JPH0745258A - Secondary battery jar - Google Patents

Secondary battery jar

Info

Publication number
JPH0745258A
JPH0745258A JP5188385A JP18838593A JPH0745258A JP H0745258 A JPH0745258 A JP H0745258A JP 5188385 A JP5188385 A JP 5188385A JP 18838593 A JP18838593 A JP 18838593A JP H0745258 A JPH0745258 A JP H0745258A
Authority
JP
Japan
Prior art keywords
battery
cell
stacking direction
width
laminating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5188385A
Other languages
Japanese (ja)
Inventor
Kyoichi Kinoshita
恭一 木下
Bunichi Isotani
文一 磯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP5188385A priority Critical patent/JPH0745258A/en
Publication of JPH0745258A publication Critical patent/JPH0745258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PURPOSE:To provide a secondary battery jar in which improving volumetric energy density can be realized to facilitate manufacture. CONSTITUTION:Cell chambers c1 to c10 aligned in a line are formed by partitioning the inside of an outer case 1 by internal partitions 12. Battery cells 2 of the same shape are stored one by one each other in the cell chambers c1 to c10, to laminate positive and negative poles of each battery cell 2 in a battery cell arranging direction. Here, a laminating directional width of the cell chambers c1, c10 in the end part is formed larger than a laminating directional width of the cell chamber c2 to c9 in the central part and further smaller than a maximum value of the laminating directional width in an unlocked condition of each battery cell 2. In the battery cells 2 in both ends, by a charge, since the laminating directional width of the cell chambers c1, c10 is relatively large formed, when expanded a little in a laminating direction, a wall part 11a of the outer case 11 and internal partitions 12a, 12i in the outermost side hold pressing force, mainly in a laminating directional outside of the battery cell 2, carried. Thus without reinforcing the wall part 11a of the outer case 11, laminating directional dimension of the battery jar is contracted, and volumetric energy density can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セパレ−タを挟んでシ
−ト状の正極及び負極を積層した電池セルを3個以上直
列配置した二次電池の電槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery case for a secondary battery in which three or more battery cells in which a sheet-shaped positive electrode and a negative electrode are laminated with a separator interposed therebetween are arranged in series.

【0002】[0002]

【従来の技術】従来の二次電池の一例を図4に示す。電
槽1は、樹脂よりなる外箱11と、外箱11の内部を多
数のセル室cに区画する互いに平行な内部隔壁12とか
らなり、各セル室c内に水素二次電池からなる電池セル
2が個別に収容されている。各電池セル2は正、負極を
セパレータを介して積層してなり、正、負極の積層方向
と電池セル2の配列方向とは一致している。
2. Description of the Related Art An example of a conventional secondary battery is shown in FIG. The battery case 1 is composed of an outer case 11 made of a resin and inner partition walls 12 that are parallel to each other and partition the inside of the outer case 11 into a large number of cell chambers c. Each cell chamber c includes a hydrogen secondary battery. The cells 2 are individually housed. Each battery cell 2 is formed by stacking positive and negative electrodes via a separator, and the stacking direction of the positive and negative electrodes is aligned with the arrangement direction of the battery cells 2.

【0003】ここで、電池セル2の積層方向の幅(以
下、積層方向幅という)は充電による体積増大により充
電完了時に最大となるので、充電完了時における電池セ
ル2の積層方向幅の最大値(非拘束状態充電にての)W
maxを見込んで各セル室cの積層方向の寸法Wcを決
定し、これにより外箱11の壁部11aに掛かる応力が
軽減される。例えば、上記Wcはほぼ電池セル2の積層
方向幅の最大値Wmaxに設定される。
Here, since the width of the battery cell 2 in the stacking direction (hereinafter referred to as the stacking direction width) becomes maximum at the completion of charging due to the increase in volume due to charging, the maximum value of the stacking direction width of the battery cell 2 at the completion of charging. W (with unrestricted charging)
The dimension Wc of each cell chamber c in the stacking direction is determined in consideration of max, and thereby the stress applied to the wall portion 11a of the outer box 11 is reduced. For example, Wc is set to a maximum value Wmax of the width of the battery cells 2 in the stacking direction.

