JPH0745272A - Manganese dry battery - Google Patents

Manganese dry battery

Info

Publication number
JPH0745272A
JPH0745272A JP5189499A JP18949993A JPH0745272A JP H0745272 A JPH0745272 A JP H0745272A JP 5189499 A JP5189499 A JP 5189499A JP 18949993 A JP18949993 A JP 18949993A JP H0745272 A JPH0745272 A JP H0745272A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
zinc alloy
bismuth
manganese dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5189499A
Other languages
Japanese (ja)
Other versions
JP3105115B2 (en
Inventor
Kazunari Kobayashi
一成 小林
Seiichi Hikata
誠一 日方
Mutsuhiro Maeda
睦宏 前田
Kojiro Miyasaka
幸次郎 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP05189499A priority Critical patent/JP3105115B2/en
Publication of JPH0745272A publication Critical patent/JPH0745272A/en
Application granted granted Critical
Publication of JP3105115B2 publication Critical patent/JP3105115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To attain low public pollution by controlling Ni, Co and Cr to a specific limit amount or less, of impurities contained in a positive electrode compound, and containing bismuth of specific amount or more in a negative electrode zinc alloy, so as to suppress corrosion of the negative electrode alloy. CONSTITUTION:A positive electrode compound 1 is prepared by using manganese dioxide as an active material mixed with pulverized carbon, electrolyte, etc. As this compound 1, a sum of contents of Ni, Co, Cr, contained as impurities, is set to 0.25wt.% or less relating to the weight of manganese dioxide which is a positive electrode active material. A zinc alloy negative electrode 2 contains bismuth of amount exceeding 0.01wt.%. In this way, corrosion resistance of the negative electrode containing no lead is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマンガン乾電池に関し、
さらに詳しくは、正極活物質として二酸化マンガン、負
極として亜鉛合金を用いるマンガン乾電池において、該
亜鉛合金に鉛を添加しなくても、腐食に対して鉛添加亜
鉛合金と同等の抵抗性を有する、低公害マンガン乾電池
に関する。
The present invention relates to a manganese dry battery,
More specifically, in a manganese dry battery using manganese dioxide as the positive electrode active material and a zinc alloy as the negative electrode, even if lead is not added to the zinc alloy, it has the same resistance to corrosion as a lead-added zinc alloy, and a low resistance. Pollution-related manganese dry battery.

【0002】[0002]

【従来の技術】マンガン乾電池の金属容器を兼ねる負極
缶として、亜鉛合金は古くから用いられてきた。負極缶
には、その内容物である電解液や正極活物質による腐食
に対して耐食性を付与する目的で、0.005重量%を
越える量、代表的には0.1〜0.5重量%の鉛を添加
した亜鉛合金が用いられてきた。
2. Description of the Related Art Zinc alloy has been used for a long time as a negative electrode can that also functions as a metal container for manganese dry batteries. The negative electrode can has an amount of more than 0.005% by weight, typically 0.1 to 0.5% by weight, for the purpose of imparting corrosion resistance to corrosion by the electrolyte solution or the positive electrode active material which is the content thereof. Zinc alloys with the addition of lead have been used.

【0003】このようにして負極缶に含まれる鉛は、微
量ではあるが人体に有害であり、その流通・消費量が多
くなるにつれて、産業廃棄物や家庭廃棄物に混入して廃
棄される鉛による環境汚染を防止する必要が生じてき
た。
As described above, the lead contained in the negative electrode can is harmful to the human body although it is a trace amount, and as the amount of distribution and consumption increases, the lead is mixed with industrial waste and household waste and discarded. It has become necessary to prevent environmental pollution caused by

