金属の成長を阻止する
ニッケル部分を有する有孔ニッケル板が存在することを
特徴とする。
In order to achieve the above object, the present invention provides an electrolyte plate interposed between an anode and a cathode of a molten carbonate fuel cell, wherein the electrolyte of the electrolyte plate contains ions, A hole for moving the reaction gas,
The present invention is characterized in that there is a perforated nickel plate having a nickel portion that prevents the growth of nickel metal deposited from the cathode side.

【0007】[0007]

【作用】上記したように、電解質板中に有孔ニッケル極
板を設けることにより、電解質板の電解質中をカソード
側から成長してきたデンドライト状の金属ニッケルの成
長を邪魔するように存在することになり、それ以上の成
長が抑制され、アノード近傍にまで金属ニッケルのデン
ドライト状の析出物が生じることを防止する。
As described above, by providing a perforated nickel electrode plate in the electrolyte plate, it exists so as to hinder the growth of dendrite-like metallic nickel that has grown from the cathode side in the electrolyte of the electrolyte plate. Therefore, further growth is suppressed, and dendrite-like precipitates of metallic nickel are prevented from forming near the anode.

【0008】なお、電気化学反応のための電解質板中に
おけるイオン、及び、反応ガスの移動は、有孔ニッケル
板の孔部を通過することによって行われるので、電池反
応に支障はない。
Since the ions and the reaction gas move in the electrolyte plate for the electrochemical reaction by passing through the holes of the perforated nickel plate, there is no problem in the battery reaction.

【0009】[0009]

【実施例】本発明の一例に係る電解質について以下に説
明を行う。図1は、本発明の一例にかかる電解質板を用
いた燃料電離の要部斜視図であり、当該電解質板1の一
方の面にはニッケル焼結体からなるアノード2が設けら
れ、電解質板1の他方の面にはリチウム化酸化ニッケル
焼結体からなるカソード3が設けられている。上記カソ
ード3の他面側には、第一集電板4と、波板状を成し酸
化材ガスの通路を構成する第一コルゲート板5と、ステ
ンレス鋼板からなるガス分離板6とが順に設けられてい
る。一方、前記アノード2の他面側には、第二集電板7
と、波板状を成し上記第一コルゲート5と垂直方向に燃
料ガスの通路を構成し、設けられた第二コルゲート8
と、ガス分離6板とが積層されている。
EXAMPLES An electrolyte according to an example of the present invention will be described below. FIG. 1 is a perspective view of a main part of fuel ionization using an electrolyte plate according to an example of the present invention. An anode 2 made of a nickel sintered body is provided on one surface of the electrolyte plate 1, and the electrolyte plate 1 is provided. A cathode 3 made of a lithiated nickel oxide sintered body is provided on the other surface of the. On the other surface side of the cathode 3, a first current collector plate 4, a first corrugated plate 5 having a corrugated plate shape and forming a passage for an oxidant gas, and a gas separation plate 6 made of a stainless steel plate are sequentially arranged. It is provided. On the other hand, the second current collecting plate 7 is provided on the other surface side of the anode 2.
And a corrugated plate-like second corrugate 8 which is provided with a passage for fuel gas in a direction perpendicular to the first corrugate 5
And the gas separation 6 plate are laminated.

【0010】上記のように構成されたものを、上下端板
(図示せず)で積重方向に締め付けることにより電池ス
タックが構成される。上記構成の燃料電池の電解質板1
は図2にしめすように、溶融炭酸塩電解質を保持した3
枚の多孔質の電解質保持シート1aと有孔のニッケル板
1bとからなり、前記有孔ニッケル板1bはアノード2
側から見て1枚目と2枚目の電解質保持シート1aの間
に挟持するように設けられている。
A battery stack is constructed by tightening the above-structured ones with upper and lower end plates (not shown) in the stacking direction. Electrolyte plate 1 of the fuel cell having the above structure
2 shows that the molten carbonate electrolyte was retained as shown in FIG.
It is composed of a porous electrolyte holding sheet 1a and a perforated nickel plate 1b, and the perforated nickel plate 1b is an anode 2
It is provided so as to be sandwiched between the first and second electrolyte holding sheets 1a when viewed from the side.