【0004】特開平2−306533号公報は、上記し
た各電池セルの積層方向幅の増大によって外箱の壁部が
膨張するのを抑止するために、インサート成形された高
強度の補強板で外箱の壁部を補強することを開示してい
る。その他、電槽を一対の抑え板で積層方向に挟み、両
抑え板をベルトや長ボルトなどで締め付けることも提案
されている。
In Japanese Patent Laid-Open No. 2-306533, in order to prevent the wall portion of the outer box from expanding due to an increase in the width of each battery cell in the stacking direction, a high-strength reinforcing plate that is insert-molded is used. Reinforcing the walls of the box is disclosed. In addition, it has been proposed that the battery case be sandwiched between a pair of holding plates in the stacking direction and both holding plates be fastened with a belt or long bolts.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記した
各セル室cの積層方向寸法Wcを電池セル2の体積増大
を見込んで予め大きく決定する場合には外箱11の積層
方向寸法が増加し、総合的な体積エネルギ密度がその
分、低下するという不具合を生じる。通常、水素二次電
池からなる電池セル2の積層方向幅は非拘束状態すなわ
ち積層方向の変位を規制しない条件で充電前後において
1.5倍変化する。
However, when the dimension Wc in the stacking direction of each cell chamber c is determined to be large in advance in consideration of the increase in the volume of the battery cell 2, the dimension in the stacking direction of the outer box 11 increases, and The problem is that the volumetric energy density is reduced accordingly. Usually, the width in the stacking direction of the battery cell 2 made of a hydrogen secondary battery changes 1.5 times before and after charging under an unrestrained state, that is, under the condition that displacement in the stacking direction is not regulated.

【0006】また上記公報の技術では、補強板を金属板
とするのが一般的であるが、その結果、電池セルと補強
板との間が短絡する不安が生じ、また、外箱の製造が複
雑化する。更に、抑え板及びベルトや長ボルトを用いる
場合も、抑え板の分だけ体積エネルギー密度が低下し、
かつ組立工程及び構成が複雑となる。
Further, in the technique of the above publication, the reinforcing plate is generally a metal plate, but as a result, there is a fear that a short circuit will occur between the battery cell and the reinforcing plate, and the outer box will not be manufactured. It gets complicated. Furthermore, when using a restraint plate, a belt or long bolts, the volume energy density is reduced by the amount of the restraint plate,
Moreover, the assembling process and the structure are complicated.

【0007】本発明はこのような問題に鑑みなされたも
のであり、体積エネルギ密度の向上を実現でき、製造が
容易な二次電池の電槽を提供することを、その解決すべ
き課題としている。
The present invention has been made in view of the above problems, and it is an object to be solved to provide a battery case for a secondary battery which can realize an improvement in volumetric energy density and is easy to manufacture. .

【0008】[0008]

【課題を解決するための手段】本発明の二次電池の電槽
は、電気絶縁性を有する角形の外箱と、周辺が前記角箱
に固定されるとともに前記角箱内を仕切って3以上のセ
ル室を一列に形成する互いに平行な平板状の内部隔壁と
を有し、前記各セル室に同形の電池セルを個別に収容す
る二次電池の電槽において、積層方向端部に位置する前
記セル室の積層方向幅は、中央部の前記セル室の積層方
向幅より大きく、かつ、前記電池セルの非拘束状態での
最大膨張時の積層方向幅より小さいことを特徴としてい
る。
A battery case for a secondary battery according to the present invention comprises a rectangular outer box having electrical insulation properties, a periphery of which is fixed to the rectangular box, and the inside of the rectangular box is divided into three or more. In the battery case of the secondary battery, which has parallel plate-like internal partition walls that form the cell chambers in a row in parallel with each other and individually accommodates the battery cells of the same shape in each cell chamber, and is located at the end portion in the stacking direction. The width of the cell chamber in the stacking direction is larger than the width of the cell chamber in the center part in the stacking direction and smaller than the width of the battery cell in the stacking direction at the time of maximum expansion in the unrestrained state.