【0004】その対策として、マンガン乾電池の負極缶
に、鉛を添加しない亜鉛合金の使用が強く望まれてい
る。しかしながら、マンガン乾電池の負極材料として評
価した場合、鉛を添加しない負極缶は鉛添加負極缶と比
較して、電池内の電解液及び正極合剤によって腐食を受
け易く、長期間貯蔵後の電池性能が大幅に劣り、特に天
然二酸化マンガンを使用した電池の場合は、それが顕著
であった。
As a countermeasure, it is strongly desired to use a zinc alloy containing no lead in a negative electrode can of a manganese dry battery. However, when evaluated as a negative electrode material for manganese dry batteries, a negative electrode can that does not contain lead is more susceptible to corrosion by the electrolyte solution and positive electrode mixture in the battery than a lead-added negative electrode can, and battery performance after long-term storage Was significantly inferior, especially in the case of batteries using natural manganese dioxide.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
鉛無添加負極缶が抱える腐食の問題を解決し、特に天然
二酸化マンガンを使用した場合においても、電池の長期
間使用後における性能劣化を防ぎ、鉛添加負極缶を使用
した電池に比較して遜色のない性能を示す、低公害マン
ガン乾電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problem of corrosion of such a lead-free negative electrode can, and in particular, even when natural manganese dioxide is used, the performance of the battery is deteriorated after long-term use. It is an object of the present invention to provide a low-pollution manganese dry battery that prevents the above and exhibits a performance comparable to that of a battery using a lead-added negative electrode can.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために検討を重ねた結果、このような負極
合金の腐食が、正極合剤中に含まれる不純物のうち、特
にニッケル、コバルト及び銅の存在量を特定の限界量以
下に制御し、かつ負極亜鉛合金中に特定量を越えるビス
マスを含有させることによって、抑制できることを見出
して、本発明を完成するに至った。
As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have found that such corrosion of the negative electrode alloy is particularly remarkable among impurities contained in the positive electrode mixture. The inventors have found that this can be suppressed by controlling the abundances of nickel, cobalt, and copper to be below a specific limit and by containing bismuth in excess of a specific amount in the negative electrode zinc alloy, and have completed the present invention.

【0007】すなわち、本発明のマンガン乾電池は、
(1)正極活物質として二酸化マンガンを含む正極合
剤、(2)亜鉛合金負極及び(3)セパレータを備えた
マンガン乾電池において、(1)の正極合剤中のニッケ
ル、コバルト及び銅の含有量の合計が、該合剤中の二酸
化マンガンの量に対して0.25重量%以下であり;
(2)の亜鉛合金負極が0.01重量%を越えるビスマ
スを含有することを特徴とする。
That is, the manganese dry battery of the present invention is
In a manganese dry battery including (1) a positive electrode mixture containing manganese dioxide as a positive electrode active material, (2) a zinc alloy negative electrode and (3) a separator, the contents of nickel, cobalt and copper in the positive electrode mixture of (1). Of 0.25% by weight or less based on the amount of manganese dioxide in the mixture;
The zinc alloy negative electrode of (2) is characterized by containing more than 0.01% by weight of bismuth.

【0008】本発明に用いられる(1)の正極合剤は、
活物質として二酸化マンガンを用い、微粉末カーボン及
び電解液などと混和して調製される。本発明において特
徴的なことは、正極合剤として、不純物として含有され
るニッケル、コバルト及び銅の含有量の合計が、元素と
して、該正極合剤に含まれる正極活物質である二酸化マ
ンガンの量に対して0.25重量%以下、好ましくは
0.15重量%以下のものを用いることである。この不
純物は、主として原料の二酸化マンガンに由来し、酸化
物、塩化物、水酸化物などの形で正極合剤中に存在する
が、その他の化合物の形で存在することもあり、上記の
量は元素としての合計存在量である。また、個々の元素
として、二酸化マンガンに対し、ニッケルが0.10重
量%以下、コバルトが0.10重量%以下、及び銅が
0.05重量%であることが好ましい。これらの元素の
正極合剤中における含有量の合計が二酸化マンガンに対
して0.25重量%を越えると、亜鉛合金負極の腐食及
びそれに伴う水素ガスの発生が大きい。
The positive electrode mixture (1) used in the present invention is
Manganese dioxide is used as an active material, and is prepared by mixing finely powdered carbon and an electrolytic solution. A feature of the present invention is that the total content of nickel, cobalt and copper contained as impurities in the positive electrode mixture is the amount of manganese dioxide which is the positive electrode active material contained in the positive electrode mixture as an element. To 0.25% by weight or less, preferably 0.15% by weight or less. This impurity is mainly derived from manganese dioxide as a raw material, and is present in the positive electrode mixture in the form of oxide, chloride, hydroxide, etc., but it may be present in the form of other compounds. Is the total abundance as an element. Further, as individual elements, nickel is preferably 0.10 wt% or less, cobalt is 0.10 wt% or less, and copper is 0.05 wt% with respect to manganese dioxide. When the total content of these elements in the positive electrode mixture exceeds 0.25% by weight with respect to manganese dioxide, corrosion of the zinc alloy negative electrode and accompanying generation of hydrogen gas are large.

【0009】二酸化マンガンとしては、天然二酸化マン
ガン、電解二酸化マンガン、化学合成二酸化マンガンの
いずれかを用いることもできるが、経済的に入手が容易
でありながら、鉛を添加しない亜鉛合金負極に対して腐
食をもたらすことの大きい天然二酸化マンガンにおい
て、本発明の効果は特に顕著である。
As manganese dioxide, any one of natural manganese dioxide, electrolytic manganese dioxide, and chemically synthesized manganese dioxide can be used, but it is economically easily available, but with respect to a zinc alloy negative electrode to which lead is not added. The effect of the present invention is particularly remarkable in natural manganese dioxide, which is highly corrosive.