【0011】上記のような構成の電解質板1は、以下の
ようにして作製した。先ず、電解質保持シート1aの作
製の説明を行う。初めに、平均粒径が0.1μmのγ−
リチウムアルニネート100重量部、直径が100μm
のアルミナ20重量部、バインダーであるポリビニルブ
チラール樹脂30重量部、可塑剤であるフタル酸ジオク
チル20重量部、溶媒としてエタノール300重量部を
それぞれ秤量する。次に、上記材料を、ボールミルによ
り十分に混合しスラリーを作製しする。さらに、当該ス
ラリー中に含まれる微小な気泡を減圧下で攪拌すること
により除去した。こうして得られたスラリーを、通常の
テープキャステング法により、厚み約0.3mm、幅2
00mmのテープ状に形成した。このテープの長さを2
00mmに切断して一辺が200mmの正方形にし、電
解質保持シート1aを作製した。なお、この電解質保持
シートの開孔度は約50%であった。
The electrolyte plate 1 having the above structure was manufactured as follows. First, the production of the electrolyte holding sheet 1a will be described. First, γ− having an average particle size of 0.1 μm
100 parts by weight of lithium aluminate, diameter 100 μm
20 parts by weight of alumina, 30 parts by weight of polyvinyl butyral resin as a binder, 20 parts by weight of dioctyl phthalate as a plasticizer, and 300 parts by weight of ethanol as a solvent are weighed. Next, the above materials are sufficiently mixed by a ball mill to prepare a slurry. Further, minute bubbles contained in the slurry were removed by stirring under reduced pressure. The slurry thus obtained was subjected to a usual tape casting method to have a thickness of about 0.3 mm and a width of 2 mm.
It was formed into a tape shape of 00 mm. The length of this tape is 2
The electrolyte holding sheet 1a was produced by cutting the sheet into a square with a side of 200 mm by cutting it into a piece of 00 mm. The porosity of this electrolyte holding sheet was about 50%.

【0012】続いて以下のように電解質板1を作製し
た。上記のように作製した電解質保持シート1aを2枚
積層し、次に有孔のニッケル板1b(孔径:70μm、
厚み:50μm、開孔度:45%)をのせ、さらにこの
上に電界質保持シート1aを1枚積層した。次に、この
電解質保持シート1aと有孔ニッケル板1bとからなる
積層体に対して、50〜150℃、圧力50〜300k
g/cm2 (好ましくは100〜200kg/cm2
の条件で加圧を行い、加圧形成による上記積層体の一体
化を図った。
Subsequently, an electrolyte plate 1 was produced as follows. Two electrolyte holding sheets 1a produced as described above are laminated, and then a perforated nickel plate 1b (pore diameter: 70 μm,
A thickness: 50 μm, a porosity: 45%) was placed thereon, and one sheet of electrolyte holding sheet 1a was further laminated thereon. Next, with respect to the laminated body composed of the electrolyte holding sheet 1a and the perforated nickel plate 1b, 50 to 150 ° C. and a pressure of 50 to 300 k.
g / cm 2 (preferably 100 to 200 kg / cm 2 )
Pressure was applied under the conditions described above, and the above-mentioned laminated body was integrated by pressure formation.

【0013】ついで、上記加圧による一体化を行った積
層体を酸素/窒素雰囲気下で800℃まで昇温した。こ
の昇温過程において、電解質保持シート中のバインダー
や可塑剤が分解し、最終的にγ−リチウムアルニネート
が焼結される。この焼結体にLi2CO3 :K2 CO3
=62:38mol%の混合炭酸塩を含浸し、電解質板
1を作製した。尚、電解質板1の厚みは、0.5±0.
05mmであった。
Next, the laminated body integrated by the above pressure was heated to 800 ° C. in an oxygen / nitrogen atmosphere. In this temperature rising process, the binder and the plasticizer in the electrolyte holding sheet are decomposed, and finally the γ-lithium aluminate is sintered. K 2 CO 3: Li2CO 3 in the sintered body
= 62: 38 mol% of mixed carbonate was impregnated to prepare the electrolyte plate 1. The thickness of the electrolyte plate 1 is 0.5 ± 0.
It was 05 mm.