【0009】[0009]

【作用】内部隔壁で外箱内部を仕切って一列に並ぶ3以
上のセル室が形成される。各セル室には互いに同形の電
池セルが各一個づつ収容され、各電池セルの正、負極は
電池セル配列方向に積層されている。ここで、端部のセ
ル室の積層方向幅は、中央部のセル室の積層方向幅より
大きく、かつ、各電池セルの非拘束状態での積層方向幅
の最大値より小さくされる。
The inner partition wall divides the inside of the outer box to form three or more cell chambers arranged in a line. Battery cells of the same shape are housed in each cell chamber, and the positive and negative electrodes of each battery cell are stacked in the battery cell array direction. Here, the width of the end cell chamber in the stacking direction is set to be larger than the width of the center cell chamber in the stacking direction and smaller than the maximum value of the stacking direction width of each battery cell in the unrestrained state.

【0010】詳細な説明は後述するが概略的に説明する
と、充電により両端の電池セルはセル室の積層方向幅が
比較的大きいので積層方向へ多少膨張するが、両端のセ
ル室の積層方向幅が電池セルの積層方向幅の最大値より
小さいので、両端の電池セルの膨張は一部抑制され、そ
の分、外箱の壁部に積層方向外側へ、最外側の内部隔壁
に積層方向内側へ、第1の力で押す。
Although a detailed description will be given later, a brief description will be given. Although the battery cells at both ends have a relatively large width in the stacking direction of the cell chambers due to charging, they slightly expand in the stacking direction. Is smaller than the maximum width of the battery cells in the stacking direction, the expansion of the battery cells at both ends is partly suppressed, and to that extent, the wall part of the outer box is outwardly in the stacking direction and the outermost inner partition wall is inwardly in the stacking direction. , Push with the first force.

【0011】一方、残りの電池セルはより狭いセル室に
収容されているので充電による積層方向への膨張はより
一層規制され、その結果、これら残りの電池セルは、当
接する内部隔壁を積層方向へ上記第1の力より強力な第
2の力で押す。以上の結果、外箱の壁部は第1の力で積
層方向外側へ押され、最外側の内部隔壁は第1の力と第
2の力の差で積層方向外側へ押され、他の内部隔壁は両
側から第2の力で押され、結局、外箱の壁部が第1の力
により積層方向外側へ撓み、最外側の内部隔壁が第1の
力と第2の力の差で積層方向外側へ撓む。
On the other hand, since the remaining battery cells are accommodated in a narrower cell chamber, the expansion in the stacking direction due to charging is further restricted, and as a result, these remaining battery cells have the internal partition walls in contact with each other in the stacking direction. Push with a second force stronger than the above first force. As a result, the wall portion of the outer box is pushed outward by the first force in the stacking direction, and the outermost inner partition wall is pushed outward by the difference between the first force and the second force in the stacking direction. The partition wall is pushed by the second force from both sides, and eventually the wall portion of the outer box is bent outward by the first force in the stacking direction, and the outermost inner partition wall is stacked by the difference between the first force and the second force. Bend outward in the direction.

【0012】[0012]

【発明の効果】以上説明したように本発明の二次電池の
電槽では、端部のセル室の積層方向幅を、中央部のセル
室の積層方向幅より大きく、かつ、電池セルの非拘束状
態での最大膨張時の積層方向幅より小さく設定している
ので、電槽の上記積層方向における寸法を短縮して体積
エネルギー密度を向上することができる。
As described above, in the battery case of the secondary battery of the present invention, the width of the end cell chamber in the stacking direction is larger than the width of the center cell chamber in the stacking direction, and Since it is set to be smaller than the width in the stacking direction at the time of maximum expansion in the restrained state, the dimension in the stacking direction of the battery case can be shortened and the volume energy density can be improved.

【0013】更に、セル室縮小に伴って外箱の壁部にか
かる圧力を最外側の内部隔壁により分担しているので、
外箱の壁部の補強が不要となり、また製造工程の簡単化
を図ることができる。
Further, since the pressure applied to the wall portion of the outer box as the cell chamber is reduced is shared by the outermost inner partition wall,
It is not necessary to reinforce the wall of the outer box, and the manufacturing process can be simplified.