【0010】本発明の第2の特徴は、(2)の亜鉛合金
負極が0.01重量%を越える量、好ましくは0.05
〜0.8重量%のビスマスを含有することであり、この
ことによって、前述の(1)の正極合剤中のニッケル、
コバルト及び銅の含有量を特定量以下に抑えることと相
まって、鉛を含有しない負極の耐食性を向上させること
ができる。亜鉛合金負極中のビスマスの量が0.01重
量%以下では、該亜鉛合金負極中に鉛を含有しない限り
満足する結果が得られず、負極の腐食及びそれに伴う水
素ガスの発生が大きい。また、0.8重量%を越えて添
加しても、添加量に見合う効果が期待できない。このよ
うな亜鉛合金負極は、例えば負極缶のような形状で用い
られる。
The second feature of the present invention is that the amount of the zinc alloy negative electrode of (2) exceeds 0.01% by weight, preferably 0.05.
The content of bismuth is about 0.8% by weight, whereby the nickel in the positive electrode mixture of the above (1),
Along with suppressing the contents of cobalt and copper to be equal to or less than a specific amount, the corrosion resistance of the negative electrode containing no lead can be improved. When the amount of bismuth in the zinc alloy negative electrode is 0.01% by weight or less, satisfactory results cannot be obtained unless lead is contained in the zinc alloy negative electrode, and corrosion of the negative electrode and accompanying generation of hydrogen gas are large. Further, even if added in excess of 0.8% by weight, an effect commensurate with the added amount cannot be expected. Such a zinc alloy negative electrode is used in the shape of, for example, a negative electrode can.

【0011】(3)のセパレータは、(1)の正極合剤
と(2)の亜鉛合金負極とが直接に接触しないように、
(1)と(2)の間に介在する。基材としてはクラフト
紙が一般的である。また、必要に応じて、ポリビニルア
ルコール、デンプン及び/又はデンプン誘導体などを含
む糊剤を表面に塗布してもよい。
In the separator (3), the positive electrode mixture (1) and the zinc alloy negative electrode (2) do not come into direct contact with each other,
It is interposed between (1) and (2). Kraft paper is generally used as the base material. If necessary, a sizing agent containing polyvinyl alcohol, starch and / or starch derivative may be applied to the surface.

【0012】本発明においては、前述の(1)の正極合
剤中の不純物の量、ならびに(2)の亜鉛合金中のビス
マスの量に加えて、(3)のセパレータの表面に、ビス
マス化合物及び/又はカチオン界面活性剤が存在するこ
とによって、負極の腐食を抑制する効果を、さらに向上
させることができる。このようなビスマス化合物及び/
又はカチオン界面活性剤は、前述の糊剤の成分として糊
剤に添加し、該糊剤をセパレータ基材に塗布してもよい
し、別途、水溶液としてセパレータ基材に含浸又は塗布
してもよく、スプレー化して塗布してもよい。
In the present invention, in addition to the above-mentioned amount of impurities in the positive electrode mixture in (1) and the amount of bismuth in the zinc alloy in (2), the bismuth compound is added to the surface of the separator in (3). The presence of the cationic surfactant and / or the cationic surfactant can further improve the effect of suppressing the corrosion of the negative electrode. Such a bismuth compound and /
Alternatively, the cationic surfactant may be added to the sizing agent as a component of the sizing agent described above, and the sizing agent may be applied to the separator substrate, or may be separately impregnated or applied as an aqueous solution to the separator substrate. Alternatively, it may be sprayed and applied.

【0013】このようなセパレータの表面に存在するビ
スマス化合物としては、酸化ビスマス、水酸化ビスマ
ス、塩化ビスマス、オキシ塩化ビスマス、フッ化ビスマ
ス、硫化ビスマス、硫酸ビスマス及び硝酸ビスマスが例
示され、酸化ビスマスが好ましい。セパレータの表面に
存在するビスマス化合物の量は、負極の腐食を抑制する
効果の点で、0.02〜0.6mg/cm2の範囲が好まし
く、0.05〜0.2mg/cm2がさらに好ましい。0.0
2mg/cm2未満では、ビスマス化合物の存在による腐食抑
制効果の向上は顕著でなく、0.6mg/cm2を越えると、
腐食抑制効果はあるものの、電池の内部抵抗を上昇させ
る原因となる。
Examples of the bismuth compound existing on the surface of such a separator include bismuth oxide, bismuth hydroxide, bismuth chloride, bismuth oxychloride, bismuth fluoride, bismuth sulfide, bismuth sulfate and bismuth nitrate. preferable. The amount of bismuth compound present on the surface of the separator, in terms of the effect of suppressing the corrosion of the negative electrode is preferably in the range of 0.02~0.6mg / cm 2, 0.05~0.2mg / cm 2 and more preferable. 0.0
If it is less than 2 mg / cm 2 , the corrosion inhibition effect due to the presence of the bismuth compound is not significantly improved, and if it exceeds 0.6 mg / cm 2 ,
Although it has the effect of suppressing corrosion, it causes an increase in the internal resistance of the battery.