【0014】この電解質板1の両側にニッケル焼結体か
らなるアノード2とリチウム化酸化ニッケル焼結体から
なるカソード3を配置し、上記したような図1に示す単
電池を組み立てた。以下この単電池を(a)電池と称す
る。 (比較例)有孔のニッケル板を使わなかった以外は、上
記実施例と同様にして電解質板を作製し、また同様に単
電池を作製した。
An anode 2 made of a nickel sintered body and a cathode 3 made of a lithium nickel oxide sintered body were arranged on both sides of the electrolyte plate 1 to assemble the unit cell shown in FIG. 1 as described above. Hereinafter, this unit cell is referred to as (a) cell. (Comparative Example) An electrolyte plate was prepared in the same manner as in the above-described example except that a perforated nickel plate was not used, and a single cell was prepared in the same manner.

【0015】このように作製した電池を以下、(x)電
池と称する。 (実験)本発明の(a)電池と比較例(x)電池とを用
い、連続放電を行い、この時の電池寿命を調べたので、
その結果を図3に示す。尚、実験条件は以下に示す通り
である。
The battery thus manufactured is hereinafter referred to as (x) battery. (Experiment) Using the battery (a) of the present invention and the battery of Comparative Example (x), continuous discharge was performed, and the battery life at this time was examined.
The result is shown in FIG. The experimental conditions are as shown below.

【0016】 酸化剤ガス・・・空気と炭酸ガスの混合ガス 燃料ガス ・・・加湿水素と炭酸ガスの混合ガス 作動温度 ・・・650℃ 負荷 ・・・150mA/cm2 または無負荷(開
路電圧) 図3から明らかなように、負荷が150mA/cm2
合、及び、無負荷(開路電圧)の場合の何れにおいて
も、初期特性は本発明の(a)電池、比較例の(x)電
池とも略同様である。しかしながら、(x)電池では時
間の経過とともに、著しい電圧の低下が見られる。
Oxidant gas: mixed gas of air and carbon dioxide Fuel gas: mixed gas of humidified hydrogen and carbon dioxide Operating temperature: 650 ° C. load: 150 mA / cm 2 or no load (open circuit voltage) As is clear from FIG. 3, the initial characteristics are (a) the battery of the present invention and (x) the comparative battery regardless of whether the load is 150 mA / cm 2 or no load (open circuit voltage). Both are almost the same. However, in the battery (x), the voltage drops remarkably with time.

【0017】一方、(a)電池では、電圧が初期と比較
して若干低下するだけで4000時間過ぎても殆ど変化
なく、長期に渡って電池性能が低下しないことが認めら
れる。これは(a)電池では、電解質板中に析出し、電
解質中のカソード側から成長してきた金属ニッケルが、
有孔ニッケル板により、それ以上の成長を抑制されたた
め、アノード近傍まで金属ニッケルのデンドライト状の
析出物が生じることはないためと思われる。 (その他の事項)上記実施例では、有孔ニッケル板とし
て、孔径が70μm、厚みが50μm、開孔度が45%
のものを用いたがこれに限ることはない。
On the other hand, in the case of the battery (a), it is recognized that the voltage is slightly decreased as compared with the initial value, it hardly changes even after 4000 hours, and the battery performance does not decrease for a long time. In the battery (a), this is because metallic nickel deposited in the electrolyte plate and growing from the cathode side in the electrolyte is
It is considered that since the perforated nickel plate suppressed further growth, no dendrite-like precipitate of metallic nickel was formed in the vicinity of the anode. (Other matters) In the above embodiment, the perforated nickel plate has a hole diameter of 70 μm, a thickness of 50 μm, and a porosity of 45%.
Although the thing of what was used was not limited to this.