【0014】[0014]

【実施例】本発明の電槽を採用する水素二次電池の模式
断面図を図1に示す。この電池は、角形の電槽1と、電
槽1内に収容される電池セル2と、電槽1に設けられた
正極ターミナル3及び負極ターミナル4とを備え、各電
池セル2の正、負極(図示せず)は直列接続され、右端
の電池セル2の正極(図示せず)が正極ターミナル3に
電気接続され、左端の電池セル2の負極(図示せず)が
負極ターミナル4に電気接続されている。
EXAMPLE A schematic cross-sectional view of a hydrogen secondary battery adopting the battery case of the present invention is shown in FIG. This battery includes a prismatic battery case 1, a battery cell 2 housed in the battery case 1, a positive electrode terminal 3 and a negative electrode terminal 4 provided in the battery case 1, and the positive and negative electrodes of each battery cell 2 are connected. (Not shown) are connected in series, the positive electrode (not shown) of the rightmost battery cell 2 is electrically connected to the positive electrode terminal 3, and the negative electrode (not shown) of the leftmost battery cell 2 is electrically connected to the negative electrode terminal 4. Has been done.

【0015】電槽1は、電気絶縁性の樹脂からなる角形
の外箱11と、外箱11の内部を一列に並んだ10個の
セル室c1〜c10に区画する互いに平行な8枚の内部
隔壁12a〜12iとからなり、各セル室c1〜c10
内に水素二次電池からなる電池セル2が個別に収容され
ている。両端のセル室c1、c10の積層方向幅は30
mm、残り8つのセル室c2〜c9の積層方向幅は20
mm、外箱11の壁部11aの厚さは2mm、内部隔壁
12a〜12iの厚さは2mmとなっている。
The battery case 1 is composed of a rectangular outer box 11 made of an electrically insulating resin and eight parallel inner sections which divide the inside of the outer box 11 into ten cell chambers c1 to c10 arranged in a line. Comprising partition walls 12a to 12i, each cell chamber c1 to c10
The battery cells 2 made of hydrogen secondary batteries are individually housed therein. The width in the stacking direction of the cell chambers c1 and c10 at both ends is 30.
mm, the width in the stacking direction of the remaining eight cell chambers c2 to c9 is 20
mm, the thickness of the wall portion 11a of the outer box 11 is 2 mm, and the thickness of the inner partition walls 12a to 12i is 2 mm.

【0016】電槽1は実際には以下のように作製され
る。まず、外箱11の壁部11aと底部11bと内部隔
壁12a〜12iとを一体成形した上端開口の箱部と、
内部隔壁12a〜12iが嵌入可能な平行スリットを有
する平蓋11cとを準備し、この箱部内に電池セル2及
び各種電気接続のための電気接続部材(図示せず)を収
容し、上記平蓋11cを上記箱部の上端開口に被せ、平
蓋の上記平行スリットに各内部隔壁12a〜12iを個
別に嵌入させ、必要箇所を溶着させ、これにより密閉状
態の電槽1が形成される。したがって、外箱11は密閉
角箱形状となっており、各内部隔壁12a〜12iの全
周縁は外箱11の壁部11a、底部11b、平蓋11c
に固定されている。
The battery case 1 is actually manufactured as follows. First, a box portion having an upper opening formed by integrally molding the wall portion 11a, the bottom portion 11b, and the internal partition walls 12a to 12i of the outer box 11,
A flat lid 11c having parallel slits into which the internal partition walls 12a to 12i can be fitted is prepared, and the battery cells 2 and electrical connection members (not shown) for various electrical connections are housed in the box portion. 11 c is covered on the upper end opening of the box portion, the internal partition walls 12 a to 12 i are individually fitted into the parallel slits of the flat lid, and the necessary portions are welded, whereby the sealed battery case 1 is formed. Therefore, the outer box 11 has a closed rectangular box shape, and the entire peripheral edges of the inner partition walls 12a to 12i are the wall portion 11a, the bottom portion 11b, and the flat lid 11c of the outer box 11.
It is fixed to.