【0014】カチオン界面活性剤としては、第四級アン
モニウム塩型、ピリジニウム塩型、イミダゾリン第四級
塩型、イソキノリニウム塩型、アミン塩型、第四級ホス
ホニウム塩型が例示され、第四級アンモニウム塩型が好
ましい。第四級アンモニウム塩型カチオン界面活性剤と
しては、ドデシルトリメチルアンモニウムクロリド、テ
トラデシルトリメチルアンモニウムクロリド、ヘキサデ
シルトリメチルアンモニウムクロリド、オクタデシルト
リメチルアンモニウムクロリド及びベヘニルトリメチル
アンモニウムクロリド、ならびにこれらの混合物、例え
ば天然油脂に由来する牛脂アルキルトリメチルアンモニ
ウムクロリド、ヤシ油アルキルトリメチルアンモニウム
クロリドのような1個の長鎖アルキル基を有するモノア
ルキル系;テトラデシルベンジルジメチルアンモニウム
クロリド、オクタデシルベンジルジメチルアンモニウム
クロリド、牛脂アルキルベンジルジメチルアンモニウム
クロリド、ヤシ油アルキルベンジルジメチルアンモニウ
ムクロリドのような1個の長鎖アルキル基と1個のベン
ジル基を有するモノアルキルベンジル系;ジドデシルジ
メチルアンモニウムクロリド、ジステアリルジメチルア
ンモニウムクロリド、ジオレイルジメチルアンモニウム
クロリドのような2個の長鎖アルキル基又は長鎖アルケ
ニル基を有するジアルキル系が例示され、モノアルキル
系又はモノアルキルベンジル系が好ましく、モノアルキ
ル系が特に好ましい。
Examples of the cationic surfactant include quaternary ammonium salt type, pyridinium salt type, imidazoline quaternary salt type, isoquinolinium salt type, amine salt type and quaternary phosphonium salt type. The salt form is preferred. Examples of the quaternary ammonium salt-type cationic surfactant include dodecyltrimethylammonium chloride, tetradecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, octadecyltrimethylammonium chloride and behenyltrimethylammonium chloride, and mixtures thereof, such as natural fats and oils. Monoalkyl system having one long chain alkyl group such as beef tallow alkyltrimethylammonium chloride and coconut oil alkyltrimethylammonium chloride; tetradecylbenzyldimethylammonium chloride, octadecylbenzyldimethylammonium chloride, tallow alkylbenzyldimethylammonium chloride, palm Oil such as alkylbenzyldimethylammonium chloride A monoalkylbenzyl system having a chain alkyl group and one benzyl group; having two long chain alkyl groups or long chain alkenyl groups such as didodecyldimethylammonium chloride, distearyldimethylammonium chloride, dioleyldimethylammonium chloride A dialkyl type is illustrated, a monoalkyl type or a monoalkyl benzyl type is preferable, and a monoalkyl type is particularly preferable.

【0015】セパレータの表面に存在するカチオン界面
活性剤の量は、負極の腐食を抑制する効果の点で、0.
005〜0.1mg/cm2の範囲が好ましく、0.005〜
0.02mg/cm2がさらに好ましい。0.005mg/cm2
満では、カチオン界面活性剤の存在による腐食抑制効果
の向上は顕著でなく、0.1mg/cm2を越えると、腐食抑
制効果はあるものの、電圧劣化や重負荷放電における電
池の性能劣化の原因となる。
The amount of the cationic surfactant present on the surface of the separator depends on the effect of suppressing the corrosion of the negative electrode.
The range of 005-0.1 mg / cm 2 is preferable, and 0.005-
0.02 mg / cm 2 is more preferred. If it is less than 0.005 mg / cm 2 , the corrosion inhibitory effect due to the presence of the cationic surfactant is not significantly improved, and if it exceeds 0.1 mg / cm 2 , there is a corrosion inhibitory effect, but voltage deterioration and heavy load discharge It may cause deterioration of battery performance.