【0018】孔径としては、余り孔径が大きいと、成長
してきたデンドライト状の金属ニッケルが簡単にニッケ
ル板の孔を通過してしまい、効果的に成長の抑制を行う
ことができなくなる。一方、有孔ニッケル板の孔径とし
て現在最小のものは50μmである。以上のことを考え
合わせて、孔径は50μm〜80μmであることが望ま
しい。
As for the hole diameter, if the hole diameter is too large, the grown dendrite-like metallic nickel easily passes through the holes of the nickel plate, and it becomes impossible to effectively suppress the growth. On the other hand, the smallest hole diameter of the perforated nickel plate at present is 50 μm. Taking the above into consideration, it is desirable that the pore size is 50 μm to 80 μm.

【0019】また、厚みについては、あまり厚くなると
電解質中におけるイオン等の移動の妨げになってしま
い、抵抗値が上昇し、電池特性を低下せることになるた
め、100μm以下が望ましい。但し、加工上の問題と
して余りにも厚みが薄いと孔を開ける際にニッケル板が
破れてしまうため50μm以上の厚みが適当であると考
えられる。さらにニッケル板の開孔度は、電解質の開孔
度より小さいことが望ましい。これは、ニッケル板の開
孔度が電解質の開孔度より大きいと成長したデンドライ
ト状のニッケル金属はニッケル板の孔を通り易くなり、
ニッケル金属の成長を邪魔し難くなってしまうからであ
る。但し、あまり開孔度が低いと、ニッケル板部分が多
くなり、電解質中におけるイオン等の移動の妨げになり
抵抗値が上がってしまうので、上記実施例のように50
%の開孔度の電解質保持シートを用いた場合、有孔ニッ
ケルの開孔度は、45%〜50%程度が望ましい。
Further, the thickness is preferably 100 μm or less because if it is too thick, it will hinder the movement of ions and the like in the electrolyte, which will increase the resistance value and deteriorate the battery characteristics. However, as a processing problem, if the thickness is too thin, the nickel plate will be broken when the holes are opened, so a thickness of 50 μm or more is considered appropriate. Further, the porosity of the nickel plate is preferably smaller than that of the electrolyte. This is because when the openness of the nickel plate is larger than that of the electrolyte, the grown dendrite-like nickel metal easily passes through the holes of the nickel plate,
This is because it is difficult to interfere with the growth of nickel metal. However, if the porosity is too low, the nickel plate portion increases, which hinders the movement of ions and the like in the electrolyte and raises the resistance value.
When an electrolyte holding sheet having a porosity of 100% is used, the porosity of perforated nickel is preferably about 45% to 50%.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、電
解質中に有孔のニッケル板が設けられていることによ
り、カソード側から成長したデンドライト状のニッケル
金属の成長がこのニッケル板により邪魔され、成長が抑
制される。これにより、電極の短絡により生じる電池特
性の低下を防止でき、電池寿命の長寿命化を図ることが
できるといった効果を奏した。
As described above, according to the present invention, since the perforated nickel plate is provided in the electrolyte, the growth of the dendrite-like nickel metal grown from the cathode side is obstructed by the nickel plate. And growth is suppressed. As a result, it is possible to prevent the deterioration of the battery characteristics caused by the short circuit of the electrodes and to prolong the battery life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例に係る電解質板を用いた燃料電池
の要部斜視図である。
FIG. 1 is a perspective view of a main part of a fuel cell using an electrolyte plate according to an example of the present invention.

【図2】本発明の一例にかかる電解質板の模式図であ
る。
FIG. 2 is a schematic diagram of an electrolyte plate according to an example of the present invention.