【0017】各電池セル2は、正、負極(図示せず)を
イオン透過性及び電気絶縁性のセパレータ(図示せず)
を介して積層してなり、これら正、負極の積層方向と電
池セル2の配列方向とは一致している。電池セル2は、
電池セル2の電槽1収容前の積層方向幅は約20mm、
充電完了直後の積層方向幅は約30mmとなっている。
更に詳しく説明すると、上記正極はニッケルからなるエ
キスパンドメタルを集電体として、これに水酸化ニッケ
ルペーストを圧着して形成した。上記負極は、MmNi
3.5 Co0.7 Al0.8 の組成の水素吸蔵合金粉末を機械
的に100メッシュ以下の粉末とし、市販のメッキ溶液
を用いてメッキ量が総量の20%となるように無電界銅
メッキを行い、この銅メッキ合金粉末25gに1.3g
のPTFEディスパ−ジョン(ダイキン工業株式会社製
のD−1)を加えて混練りし、シ−ト状に予備成形した
後、ニッケルエキスパンドメタルの両面に摂氏300
度、300kg/cm2 で圧着したものである。これら
正、負極はポリプロピレン不織布からなるセパレ−タ
(図示せず)を挟んで巻き、各電池セル2を作製した。
Each battery cell 2 has a positive and negative electrode (not shown) and an ion-permeable and electrically insulating separator (not shown).
The positive and negative electrodes are stacked with the battery cells 2 arranged in the same direction. Battery cell 2 is
The width of the battery cell 2 in the stacking direction before being housed in the battery case 1 is about 20 mm,
The width in the stacking direction immediately after the completion of charging is about 30 mm.
More specifically, the positive electrode was formed by using an expanded metal made of nickel as a current collector and press-bonding nickel hydroxide paste thereto. The negative electrode is MmNi
A hydrogen storage alloy powder having a composition of 3.5 Co 0.7 Al 0.8 is mechanically made into a powder of 100 mesh or less, and electroless copper plating is performed using a commercially available plating solution so that the plating amount becomes 20% of the total amount. 1.3g to 25g of plating alloy powder
PTFE dispersion (D-1 manufactured by Daikin Industries, Ltd.) was added, kneaded, and preformed into a sheet shape, and then 300 degrees Celsius on both surfaces of the nickel expanded metal.
The pressure is 300 kg / cm 2 . Each of the positive and negative electrodes was wound with a separator (not shown) made of polypropylene nonwoven fabric sandwiched therebetween to produce each battery cell 2.

【0018】上記のように作製し、電解液として5Nの
KOH+1NのLiOH水溶液を用いて公称100A
h、12Vの角形組電池を作製した。以下、本実施例の
特徴をなす作用効果を説明する。充電により負極が水素
を吸蔵すると、各電池セル2は膨張しようとする。電池
セル2は非拘束状態では自由な膨張により体積が増大
し、強力な外力により加圧された状態では負極内部の空
隙が減少して体積増加はほとんど生じず、弱い外力によ
り加圧された状態では負極内部の空隙が多少減少すると
ともに、体積も多少増大する。結局、充電後の電池セル
2の体積増加は加圧力に正の相関を有する。
[0018] Prepared as described above and using a 5N KOH + 1N LiOH aqueous solution as an electrolyte, a nominal 100A
A prismatic battery pack of h and 12 V was manufactured. Hereinafter, the function and effect that characterize the present embodiment will be described. When the negative electrode occludes hydrogen by charging, each battery cell 2 tries to expand. When the battery cell 2 is unrestrained, its volume increases due to free expansion, and when it is pressurized by a strong external force, the voids inside the negative electrode decrease and the volume hardly increases, and it is pressurized by a weak external force. Then, the voids inside the negative electrode are slightly reduced and the volume is also slightly increased. After all, the increase in the volume of the battery cell 2 after charging has a positive correlation with the applied pressure.