【0016】セパレータの表面に、ビスマス化合物とカ
チオン界面活性剤が共存すると、それぞれが単独に存在
する場合よりもさらに顕著な腐食抑制効果を示す。
The coexistence of the bismuth compound and the cationic surfactant on the surface of the separator exhibits a more remarkable corrosion inhibiting effect than the case where each of them is present alone.

【0017】[0017]

【発明の効果】本発明によって、環境を汚染する鉛を含
有しない亜鉛合金負極を用いて、従来の鉛添加亜鉛合金
負極を用いた場合と同等の腐食防止効果を示し、したが
って同等の性能、特に同等の使用寿命を示す低公害マン
ガン乾電池が得られる。
INDUSTRIAL APPLICABILITY According to the present invention, a zinc alloy negative electrode containing no lead that pollutes the environment exhibits the same corrosion inhibition effect as in the case of using a conventional lead-added zinc alloy negative electrode, and therefore has the same performance, particularly It is possible to obtain a low-pollution manganese dry battery having an equivalent service life.

【0018】[0018]

【実施例】以下、本発明を実施例及び比較例によって説
明する。これらの例において、部は重量部を表す。本発
明は、これらの実施例によって限定されるべきではな
い。
EXAMPLES The present invention will be described below with reference to examples and comparative examples. In these examples, parts represent parts by weight. The invention should not be limited by these examples.

【0019】実施例1〜21 正極合剤の調製 天然二酸化マンガン60部とアセチレンブラック10部
とを良く混合し、これに塩化亜鉛25重量%及び塩化ア
ンモニウム2重量%を含む水溶液である電解液49部を
加えて均一に混合することにより、正極合剤を調製し
た。用いた二酸化マンガン中のニッケル、コバルト及び
銅の含有量は、高周波誘導結合型プラズマ発光分析の結
果、表1に示すとおりであった。なお、ここに用いたア
セチレンブラック、塩化亜鉛及び塩化アンモニウム中に
は、正極合剤中のニッケル、コバルト及び銅の含有量に
影響を及ぼす程のこれらの金属元素を含んでいなかっ
た。
Examples 1 to 21 Preparation of Positive Electrode Mixture 60 parts of natural manganese dioxide and 10 parts of acetylene black were mixed well, and an electrolytic solution 49 which was an aqueous solution containing 25% by weight of zinc chloride and 2% by weight of ammonium chloride was mixed. A part was added and mixed uniformly to prepare a positive electrode mixture. The contents of nickel, cobalt and copper in the manganese dioxide used were as shown in Table 1 as a result of the high frequency inductively coupled plasma optical emission analysis. The acetylene black, zinc chloride and ammonium chloride used here did not contain these metal elements to the extent that they would affect the contents of nickel, cobalt and copper in the positive electrode mixture.

【0020】負極缶の作製 一方、電気精錬した純度99.99重量%以上の亜鉛地
金に、表1に示す量のビスマスを添加して溶融し、合金
試料を得た。この合金を圧延し、打ち抜いて亜鉛合金ペ
レットを得た。リン片状黒鉛とホウ酸の混合物を潤滑剤
として用い、上記ペレットを、衝撃押出し法によってR
20型負極缶に加工した。
Preparation of Negative Electrode Can On the other hand, the amount of bismuth shown in Table 1 was added to an electrorefined zinc metal having a purity of 99.99% by weight or more and melted to obtain an alloy sample. This alloy was rolled and punched to obtain zinc alloy pellets. A mixture of flake graphite and boric acid was used as a lubricant, and the pellets were subjected to R
Processed into a 20-inch negative electrode can.

【0021】セパレータの作製 クラフト紙を基材とするセパレータを、次のようにして
作製した。すなわち、ポリビニルアルコール、デンプ
ン、及びポリオキシエチレン(15)ノニルフェニルエ
ーテルの水溶液からなる糊剤ペーストを調製し、さら
に、実施例12以外には、表1に記載された量の酸化ビ
スマス及び/又はオクタデシルトリメチルアンモニウム
クロリドがクラフト紙に塗布される量の、酸化ビスマス
及び/又はオクタデシルトリメチルアンモニウムクロリ
ドをこれに配合して均一に混合し、糊剤試料を得た。こ
の糊剤試料をクラフト紙に塗布し、乾燥して、セパレー
タを作製した。
Preparation of Separator A separator using kraft paper as a base material was prepared as follows. That is, a paste paste made of an aqueous solution of polyvinyl alcohol, starch, and polyoxyethylene (15) nonylphenyl ether was prepared, and, in addition to Example 12, the amounts of bismuth oxide and / or that described in Table 1 were used. Bismuth oxide and / or octadecyltrimethylammonium chloride in an amount such that octadecyltrimethylammonium chloride was applied to kraft paper was blended into this and uniformly mixed to obtain a paste sample. The paste sample was applied to kraft paper and dried to prepare a separator.