【図3】本発明の(a)電池、及び、比較例の(x)電
池における、放電時間と電池電圧の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between discharge time and battery voltage in the battery (a) of the present invention and the battery (x) of the comparative example.

【符号の説明】[Explanation of symbols]

1 電解質板 1a 電解質保持シート 1b 有孔ニッケル板 1 Electrolyte Plate 1a Electrolyte Holding Sheet 1b Perforated Nickel Plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融炭酸塩型燃料電池のアノードとカソ
ードとの間に介在する電解質板において、 上記電解質板中にはイオン、反応ガスの移動の為の孔部
と、カソード側から析出するニッケル金属の成長を阻止
するニッケル部分を有する有孔ニッケル板が存在するこ
とを特徴とする溶融炭酸塩型燃料電池の電解質板。
1. An electrolyte plate interposed between an anode and a cathode of a molten carbonate fuel cell, wherein the electrolyte plate has holes for moving ions and reaction gas, and nickel deposited from the cathode side. An electrolyte plate for a molten carbonate fuel cell, characterized in that there is a perforated nickel plate having a nickel portion that inhibits metal growth.
JP5190634A 1993-07-30 1993-07-30 Electrolyte plate for molten carbonate fuel cell Pending JPH0745296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190634A JPH0745296A (en) 1993-07-30 1993-07-30 Electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5190634A JPH0745296A (en) 1993-07-30 1993-07-30 Electrolyte plate for molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH0745296A true JPH0745296A (en) 1995-02-14

Family

ID=16261339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190634A Pending JPH0745296A (en) 1993-07-30 1993-07-30 Electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0745296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006915A1 (en) * 2004-02-12 2005-09-01 Mayer, Günter, Dipl.-Ing. Fuel cell and method for depletion of carbon dioxide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004006915A1 (en) * 2004-02-12 2005-09-01 Mayer, Günter, Dipl.-Ing. Fuel cell and method for depletion of carbon dioxide
DE102004006915B4 (en) * 2004-02-12 2005-11-24 Mayer, Günter, Dipl.-Ing. Fuel cell and method for depletion of carbon dioxide
US7727646B2 (en) 2004-02-12 2010-06-01 Mayer Guenter Fuel cell and method for depleting carbon dioxide

Similar Documents

Publication Publication Date Title
EP0240662B1 (en) Reduction of electrode dissolution in electrochemical generators
KR100887430B1 (en) Current collector for SOFC fuel cells
JP3350167B2 (en) Molten carbonate fuel cell
US7569304B2 (en) Fuel cells and related devices
JP3519733B2 (en) Solid fuel cell and manufacturing method thereof
JPH0997620A (en) Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
US8415075B2 (en) Ni-Al alloy anode for molten carbonate fuel cell made by in-situ sintering
JPH0745296A (en) Electrolyte plate for molten carbonate fuel cell
US20050050991A1 (en) Method for manufacturing Ni-Al alloy anode for fuel cells using nickel powders
JP3220330B2 (en) Power generation method in solid oxide fuel cell
JPH077668B2 (en) Molten carbonate fuel cell electrode
KR100516988B1 (en) Manufacturing method of alloy fuel electrode for fuel cell preventing sintering support
KR100514782B1 (en) Manufacturing method of pulley process non-oriented electrical steel sheet with low iron loss and high magnetic flux density
KR100331083B1 (en) An anode of molten carbonate fuel cell
JPH0471168A (en) Fuel cell power generation plant
JPH05114409A (en) Fused carbonate fuel cell
JPH0696785A (en) Molten carbonate fuel cell
JPH11135134A (en) Electrode for molten carbonate fuel cell and its manufacture
JPH0722038A (en) Flat solid electrolyte fuel cell
JPH1197043A (en) Molten carbonate fuel cell
JPH0272562A (en) Molten carbonate fuel cell
JPH0644990A (en) Molten carbonate type fuel cell
JPH05242899A (en) Direct internal reforming system molten carbonate type fuel cell
JPH07240219A (en) Molten carbonate fuel cell