【0019】この実施例では、両端の電池セル2は積層
方向幅が比較的大きいセル室c1、c10に収容されて
いるために積層方向へ膨張し、この膨張により外箱11
の壁部11aは積層方向外側へ力f1で押され、最外側
の内部隔壁12a、12iは積層方向内側へ力f1で押
され、外箱11の壁部11aは当接する電池セル2を積
層方向内側へ力f1で押し、力がバランスする。
In this embodiment, since the battery cells 2 at both ends are accommodated in the cell chambers c1 and c10 having a relatively large width in the stacking direction, the battery cells 2 expand in the stacking direction, and this expansion causes the outer case 11 to expand.
11a is pushed outward by the force f1 in the stacking direction, the outermost inner partition walls 12a, 12i are pushed inward by the force f1 in the stacking direction, and the wall 11a of the outer box 11 pushes the abutting battery cell 2 in the stacking direction. Push inward with force f1 to balance the forces.

【0020】一方、上記した最外側の内部隔壁12a、
12iに着目すると、この最外側の内部隔壁12a、1
2iは、上記したように最外側の電池セル2から積層方
向内側へ力f1で押されるとともに、セル室c2、c9
の電池セル2から積層方向外側へ力f2で押される。セ
ル室c2、c9の積層方向幅はセル室c1、c10より
狭小であるので、力f2は力f1より大きい。したがっ
て、内部隔壁12a、12iは力の差f2−f1により
積層方向外側へ変形し、この変形により内部隔壁12
a、12iは内側の電池セル2を積層方向内側へ力f2
−f1で押し、力はバランスする。内部隔壁12a、1
2iの積層方向外側への変形によりセル室c2〜c9は
僅かに拡張され、それによりセル室c2〜c9内の電池
セル2の積層方向幅は僅かに増大する。
On the other hand, the above-mentioned outermost internal partition wall 12a,
Focusing on 12i, the outermost inner partition walls 12a, 1
2i is pushed from the outermost battery cells 2 inward in the stacking direction by force f1 as described above, and the cell chambers c2, c9
The battery cell 2 is pushed outward by the force f2 in the stacking direction. Since the width of the cell chambers c2 and c9 in the stacking direction is smaller than that of the cell chambers c1 and c10, the force f2 is larger than the force f1. Therefore, the inner partition walls 12a and 12i are deformed outward due to the force difference f2-f1 in the stacking direction.
a and 12i are forces f2 to the inner battery cell 2 inward in the stacking direction.
-Press f1 to balance the force. Internal partition 12a, 1
The cell chambers c2 to c9 are slightly expanded by the deformation of 2i to the outside in the stacking direction, so that the width of the battery cells 2 in the cell chambers c2 to c9 in the stacking direction is slightly increased.

【0021】次に、内部隔壁12b、12hに着目する
と、内部隔壁12b、12hは、外側の電池セル2から
積層方向内側へ力f2で押されるとともに、セル室c
3、c8の電池セル2から積層方向外側へ力f3で押さ
れる。セル室c2、c9は上記したように僅かに積層方
向外側へ変形するために、力f2は力f3より僅かに小
さく、その結果、内部隔壁12b、12hも僅かに積層
方向外側に変形する。
Next, paying attention to the inner partition walls 12b and 12h, the inner partition walls 12b and 12h are pushed by the force f2 from the outer battery cells 2 toward the inner side in the stacking direction and the cell chamber c.
It is pushed by the force f3 from the battery cells 3 and c8 to the outside in the stacking direction. Since the cell chambers c2 and c9 are slightly deformed outward in the stacking direction as described above, the force f2 is slightly smaller than the force f3, and as a result, the internal partition walls 12b and 12h are also slightly deformed outward in the stacking direction.