【0022】マンガン乾電池の作製 上記のようにして得られた正極合剤1、負極缶2及びセ
パレータ3を用い、さらにこの種のマンガン乾電池に通
常用いられる炭素棒4、封口体5、正極端子板6、負極
端子板7、絶縁チューブ8及び外装缶9を用いて、図1
に示すR20型マンガン乾電池を作製した。これらの乾
電池を用いて、評価A、B及びCを行った。
Preparation of Manganese Dry Battery Using the positive electrode mixture 1, the negative electrode can 2 and the separator 3 obtained as described above, a carbon rod 4, a sealing body 5 and a positive electrode terminal plate which are usually used in a manganese dry battery of this kind are used. 6, the negative electrode terminal plate 7, the insulating tube 8 and the outer can 9 are used.
The R20 type manganese dry battery shown in was produced. Evaluations A, B and C were performed using these dry batteries.

【0023】評価A:300Ω連続放電(n=3) 上記によって作製した電池を、20℃に90日間貯蔵し
た後、20℃の恒温槽中で300Ω連続放電させ、0.
9Vに達するまでの持続時間を測定した。また、その放
電中の内部抵抗の最大値を、併せて測定した。
Evaluation A: 300Ω continuous discharge (n = 3) The battery produced as described above was stored at 20 ° C. for 90 days, and then continuously discharged at 300 ° C. in a thermostat at 20 ° C.
The duration until reaching 9V was measured. Moreover, the maximum value of the internal resistance during the discharge was also measured.

【0024】評価B:2Ω連続放電(n=3) 上記によって作製した電池を、20℃の恒温槽中で2Ω
連続放電させ、0.9Vに達するまでの持続時間を測定
した。
Evaluation B: 2Ω continuous discharge (n = 3) The battery prepared as described above was heated to 2Ω in a constant temperature bath at 20 ° C.
It was continuously discharged, and the duration until reaching 0.9 V was measured.

【0025】評価C:2Ω連続放電終了後のガス発生量
(n=3) 評価Bの連続放電を終了した電池を、流動パラフィンを
満たした倒置メスシリンダー内に入れて密閉し、20℃
の一定温度に15日間貯蔵して、電池より発生したガス
をシリンダー内の上部に集積した。集積したガスの量
を、メスシリンダーの目盛りによって測定した。
Evaluation C: Amount of gas generated after 2Ω continuous discharge (n = 3) The battery after the continuous discharge of evaluation B was placed in an inverted graduated cylinder filled with liquid paraffin and hermetically sealed at 20 ° C.
Was stored at a constant temperature for 15 days, and the gas generated from the battery was accumulated in the upper part of the cylinder. The amount of accumulated gas was measured by the scale of a graduated cylinder.

【0026】評価結果 以上の評価A、B及びCの結果を第1表にまとめた。Evaluation Results The results of the above evaluations A, B and C are summarized in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】比較例1〜4 二酸化マンガンとして、ニッケル、コバルト及び銅の含
有量の合計が本発明の範囲を超えた天然二酸化マンガン
を用いたほかは、実施例1〜21と同様にしてマンガン
乾電池を作製し、同様に評価した。二酸化マンガン中の
ニッケル、コバルト及び銅の含有量、亜鉛合金負極中の
ビスマスの含有量、セパレータ表面のビスマス化合物及
びカチオン界面活性剤の量、ならびに評価結果を第2表
にまとめた。
Comparative Examples 1 to 4 Manganese dry batteries were prepared in the same manner as in Examples 1 to 21, except that natural manganese dioxide having a total content of nickel, cobalt and copper exceeding the range of the present invention was used as manganese dioxide. Was prepared and evaluated in the same manner. Table 2 shows the contents of nickel, cobalt and copper in manganese dioxide, the content of bismuth in the zinc alloy negative electrode, the amounts of the bismuth compound and the cationic surfactant on the surface of the separator, and the evaluation results.

【0030】[0030]

【表3】 [Table 3]

【0031】この結果から明らかなように、ニッケル、
コバルト及び銅の含有量の合計が本発明の範囲を越える
正極合剤を用いたマンガン乾電池は、本発明のマンガン
乾電池に比べて、300Ω又は2Ωの連続放電試験の結
果が劣っている。
As is clear from this result, nickel,
The manganese dry battery using the positive electrode mixture whose total content of cobalt and copper exceeds the range of the present invention is inferior in the result of the continuous discharge test of 300Ω or 2Ω to the manganese dry battery of the present invention.

【0032】比較例5〜8 負極缶として、鉛を0.17重量%含有する従来の鉛含
有亜鉛合金を用い、二酸化マンガンとして、ニッケル、
コバルト及び銅の含有量の合計が本発明の範囲内である
(比較例5)又は範囲を越えた(比較例6〜8)天然二
酸化マンガンを用い、セパレータに塗布する糊剤にビス
マス化合物、カチオン界面活性剤を添加しなかったもの
を用いた以外は、実施例1〜21と同様にしてマンガン
乾電池を作製し、同様に評価した。二酸化マンガン中の
ニッケル、コバルト及び銅の含有量、亜鉛合金負極中の
ビスマスの含有量、ならびに評価結果を第3表にまとめ
た。
Comparative Examples 5 to 8 A conventional lead-containing zinc alloy containing 0.17% by weight of lead was used as a negative electrode can, and nickel was used as manganese dioxide.
The total content of cobalt and copper is within the range of the present invention (Comparative Example 5) or exceeds the range (Comparative Examples 6 to 8) using natural manganese dioxide, and the bismuth compound and the cation are used as the sizing agent applied to the separator. Manganese dry batteries were prepared and evaluated in the same manner as in Examples 1 to 21, except that the surfactant was not added. Table 3 shows the contents of nickel, cobalt and copper in manganese dioxide, the content of bismuth in the zinc alloy negative electrode, and the evaluation results.

【0033】[0033]

【表4】 [Table 4]

【0034】第1表に示された評価結果を第3表の結果
と比較すると、本発明のマンガン乾電池は、負極缶に鉛
を含有していないにもかかわらず、鉛含有亜鉛合金を負
極缶として用いた従来のマンガン乾電池と同等の放電特
性を有することがわかる。
Comparing the evaluation results shown in Table 1 with the results shown in Table 3, the manganese dry battery of the present invention shows that the lead-containing zinc alloy is used in the negative electrode can even though the negative electrode can does not contain lead. It can be seen that it has the same discharge characteristics as the conventional manganese dry battery used as.

【図面の簡単な説明】[Brief description of drawings]

【図1】マンガン乾電池の断面図である。FIG. 1 is a sectional view of a manganese dry battery.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 負極缶 3 セパレータ 4 炭素棒 5 封口体 6 正極端子板 7 負極端子板 8 絶縁チューブ 9 外装缶 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode can 3 Separator 4 Carbon rod 5 Sealing body 6 Positive electrode terminal plate 7 Negative electrode terminal plate 8 Insulating tube 9 Exterior can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮坂 幸次郎 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kojiro Miyasaka 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (1)正極活物質として二酸化マンガン
を含む正極合剤、(2)亜鉛合金負極及び(3)セパレ
ータを備えたマンガン乾電池において、(1)の正極合
剤中のニッケル、コバルト及び銅の含有量の合計が、該
合剤中の二酸化マンガンの量に対して0.25重量%以
下であり;(2)の亜鉛合金負極が0.01重量%を越
えるビスマスを含有することを特徴とするマンガン乾電
池。
1. A manganese dry battery comprising (1) a positive electrode mixture containing manganese dioxide as a positive electrode active material, (2) a zinc alloy negative electrode and (3) a separator, wherein nickel and cobalt in the positive electrode mixture of (1). And the total content of copper is 0.25% by weight or less with respect to the amount of manganese dioxide in the mixture; (2) the zinc alloy negative electrode contains more than 0.01% by weight of bismuth. Manganese dry battery characterized by.
【請求項2】 (3)のセパレータの表面にビスマス化
合物が存在する請求項1記載のマンガン乾電池。
2. The manganese dry battery according to claim 1, wherein the bismuth compound is present on the surface of the separator of (3).
【請求項3】 (3)のセパレータの表面にカチオン界
面活性剤が存在する請求項1記載のマンガン乾電池。
3. The manganese dry battery according to claim 1, wherein a cationic surfactant is present on the surface of the separator of (3).
JP05189499A 1993-07-30 1993-07-30 Manganese dry cell Expired - Fee Related JP3105115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05189499A JP3105115B2 (en) 1993-07-30 1993-07-30 Manganese dry cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05189499A JP3105115B2 (en) 1993-07-30 1993-07-30 Manganese dry cell

Publications (2)