【0022】以下同様に、内部隔壁12c〜12gは積
層方向外側へ僅かに変形するが、残りの内部隔壁12c
〜12gの変形は少なく、無視してもよい。以上の結
果、内部隔壁12c〜12gには充電後の両側の電池セ
ル2から積層方向反対側へほとんど等しい力で押圧さ
れ、その結果として、残りのセル室c3〜c8内の電池
セル2の積層方向幅はほとんど増加しない。
Similarly, the inner partition walls 12c to 12g are slightly deformed outward in the stacking direction, but the remaining inner partition walls 12c.
The deformation of ~ 12g is small and can be ignored. As a result, the internal partition walls 12c to 12g are pressed from the battery cells 2 on both sides after charging to the opposite sides in the stacking direction with almost equal force, and as a result, the stacking of the battery cells 2 in the remaining cell chambers c3 to c8 is performed. The direction width hardly increases.

【0023】一方、セル室c2、c9は内部隔壁12
a、12iの積層方向外側への変形により積層方向に拡
幅され、結局、内部隔壁12a、12i及び外箱11の
壁部11aが主として電池セル2の積層方向押圧力を担
持する。したがって本実施例では、上記力が全て外箱1
1の壁部11aに掛かるのを防止でき、外箱11の壁部
11aを補強することなく、電槽1の積層方向寸法を縮
小することができる。 (試験)上記実施例の電池と、下記比較例1、2の電池
について体積エネルギ密度と重量エネルギ密度を調べ
た。
On the other hand, the cell chambers c2 and c9 have internal partition walls 12
When a and 12i are deformed outward in the stacking direction, they are widened in the stacking direction, and eventually the inner partition walls 12a and 12i and the wall portion 11a of the outer box 11 mainly carry the pressing force in the stacking direction of the battery cells 2. Therefore, in this embodiment, all the above forces are applied to the outer case 1.
It is possible to prevent it from hanging on the wall portion 11a of No. 1 and to reduce the dimension in the stacking direction of the battery case 1 without reinforcing the wall portion 11a of the outer box 11. (Test) The volume energy density and the weight energy density of the battery of the above example and the batteries of the following comparative examples 1 and 2 were examined.

【0024】ただし、比較例1は実施例1の電池におい
て、各セル室cの積層方向幅を全て30mmとしたもの
である。比較例2は実施例1の電池において、各セル室
cの積層方向幅を20mmとし、更に、外箱11を積層
方向両側から厚さ15mmのABS樹脂板で挟み、これ
らABS樹脂板をベルトで締結したものである。図2及
び図3に示すように、体積エネルギ密度及び重量エネル
ギ密度の点で、本実施例の電池は最も優れていることが
わかった。 (変形態様)上記実施例では、各セル室cの内、最外側
のセル室cの積層方向幅だけを拡大したが、外側のセル
室cから内側のセル室cに向けて積層方向幅を順次縮小
してゆけば、任意の内部隔壁12を挟む外側の電池セル
2と内側の電池セル2との積層方向押圧力に差が生じ、
その結果、各内部隔壁12が外箱11の壁部11aとと
もに電池セル2の積層方向外方への押圧力を分担して担
持することとなり、外箱11の壁部11aへの上記押圧
力の集中を防ぐとともに、一部の内部隔壁12への上記
押圧力の集中も防ぐことができる。
However, Comparative Example 1 is the battery of Example 1 in which the width of each cell chamber c in the stacking direction is 30 mm. In Comparative Example 2, in the battery of Example 1, the width of each cell chamber c in the stacking direction was set to 20 mm, the outer box 11 was further sandwiched from both sides in the stacking direction by ABS resin plates having a thickness of 15 mm, and these ABS resin plates were separated by a belt. It has been concluded. As shown in FIGS. 2 and 3, it was found that the battery of this example was the best in terms of volume energy density and weight energy density. (Modification) In the above embodiment, only the outermost cell chamber c in each cell chamber c is expanded in the stacking direction, but the outermost cell chamber c is expanded in the stacking direction width toward the inner cell chamber c. If they are gradually reduced, a difference occurs in the pressing force in the stacking direction between the outer battery cells 2 and the inner battery cells 2 sandwiching any internal partition wall 12,
As a result, each internal partition wall 12 and the wall portion 11a of the outer box 11 share and carry the pressing force outward in the stacking direction of the battery cells 2, and the above-mentioned pressing force to the wall portion 11a of the outer box 11 is held. It is possible to prevent concentration and also to prevent concentration of the pressing force on some of the internal partition walls 12.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図、FIG. 1 is a sectional view showing an embodiment of the present invention,

【図2】図1の電池の試験結果を示す特性図、2 is a characteristic diagram showing test results of the battery of FIG. 1,

【図3】図1の電池の試験結果を示す特性図、FIG. 3 is a characteristic diagram showing test results of the battery of FIG.

【図4】従来の電池の断面図、FIG. 4 is a cross-sectional view of a conventional battery,

【符号の説明】[Explanation of symbols]

1は電槽、2は電池セル、11は外箱、11aは外箱の
壁部、12は内部隔壁、cはセル室、
1 is a battery case, 2 is a battery cell, 11 is an outer box, 11a is a wall of the outer box, 12 is an internal partition wall, c is a cell chamber,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気絶縁性を有する角形の外箱と、周辺が
前記角箱に固定されるとともに前記角箱内を仕切って3
以上のセル室を一列に形成する互いに平行な平板状の内
部隔壁とを有し、前記各セル室に同形の電池セルを個別
に収容する二次電池の電槽において、 積層方向端部に位置する前記セル室の積層方向幅は、積
層方向中央部の前記セル室の積層方向幅より大きく、か
つ、前記電池セルの非拘束状態での最大膨張時の積層方
向幅より小さいことを特徴とする二次電池の電槽。
1. A rectangular outer box having electrical insulation, a peripheral portion of which is fixed to the rectangular box and a partitioning inside the rectangular box.
Positioned at the end in the stacking direction in the battery case of a secondary battery that has parallel plate-like internal partition walls that form the above-mentioned cell chambers in a row and individually accommodates the same-shaped battery cells in each cell chamber. The width in the stacking direction of the cell chamber is larger than the width in the stacking direction of the cell chamber at the central portion in the stacking direction and smaller than the width in the stacking direction at the time of maximum expansion of the battery cells in the unrestrained state. Rechargeable battery case.
JP5188385A 1993-07-29 1993-07-29 Secondary battery jar Pending JPH0745258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5188385A JPH0745258A (en) 1993-07-29 1993-07-29 Secondary battery jar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188385A JPH0745258A (en) 1993-07-29 1993-07-29 Secondary battery jar

Publications (1)

Publication Number Publication Date
JPH0745258A true JPH0745258A (en) 1995-02-14

Family

ID=16222705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188385A Pending JPH0745258A (en) 1993-07-29 1993-07-29 Secondary battery jar

Country Status (1)

Country Link
JP (1) JPH0745258A (en)

Similar Documents

Publication Publication Date Title
US6387567B1 (en) Secondary battery
KR100866767B1 (en) Safety Kit for Secondary Battery
KR101651712B1 (en) Secondary Battery
CN107710447B (en) Stackable battery cell and battery module including the same
EP3424094B1 (en) Battery pack
CN106025373A (en) Prismatic secondary battery and assembled battery using the same
US10468711B2 (en) Electrode plate, layered electrode group, and battery
KR101530803B1 (en) Secondary battery
JPH0917441A (en) Square battery having folded electrode plate therein
KR20120051424A (en) Lithium secondary battery and manufacturing method of the same
CN109075269A (en) multi-chamber battery module
KR20150137840A (en) Unit battery module and Battery module having the same
JP2019204799A (en) Square secondary battery and battery pack using the same
KR102117076B1 (en) Battery Module Assembly
JP4313992B2 (en) Design method for prismatic secondary battery
US10454128B2 (en) Electric storage apparatus and method of manufacturing electric storage apparatus
US10797272B2 (en) Electrode stack restraint
JP3923259B2 (en) Battery manufacturing method
JPH0745258A (en) Secondary battery jar
KR100615153B1 (en) Lithium secondary battery
KR20000076959A (en) Rectangular battery
JP2001210293A (en) Assembled battery
CN108140877B (en) Secondary battery
JP3695868B2 (en) Square alkaline storage battery
KR101333913B1 (en) Square lithium type cell-roll structrue