Publication Number Publication Date
JPH0745272A true JPH0745272A (en) 1995-02-14
JP3105115B2 JP3105115B2 (en) 2000-10-30

Family

ID=16242301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05189499A Expired - Fee Related JP3105115B2 (en) 1993-07-30 1993-07-30 Manganese dry cell

Country Status (1)

Country Link
JP (1) JP3105115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045959A1 (en) * 2003-11-07 2005-05-19 Toshiba Battery Co., Ltd. Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
WO2005064711A1 (en) * 2003-12-25 2005-07-14 Toshiba Battery Co., Ltd. Method for producing anode can for battery and manganese dry battery using such anode can for battery
WO2005064713A1 (en) * 2003-12-25 2005-07-14 Toshiba Battery Co., Ltd. Negative electrode can for battery and manganese dry battery utilizing the same
KR100949424B1 (en) * 2003-12-25 2010-03-24 도시바 덴치 가부시키가이샤 Negative electrode can for battery and manganese dry battery utilizing the same
US7874346B2 (en) 2004-10-15 2011-01-25 Toshiba Battery Co., Ltd. Method for producing manganese dry cell negative electrode zinc material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005045959A1 (en) * 2003-11-07 2005-05-19 Toshiba Battery Co., Ltd. Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
KR100895941B1 (en) * 2003-11-07 2009-05-07 도시바 덴치 가부시키가이샤 Negative electrode active material for battery, anode can for battery, zinc negative plate for battery, manganese dry battery and method for manufacturing same
JPWO2005064713A1 (en) * 2003-12-25 2007-12-20 東芝電池株式会社 Battery negative electrode can and manganese dry battery using the same
WO2005064713A1 (en) * 2003-12-25 2005-07-14 Toshiba Battery Co., Ltd. Negative electrode can for battery and manganese dry battery utilizing the same
JPWO2005064711A1 (en) * 2003-12-25 2007-12-20 東芝電池株式会社 Manufacturing method of negative electrode can for battery and manganese dry battery using negative electrode can for battery
CN100454616C (en) * 2003-12-25 2009-01-21 东芝电池株式会社 Method for producing anode can for battery and manganese dry battery using such anode can for battery
WO2005064711A1 (en) * 2003-12-25 2005-07-14 Toshiba Battery Co., Ltd. Method for producing anode can for battery and manganese dry battery using such anode can for battery
KR100949424B1 (en) * 2003-12-25 2010-03-24 도시바 덴치 가부시키가이샤 Negative electrode can for battery and manganese dry battery utilizing the same
KR100954265B1 (en) * 2003-12-25 2010-04-23 도시바 덴치 가부시키가이샤 Negative electrode can for battery and manganese dry battery utilizing the same
US7829217B2 (en) 2003-12-25 2010-11-09 Toshiba Battery Co., Ltd. Zinc can for battery anode
US8092939B2 (en) 2003-12-25 2012-01-10 Toshiba Consumer Electronics Holdings Corporation Manganese dry battery containing an anode zinc can made of zinc and bismuth
JP5091409B2 (en) * 2003-12-25 2012-12-05 東芝ホームアプライアンス株式会社 Battery negative electrode can and manganese dry battery using the same
US7874346B2 (en) 2004-10-15 2011-01-25 Toshiba Battery Co., Ltd. Method for producing manganese dry cell negative electrode zinc material

Also Published As

Publication number Publication date
JP3105115B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US4500614A (en) Alkaline cell
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JP3105115B2 (en) Manganese dry cell
JP3592345B2 (en) Manganese dry cell
JP2000058045A (en) Manganese dry battery
US3928074A (en) Primary cell with negative electrode
JP2002270164A (en) Zinc alloy powder and alkaline battery with usage of the same
JPH0119622B2 (en)
JPH0794193A (en) Manganese dry battery
KR19990078309A (en) Manganese dry batteries
JP2563106B2 (en) Alkaline battery
JPH10116612A (en) Negative electrode material for alkaline manganese battery and manufacture of negative electrode material
JPH0724215B2 (en) Dry cell
JP2005166419A (en) Alkaline dry battery
JP2003317713A (en) Zinc alloy powder and alkaline battery using the same
JPH07105941A (en) Zinc alkaline battery
JPH09270254A (en) Zinc alkaline battery
JP2935855B2 (en) Alkaline battery
JP4733816B2 (en) Negative electrode for alkaline battery and alkaline battery using the same
JP2563108B2 (en) Alkaline battery
JPH0822821A (en) Manganese battery
JP2805486B2 (en) Alkaline battery and its negative electrode active material
JPH06223829A (en) Zinc alkaline battery
JPS6089075A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees