JPH0745141A - Method for forming film using laser ablation technique - Google Patents

Method for forming film using laser ablation technique

Info

Publication number
JPH0745141A
JPH0745141A JP5191232A JP19123293A JPH0745141A JP H0745141 A JPH0745141 A JP H0745141A JP 5191232 A JP5191232 A JP 5191232A JP 19123293 A JP19123293 A JP 19123293A JP H0745141 A JPH0745141 A JP H0745141A
Authority
JP
Japan
Prior art keywords
film
substrate
laser
excimer laser
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191232A
Other languages
Japanese (ja)
Inventor
Shigeru Okuda
繁 奥田
Noriyuki Yoshida
典之 葭田
Norikata Hayashi
憲器 林
Kozo Fujino
剛三 藤野
Chikushi Hara
築志 原
Hideo Ishii
英雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP5191232A priority Critical patent/JPH0745141A/en
Publication of JPH0745141A publication Critical patent/JPH0745141A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a film having improved in-plane orientation characteristics, by irradiating a film with an exima laser from a direction defining 5 deg. to 85 deg. with respect to the film surface during or after film formation. CONSTITUTION:Laser light is applied onto a target and the substance that splashes from the target surface is deposited on a substrate to thereby form a film. During or after film formation, excimer laser is applied onto the film from a direction defining 5 deg. to 85 deg. with respect to the film surface. As a result, the film substance is grown so that the SiC direction may become perpendicular to the substrate surface, and within the substrate surface as well, the film substance orientation also occurs. Thereafter, when the laser ablation technique is used, an oxide superconductive film is obtained which has improved in-plane orientation characteristic and improved critical current density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザアブレーション
法を用いた成膜方法に関するものであり、特に、面内配
向した膜を、レーザアブレーション法を用いて成膜する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method using a laser ablation method, and more particularly to a method for forming an in-plane oriented film by a laser ablation method.

【0002】[0002]

【従来の技術】近年、レーザ装置の発達は目覚ましいも
のがあり、それを用いたレーザアブレーション法による
成膜も盛んに行なわれている。レーザアブレーション法
では、ターゲットにレーザを照射することにより、ター
ゲットの照射部からターゲットを構成する物質の粒子が
原子および粒子の状態で飛散し、この飛散した粒子が基
板に到達して、基板上に成膜が行なわれる。
2. Description of the Related Art In recent years, the development of a laser device has been remarkable, and film formation by a laser ablation method using it has been actively performed. In the laser ablation method, by irradiating the target with a laser, the particles of the substance constituting the target are scattered in the form of atoms and particles from the irradiation part of the target, and these scattered particles reach the substrate and are deposited on the substrate. A film is formed.

【0003】レーザアブレーション法による成膜は、ス
パッタ法、真空蒸着法、CVD法等の他の気相法に比較
して、成膜速度が非常に速いため、工業的に生産速度を
高めることができる。また、レーザアブレーション法に
よる成膜は、他の気相法に比較して、成膜雰囲気が比較
的自由に変えられるため、酸化物、窒化物等の成膜に適
している。
The film formation by the laser ablation method has a very high film formation rate as compared with other vapor phase methods such as the sputtering method, the vacuum vapor deposition method and the CVD method, and therefore the production rate can be industrially increased. it can. Further, the film formation by the laser ablation method is suitable for film formation of oxides, nitrides, etc. because the film formation atmosphere can be changed relatively freely as compared with other vapor phase methods.

【0004】このようなことから、最近、レーザアブレ
ーション法は、工業的な生産に採用されることが非常に
多くなってきている。
For these reasons, the laser ablation method has recently been very often used for industrial production.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
レーザアブレーション法により成膜された膜は、面内配
向性を得ることが困難な場合があった。特に、多結晶基
板に成膜を行なう場合、レーザアブレーション法により
成膜された膜は多結晶となり、たとえ結晶のa軸、b
軸、c軸のうち1つの方向が基板に垂直になっていたと
しても、面内配向はないのが通常であった。
However, it may be difficult to obtain in-plane orientation of the film formed by the laser ablation method described above. In particular, when a film is formed on a polycrystalline substrate, the film formed by the laser ablation method becomes polycrystalline, and even if the a-axis and b-axis of the crystal are
Even if one of the axis and the c-axis was perpendicular to the substrate, there was usually no in-plane orientation.

【0006】一方、近年発見された酸化物高温超電導物
質は、結晶粒界の存在により、臨界電流密度は大きくて
以下する。したがって、高い臨界電流密度を得ようとす
る場合、単結晶にできるだけ近いことが望ましい。しか
しながら、従来の技術で多結晶基板上にレーザアブレー
ション法により成膜された膜は、たとえばY1 Ba2
3 7-x 超電導膜の場合、c軸が基板に垂直になって
いる、いわゆるc軸配向は得られるが、a軸あるいはb
軸の方向は、基板面に平行ではあるが面内の方向はラン
ダムであった。したがって、得られた超電導膜の臨界電
流密度も低く、77Kにおいてせいぜい5×104 A/
cm2 という値しか得ることができなかった。
On the other hand, the oxide high-temperature superconducting material discovered in recent years has a large critical current density due to the existence of crystal grain boundaries, which is below. Therefore, when trying to obtain a high critical current density, it is desirable to be as close as possible to a single crystal. However, a film formed by a laser ablation method on a polycrystalline substrate by a conventional technique is, for example, Y 1 Ba 2 C.
In the case of u 3 O 7-x superconducting film, the so-called c-axis orientation in which the c-axis is perpendicular to the substrate is obtained, but the a-axis or b-axis is obtained.
The direction of the axis was parallel to the substrate surface, but the in-plane direction was random. Therefore, the critical current density of the obtained superconducting film is also low, and is 5 × 10 4 A / 77 K at 77K.
I could only get a value of cm 2 .

【0007】この発明の目的は、上述の問題点を解決
し、面内配向している膜を成膜することができる、レー
ザアブレーション法による成膜方法を提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a film forming method by a laser ablation method which can form a film having in-plane orientation.

【0008】また、この発明のさらなる目的は、面内配
向性を向上させることにより、臨界電流密度の向上した
1 Ba2 Cu3 7-x 酸化物超電導膜を製造すること
ができる、レーザアブレーション法による成膜方法を提
供することにある。
A further object of the present invention is to improve the in-plane orientation to produce a Y 1 Ba 2 Cu 3 O 7-x oxide superconducting film having an improved critical current density. It is to provide a film forming method by an ablation method.

【0009】[0009]

【課題を解決するための手段】請求項1の発明によるレ
ーザアブレーション法を用いた成膜方法は、ターゲット
にレーザを照射することによりターゲット表面から飛散
する物質を基板上に堆積させることにより成膜を行なう
レーザアブレーション法を用いた成膜方法であって、成
膜中または成膜後に、膜面に対して5゜以上85゜以下
の方向からエキシマレーザを照射することを特徴として
いる。
A film forming method using a laser ablation method according to the invention of claim 1 forms a film by depositing a substance scattered from a target surface on a substrate by irradiating the target with a laser. The film forming method using the laser ablation method is characterized in that the film surface is irradiated with an excimer laser from a direction of 5 ° or more and 85 ° or less.

【0010】請求項2の発明によるレーザアブレーショ
ン法を用いた成膜方法は、ターゲットにレーザを照射す
ることによりターゲット表面から飛散する物質を基板上
に堆積させることにより成膜を行なうレーザアブレーシ
ョン法を用いた成膜方法であって、成膜前、基板に対し
て5゜以上85゜以下の方向からエキシマレーザを照射
することを特徴としている。
The film forming method using the laser ablation method according to the second aspect of the present invention is a laser ablation method for forming a film by irradiating a target with a laser to deposit a substance scattered from the target surface on a substrate. The film forming method used is characterized in that the film is irradiated with an excimer laser from a direction of 5 ° or more and 85 ° or less before film formation.

【0011】請求項3の発明によるレーザアブレーショ
ン法を用いた成膜方法は、ターゲットにレーザを照射す
ることによりターゲット表面から飛散する物質を基板上
に堆積させることによりY1 Ba2 Cu3 7-x 酸化物
超電導膜の成膜を行なうレーザアブレーション法を用い
た成膜方法であって、成膜前、成膜中または成膜後に、
基板または膜面に対して5゜以上85゜以下の方向から
エキシマレーザを照射することを特徴としている。
In the film forming method using the laser ablation method according to the third aspect of the present invention, the target is irradiated with a laser to deposit a substance scattered from the target surface on the substrate, and Y 1 Ba 2 Cu 3 O 7 is deposited. -x is a film forming method using a laser ablation method for forming an oxide superconducting film, which is performed before, during or after film formation.
The feature is that the substrate or the film surface is irradiated with an excimer laser from a direction of 5 ° or more and 85 ° or less.

【0012】請求項4の発明によるレーザアブレーショ
ン法を用いた成膜方法は、ターゲットにレーザを照射す
ることによりターゲット表面から飛散する物質を基板上
に堆積させることにより基板上に中間層を成膜し、さら
に中間層上にY1 Ba2 Cu 3 7-x 酸化物超電導膜の
成膜を行なうレーザアブレーション法を用いた成膜方法
であって、中間層の成膜前、成膜中または成膜後に、基
板または膜面に対して5゜以上85゜以下の方向からエ
キシマレーザを照射することを特徴としている。
Laser ablation according to the invention of claim 4
The film-forming method using the
The material that scatters from the target surface is
To form an intermediate layer on the substrate by
On the middle layer Y1Ba2Cu 3O7-xOxide superconducting film
Film forming method using laser ablation method for forming film
Of the base layer before, during, or after the formation of the intermediate layer.
From the direction of 5 ° or more and 85 ° or less with respect to the plate or film surface
It is characterized by irradiating a xima laser.

【0013】[0013]

【作用】この発明によれば、成膜前、成膜中または成膜
後に、基板または膜面に対して5゜以上85゜以下の方
向からエキシマレーザを照射している。そのため、面内
配向している膜を成膜することができる。
According to the present invention, the excimer laser is irradiated onto the substrate or the film surface from a direction of 5 ° or more and 85 ° or less before, during, or after the film formation. Therefore, a film having in-plane orientation can be formed.

【0014】エキシマレーザを照射する角度が5゜未満
であれば、結晶の表面にレーザがほぼ平行に照射される
ことになり、ある一定の方位の結晶が削り取られる作用
がなくなり面内配向が得られなくなる。また、エキシマ
レーザを照射する角度が85゜より大きいと、結晶面に
垂直に近くなり、レーザの照射する方向に垂直な面すな
わち基板面内で結晶が回転するため、面内配向が得られ
なくなる。
When the irradiation angle of the excimer laser is less than 5 °, the surface of the crystal is irradiated with the laser in a substantially parallel manner, and the crystal having a certain azimuth is not scraped off so that in-plane orientation can be obtained. I will not be able to. Further, if the angle of irradiation with the excimer laser is larger than 85 °, it becomes close to perpendicular to the crystal plane, and the crystal rotates in the plane perpendicular to the direction of laser irradiation, that is, the substrate plane, so that in-plane orientation cannot be obtained. .

【0015】また、基板が多結晶である場合であって
も、基板に所定の方向からエキシマレーザを照射する
と、一定の方向に基板面が削り取られ、成膜時に多結晶
基板があたかも単結晶基板の状態になったかのように薄
膜の成膜が進み、薄膜は単結晶状態となり、面内配向性
が向上する。
Further, even when the substrate is polycrystalline, when the substrate is irradiated with an excimer laser from a predetermined direction, the substrate surface is scraped off in a certain direction, and the polycrystalline substrate is as if a single crystal substrate at the time of film formation. The thin film is formed as if the state was changed to the above state, the thin film becomes a single crystal state, and the in-plane orientation is improved.

【0016】一方、Y系、Bi系、Tl系酸化物超電導
薄膜では、結晶のc軸が基板面に垂直になるc軸配向は
比較的容易に得ることができるが、a軸、b軸は基板面
内でランダムに配向しており、十分な臨界電流密度を得
ることができなかった。高い臨界電流密度を得るために
は、a軸、b軸はそれぞれ直交しているか、同一方向を
向いていなければならない。この発明によれば、成膜時
に膜面に所定の方向からエキシマレーザを照射してい
る。そのため、c軸配向した膜であって、かつ、基板面
内においてa軸、b軸が直交した面内配向を有する膜を
得ることができ、その結果、膜の臨界電流密度が高くな
る。
On the other hand, in Y-based, Bi-based, and Tl-based oxide superconducting thin films, the c-axis orientation in which the c-axis of the crystal is perpendicular to the substrate surface can be obtained relatively easily, but the a-axis and the b-axis are It was randomly oriented in the plane of the substrate, and a sufficient critical current density could not be obtained. In order to obtain a high critical current density, the a-axis and the b-axis must be orthogonal or in the same direction. According to this invention, the film surface is irradiated with the excimer laser from a predetermined direction during film formation. Therefore, it is possible to obtain a film that is c-axis oriented and has in-plane orientation in which the a-axis and the b-axis are orthogonal to each other in the substrate plane, and as a result, the critical current density of the film increases.

【0017】[0017]

【実施例】【Example】

(実施例1)SiCのターゲットに波長が248nmの
KrFのエキシマレーザを15Hzの周波数で照射し、
400mTorrの二酸化炭素雰囲気中でMgO単結晶
基板上にSiCの成膜を行なった。成膜前に、波長19
3nmのArFエキシマレーザを基板面よりも45゜傾
けた方向と135゜傾けた方向の2方向から膜面に向か
って10Hzの周波数で照射した。膜面へのエキシマレ
ーザの照射は、ターゲットへのエキシマレーザの照射の
0.05秒後に行なうようにした。
(Example 1) A SiC target was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 15 Hz,
A SiC film was formed on a MgO single crystal substrate in a carbon dioxide atmosphere of 400 mTorr. Before film formation, wavelength 19
Irradiation with a 3 nm ArF excimer laser was performed at a frequency of 10 Hz toward the film surface from two directions, that is, a direction inclined by 45 ° and a direction inclined by 135 ° with respect to the substrate surface. Irradiation of the excimer laser on the film surface was performed 0.05 seconds after the irradiation of the excimer laser on the target.

【0018】SiCの薄膜の成膜後、膜を調べると、S
iCの(100)方向が基板面に垂直になるように成長
し、かつ、基板面内も配向していた。
After forming the thin film of SiC, the film was examined and found to be S
The iC was grown so that the (100) direction was perpendicular to the substrate surface, and was also oriented in the substrate surface.

【0019】(実施例2)Y1 Ba2 Cu3 7-x のタ
ーゲットに波長が248nmのKrFのエキシマレーザ
を10Hzの周波数で照射し、600mTorrの酸素
雰囲気中でハステロイ基板上にY1 Ba2 Cu3 7-x
の成膜を行なった。成膜中に、KrFエキシマレーザを
基板面よりも55゜傾けた方向から膜面に向かって10
Hzの周波数で照射した。膜面へのエキシマレーザの照
射は、ターゲットへのエキシマレーザの照射の0.02
秒後に行なうようにした。
(Example 2) A target of Y 1 Ba 2 Cu 3 O 7-x was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 10 Hz, and Y 1 Ba was deposited on a Hastelloy substrate in an oxygen atmosphere of 600 mTorr. 2 Cu 3 O 7-x
Was formed. During film formation, the KrF excimer laser is tilted toward the film surface from a direction inclined by 55 ° with respect to the substrate surface.
Irradiation with a frequency of Hz. The irradiation of the excimer laser on the film surface is 0.02 of the irradiation of the excimer laser on the target.
I decided to do it in seconds.

【0020】Y1 Ba2 Cu3 7-x の薄膜の成膜後、
膜を調べると、Y1 Ba2 Cu3 7-x のc軸方向が基
板面に垂直になるように成長し、また、基板面内でa
軸、b軸はお互いに直交するか、同一方向を向いてい
た。
Y1Ba2Cu3O7-xAfter forming the thin film of
When I inspect the membrane, Y1Ba2Cu3O 7-xIs based on the c-axis direction of
It grows so as to be perpendicular to the plate surface, and a
The axes b and b are orthogonal to each other or face the same direction
It was

【0021】一方、成膜中に膜面にエキシマレーザを照
射しない場合、薄膜はY1 Ba2 Cu3 7-x の結晶構
造でc軸配向しているが、面内配向はしていなかった。
On the other hand, when the film surface is not irradiated with an excimer laser during the film formation, the thin film has a crystal structure of Y 1 Ba 2 Cu 3 O 7-x and is c-axis oriented, but not in-plane oriented. It was

【0022】77.3Kでの臨界電流密度を測定する
と、前者の膜は137000A/cm 2 であり、後者の
膜は3200A/cm2 であった。
Measure the critical current density at 77.3K
And the former film is 137,000 A / cm 2And the latter
Membrane is 3200A / cm2Met.

【0023】(実施例3)実施例2において膜面に照射
するエキシマレーザの角度を1゜から89゜に変化させ
て照射しながら、他は同一条件でY1 Ba2 Cu3
7-x の成膜を行なった。成膜後、臨界電流密度の測定を
行なった。
(Example 3) In Example 2, while changing the angle of the excimer laser for irradiating the film surface from 1 ° to 89 °, Y 1 Ba 2 Cu 3 O was used under the same conditions.
A 7-x film was formed. After forming the film, the critical current density was measured.

【0024】その結果を図1に示す。図1において、横
軸はエキシマレーザを照射する際の膜面への角度(゜)
を示し、縦軸は臨界電流密度(A/cm2 )を示す。
The results are shown in FIG. In Fig. 1, the horizontal axis is the angle (°) to the film surface when the excimer laser is irradiated.
And the vertical axis represents the critical current density (A / cm 2 ).

【0025】図1より明らかなように、エキシマレーザ
を照射する角度が5゜以上85゜以下のとき、臨界電流
密度の向上が見られる。
As is clear from FIG. 1, when the angle of the excimer laser irradiation is 5 ° or more and 85 ° or less, the critical current density is improved.

【0026】(実施例4)YSZのターゲットに波長が
248nmのKrFのエキシマレーザを100Hzの周
波数で照射し、100mTorrの酸素雰囲気中でハス
テロイ基板上にYSZの成膜を行なった。成膜中に、K
rFエキシマレーザを基板面よりも30゜傾けた方向か
ら膜面に向かって100Hzの周波数で照射した。膜面
へのエキシマレーザの照射は、ターゲットへのエキシマ
レーザの照射の0.005秒後に行なうようにした。
Example 4 A YSZ target was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 100 Hz, and a YSZ film was formed on a Hastelloy substrate in an oxygen atmosphere of 100 mTorr. During film formation, K
Irradiation with rF excimer laser was performed at a frequency of 100 Hz toward the film surface from a direction inclined by 30 ° with respect to the substrate surface. Irradiation of the excimer laser onto the film surface was performed 0.005 seconds after the irradiation of the excimer laser onto the target.

【0027】YSZの薄膜の成膜後、膜を調べると、Y
SZの(100)方向が基板面に垂直になるように成長
し、面内配向もしていた。
After the thin film of YSZ was formed, when the film was examined, Y
The SZ was grown so that the (100) direction was perpendicular to the substrate surface, and was also in-plane oriented.

【0028】さらに、Y1 Ba2 Cu3 7-x のターゲ
ットに波長が248nmのKrFのエキシマレーザを1
0Hzの周波数で照射し、600mTorrの酸素雰囲
気中でハステロイ基板上にYSZを成膜した上にY1
2 Cu3 7-x の成膜を行なった。
Furthermore, a KrF excimer laser having a wavelength of 248 nm is used as a target of Y 1 Ba 2 Cu 3 O 7-x.
Irradiate at a frequency of 0 Hz, deposit YSZ on a Hastelloy substrate in an oxygen atmosphere of 600 mTorr, and then perform Y 1 B deposition.
A film of a 2 Cu 3 O 7-x was formed.

【0029】Y1 Ba2 Cu3 7-x の薄膜の成膜後、
膜を調べると、Y1 Ba2 Cu3 7-x のc軸方向が基
板面に垂直になるように成長し、また、基板面内でa
軸、b軸はお互いに直交するか、同一方向を向いてい
た。
Y1Ba2Cu3O7-xAfter forming the thin film of
When I inspect the membrane, Y1Ba2Cu3O 7-xIs based on the c-axis direction of
It grows so as to be perpendicular to the plate surface, and a
The axes b and b are orthogonal to each other or face the same direction
It was

【0030】一方、YSZの成膜中に膜面にエキシマレ
ーザを照射しない場合、さらに同様の成膜方法でY1
2 Cu3 7-x の成膜を行なった薄膜は、Y1 Ba2
Cu 3 7-x の結晶構造でc軸配向しているが、面内配
向はしていなかった。
On the other hand, during the YSZ film formation, the film surface is subjected to excimer
If the laser is not irradiated, the same film formation method1B
a2Cu3O7-xThe thin film formed by1Ba2
Cu 3O7-xHas a c-axis orientation in the crystal structure of
I wasn't going.

【0031】77.3Kでの臨界電流密度を測定する
と、前者の膜は583000A/cm 2 であり、後者の
膜は11000A/cm2 であった。
Measure the critical current density at 77.3K
And the former film is 583000A / cm 2And the latter
Membrane is 11000A / cm2Met.

【0032】ところで、レーザアブレーション法では、
前述の問題点のほかに、成膜速度が速いため膜の主たる
結晶構造とは異なる結晶構造を持つ物質あるいは結晶方
位を持つ物質が膜の一部に生成しやすいという問題点が
あった。成膜速度が遅い場合は、基板と膜面の接着は相
互拡散により強固なものとすることが容易であり、基板
の結晶構造の影響を受けることが比較的容易であるた
め、膜の結晶構造あるいは結晶方位を、基板の結晶構造
を基本として成長させることができる。しかしながら、
レーザアブレーション法による成膜の場合、成膜速度を
速くして成膜することが多く、その場合、基板と膜との
界面の接着が良好でない場合や、得られる膜の結晶構造
あるいは結晶方位が、基板の結晶構造や方位の影響を受
けにくい場合があった。
By the way, in the laser ablation method,
In addition to the above-mentioned problems, there is a problem that a substance having a crystal structure different from the main crystal structure of the film or a substance having a crystal orientation is likely to be generated in a part of the film because of the high film formation rate. When the film formation speed is slow, the bond between the substrate and the film surface can be easily strengthened by mutual diffusion, and it is relatively easy to be affected by the crystal structure of the substrate. Alternatively, the crystal orientation can be grown based on the crystal structure of the substrate. However,
In the case of film formation by the laser ablation method, the film formation speed is often increased, and in that case, if the adhesion between the substrate and the film interface is not good, or if the crystal structure or crystal orientation of the obtained film is In some cases, it was difficult to be affected by the crystal structure and orientation of the substrate.

【0033】レーザアブレーション法を用いた成膜にお
いて、成膜前、成膜中または成膜後に、基板または膜面
に一方向あるいは複数の方向からエキシマレーザを照射
すると、面内配向性を揃えることができるほかに、基板
と界面との接着の強度を向上させる、あるいは単結晶基
板の結晶の良好な結晶構造、結晶の周期性を薄膜に伝え
る、あるいは膜自体の結晶方位を揃える、といった効果
が得られる。これらについて、以下の実施例で詳しく説
明する。
In the film formation using the laser ablation method, if the excimer laser is irradiated to the substrate or the film surface from one direction or a plurality of directions before, during, or after the film formation, the in-plane orientation is made uniform. In addition, the effect of improving the adhesion strength between the substrate and the interface, transmitting the good crystal structure of the crystal of the single crystal substrate, the periodicity of the crystal to the thin film, or aligning the crystal orientation of the film itself. can get. These will be described in detail in the following examples.

【0034】(実施例5)Y1 Ba2 Cu3 7-x のタ
ーゲットに波長が248nmのKrFのエキシマレーザ
を10Hzの周波数で照射し、200mTorrの酸素
雰囲気中でMgO単結晶基板上ににY1 Ba2 Cu3
7-x の成膜を行なった。成膜中に、ターゲットに照射す
るエキシマレーザの発振より10μsec遅れて、波長
193nmのArFエキシマレーザを基板面よりも30
゜傾けた方向から膜面に向かって10Hzの周波数で照
射し、成膜を行なった。成膜後、X線回折を行なうと、
1Ba2 Cu3 7-x の単一相であった。
(Example 5) A target of Y 1 Ba 2 Cu 3 O 7-x was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 10 Hz, and a MgO single crystal substrate was irradiated on an MgO single crystal substrate in an oxygen atmosphere of 200 mTorr. Y 1 Ba 2 Cu 3 O
A 7-x film was formed. During film formation, the ArF excimer laser with a wavelength of 193 nm is delayed from the substrate surface by 30 μsec after the oscillation of the excimer laser with which the target is irradiated.
Film formation was performed by irradiating the film surface at a frequency of 10 Hz from the tilted direction. After film formation, when X-ray diffraction is performed,
It was a single phase of Y 1 Ba 2 Cu 3 O 7-x .

【0035】一方、成膜中に膜面にエキシマレーザを照
射しない場合、成膜後の膜をX線回折により観察した結
果、Y1 Ba2 Cu3 7-x の結晶構造を持つもの以外
に、Y2 Ba1 Cu1 Y の結晶構造を持つものの存在
が確認された。
On the other hand, when the film surface is not irradiated with an excimer laser during film formation, the film after film formation was observed by X-ray diffraction, and as a result, a film having a crystal structure other than Y 1 Ba 2 Cu 3 O 7-x was observed. In addition, the existence of Y 2 Ba 1 Cu 1 O Y having a crystal structure was confirmed.

【0036】成膜中にターゲットにエキシマレーザを照
射してターゲット面から発生するプルームが基板面に到
達して成膜するレーザアブレーション法において、成膜
されたあるいは成膜中の薄膜にエキシマレーザを照射す
る場合、膜を構成する主たる結晶構造が削り取られる割
合が小さく、異なる結晶構造が削り取られる割合が大き
い方向よりエキシマレーザを照射すると、膜中の主たる
結晶構造の物質の堆積率が増え、膜中に含まれることが
望ましくない結晶構造の物質の堆積率が減少する。
In the laser ablation method in which a target is irradiated with an excimer laser during film formation and a plume generated from the target surface reaches the substrate surface to form a film, the thin film formed or being formed is exposed to the excimer laser. When irradiating, the excisioner laser irradiates from the direction where the main crystal structure constituting the film is scraped off at a small rate and the different crystal structure is scraped off at a large rate, and the deposition rate of the substance of the main crystal structure in the film increases, The deposition rate of crystalline structured materials that are undesirable to be included is reduced.

【0037】(実施例6)TiNのターゲットに波長が
248nmのKrFのエキシマレーザを照射し、300
mTorrの窒素雰囲気中でステンレス基板上にTiN
の成膜を行なった。成膜を行なう前に、基板に別のエキ
シマレーザ装置より波長が308nmのエキシマレーザ
を3分間照射すると、成膜後のTiNは、基板を2つに
折り曲げてから元に戻しても剥離しなかった。
(Example 6) A TiN target was irradiated with a KrF excimer laser having a wavelength of 248 nm to obtain 300
TiN on stainless steel substrate in mTorr nitrogen atmosphere
Was formed. When the substrate is irradiated with an excimer laser having a wavelength of 308 nm for 3 minutes from another excimer laser device before the film formation, TiN after the film formation is not peeled off even if the substrate is folded back in two and then returned. It was

【0038】一方、成膜を行なう前に、エキシマレーザ
を基板に照射しなかった場合、同様の曲げ試験でTiN
は基板から剥離してしまった。
On the other hand, when the substrate was not irradiated with the excimer laser before the film formation, TiN was subjected to the same bending test.
Has peeled off the substrate.

【0039】成膜前に基板面に一定の方向からエキシマ
レーザを照射すると、基板表面の付着物が除去され、そ
の後に成膜される薄膜と基板との接着が強固になる効果
がある。
Irradiating the substrate surface with an excimer laser from a certain direction before film formation has the effect of removing the deposits on the substrate surface and strengthening the adhesion between the thin film to be subsequently formed and the substrate.

【0040】(実施例7)Y1 Ba2 Cu3 7-x のタ
ーゲットに波長が248nmのKrFのエキシマレーザ
を10Hzの周波数で照射し、200mTorrの酸素
雰囲気中でMgO単結晶基板上にY1 Ba2 Cu3
7-x の成膜を行なった。成膜前に、波長193nmのA
rFのエキシマレーザを基板面よりも45゜傾けた方向
から膜面に向かって150Hzの周波数で照射した。そ
の結果、MgO基板の(100)面が優先的に削り取ら
れた。成膜後、膜を調べると、Y1 Ba2 Cu3 7-x
の単結晶となっていた。
Example 7 A target of Y 1 Ba 2 Cu 3 O 7-x was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 10 Hz, and Y was deposited on a MgO single crystal substrate in an oxygen atmosphere of 200 mTorr. 1 Ba 2 Cu 3 O
A 7-x film was formed. Before film formation, A with a wavelength of 193 nm
Irradiation with an rF excimer laser was performed at a frequency of 150 Hz toward the film surface from a direction inclined by 45 ° with respect to the substrate surface. As a result, the (100) plane of the MgO substrate was preferentially scraped off. After film formation, the film was inspected to find that Y 1 Ba 2 Cu 3 O 7-x
It was a single crystal.

【0041】一方、成膜前に、基板面にエキシマレーザ
照射しない場合、薄膜はY1 Ba2Cu3 7-x の結晶
構造でc軸配向しているが、面内配向はしていなかっ
た。
On the other hand, when the excimer laser irradiation is not performed on the substrate surface before the film formation, the thin film has a crystal structure of Y 1 Ba 2 Cu 3 O 7-x and is c-axis oriented, but not in-plane oriented. It was

【0042】基板が単結晶の場合、一般に基板表面を平
滑に研磨しただけではその後に成膜された膜面は多結晶
状態になりやすいが、基板面に照射するエキシマレーザ
の方向によって基板が優先的に削り取られる結晶方位が
あるので、その後の成膜において薄膜の結晶が基板の単
結晶を引継ぐことにより、薄膜が単結晶の状態に近くな
る効果がある。
In the case where the substrate is a single crystal, generally, the surface of the film formed thereafter tends to be in a polycrystalline state only by polishing the surface of the substrate smoothly, but the substrate is prioritized depending on the direction of the excimer laser with which the surface of the substrate is irradiated. Since there is a crystal orientation that is shaved off, the crystal of the thin film succeeds the single crystal of the substrate in the subsequent film formation, so that there is an effect that the thin film becomes close to the single crystal state.

【0043】(実施例8)SiCのターゲットに波長が
248nmのKrFのエキシマレーザを15Hzの周波
数で照射し、400mTorrの二酸化炭素雰囲気中で
MgO単結晶基板上にSiCの成膜を行なった。成膜前
に、波長193nmのArFエキシマレーザを基板面よ
りも45゜傾けた方向から膜面に向かって10Hzの周
波数で照射した。膜面へのエキシマレーザの照射は、タ
ーゲットへのエキシマレーザの照射の0.05秒後に行
なうようにした。SiCの薄膜の成膜後、膜を調べる
と、SiCの(100)方向が基板面に垂直になるよう
に成長していた。
Example 8 A SiC target was irradiated with a KrF excimer laser having a wavelength of 248 nm at a frequency of 15 Hz to form a SiC film on a MgO single crystal substrate in a carbon dioxide atmosphere of 400 mTorr. Before the film formation, an ArF excimer laser having a wavelength of 193 nm was irradiated toward the film surface at a frequency of 10 Hz from a direction inclined by 45 ° with respect to the substrate surface. Irradiation of the excimer laser on the film surface was performed 0.05 seconds after the irradiation of the excimer laser on the target. After forming the thin film of SiC, the film was examined, and it was found that the (100) direction of SiC was perpendicular to the substrate surface.

【0044】一方、膜面にエキシマレーザを照射しない
で成膜した場合、(100)方向はランダムな方向を向
いていた。
On the other hand, when the film was formed without irradiating the excimer laser, the (100) direction was oriented randomly.

【0045】成膜中に膜面にある一定の方向からエキシ
マレーザを照射すると、膜のある一定の結晶方位が削り
取られやすいので、その結果、膜の成長が一定の結晶方
位に進む効果がある。また、場合によっては、従来単結
晶の薄膜が得られない場合でも、膜面へのある一定方向
からのエキシマレーザの照射により、結晶の方向性が維
持されて成膜されるので、単結晶膜を得ることができる
効果がある。エキシマレーザの照射は、ある一定方向で
あればよく、1方向でも複数の方向でのその効果があ
る。また、エキシマレーザの膜面への照射は、成膜前、
成膜中または成膜後のいずれであっても、その効果はあ
る。
When the excimer laser is irradiated from a certain direction on the film surface during film formation, a certain crystal orientation of the film is easily scraped off. As a result, the growth of the film has an effect of advancing to a certain crystal orientation. . Further, in some cases, even if a conventional single crystal thin film cannot be obtained, the single crystal film is formed by maintaining the directionality of the crystal by irradiation of the excimer laser from a certain direction on the film surface. There is an effect that can be obtained. Irradiation of the excimer laser may be performed in a certain fixed direction, and even in one direction, the effect can be obtained in a plurality of directions. Irradiation of the excimer laser on the film surface is performed before film formation.
The effect is obtained during the film formation or after the film formation.

【0046】[0046]

【発明の効果】この発明によれば、レーザアブレーショ
ン法により、面内配向性の向上した膜を成膜することが
できる。
According to the present invention, a film having an improved in-plane orientation can be formed by the laser ablation method.

【0047】また、この発明を酸化物超電導膜の成膜に
適用した場合、面内配向性が向上することにより、臨界
電流密度の向上した酸化物超電導膜が得られる。
When the present invention is applied to the formation of an oxide superconducting film, the oxide superconducting film having an improved critical current density can be obtained by improving the in-plane orientation.

【図面の簡単な説明】[Brief description of drawings]

【図1】エキシマレーザの膜面への角度と臨界電流密度
との関係を示す図である。
FIG. 1 is a diagram showing a relationship between an angle of an excimer laser with respect to a film surface and a critical current density.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01B 12/06 ZAA 7244−5G (72)発明者 林 憲器 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 藤野 剛三 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 原 築志 東京都調布市西つつじケ丘二丁目4番1号 東京電力株式会社技術研究所内 (72)発明者 石井 英雄 東京都調布市西つつじケ丘二丁目4番1号 東京電力株式会社技術研究所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // H01B 12/06 ZAA 7244-5G (72) Inventor Ken Ken Hayashi 1-3, Shimaya, Konohana-ku, Osaka No. Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Gozo Fujino 1-3-3 Shimaya, Konohana-ku, Osaka City Sumitomo Denki Industries Co., Ltd. Osaka Works (72) Inventor Tsukushi Hara Nishiazajigaoka, Chofu-shi, Tokyo 2-4-1, Tokyo Electric Power Co., Inc. Technical Research Laboratory (72) Inventor Hideo Ishii 2-4-1, Nishi Tsutsujigaoka, Chofu City, Tokyo Tokyo Electric Power Co., Inc. Technical Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ターゲットにレーザを照射することによ
りターゲット表面から飛散する物質を基板上に堆積させ
ることにより成膜を行なうレーザアブレーション法を用
いた成膜方法であって、 成膜中または成膜後に、膜面に対して5゜以上85゜以
下の方向からエキシマレーザを照射することを特徴とす
る、レーザアブレーション法を用いた成膜方法。
1. A film forming method using a laser ablation method for forming a film by depositing a substance scattered from a target surface on a substrate by irradiating the target with a laser, which is during or during film formation. A film forming method using a laser ablation method, which comprises irradiating the film surface with an excimer laser from a direction of 5 ° or more and 85 ° or less.
【請求項2】 ターゲットにレーザを照射することによ
りターゲット表面から飛散する物質を基板上に堆積させ
ることにより成膜を行なうレーザアブレーション法を用
いた成膜方法であって、 成膜前、前記基板に対して5゜以上85゜以下の方向か
らエキシマレーザを照射することを特徴とする、レーザ
アブレーション法を用いた成膜方法。
2. A film forming method using a laser ablation method for forming a film by depositing a substance scattered from a target surface on a substrate by irradiating a target with a laser, wherein the substrate is formed before the film formation. A film forming method using a laser ablation method, which comprises irradiating an excimer laser from a direction of 5 ° or more and 85 ° or less.
【請求項3】 ターゲットにレーザを照射することによ
りターゲット表面から飛散する物質を基板上に堆積させ
ることによりY1 Ba2 Cu3 7-x 酸化物超電導膜の
成膜を行なうレーザアブレーション法を用いた成膜方法
であって、 成膜前、成膜中または成膜後に、前記基板または膜面に
対して5゜以上85゜以下の方向からエキシマレーザを
照射することを特徴とする、レーザアブレーション法を
用いた成膜方法。
3. A laser ablation method for forming a Y 1 Ba 2 Cu 3 O 7-x oxide superconducting film by depositing a substance scattered from a target surface on a substrate by irradiating the target with a laser. A film forming method used, characterized by irradiating the substrate or film surface with an excimer laser from a direction of 5 ° to 85 ° before, during or after film formation. A film forming method using an ablation method.
【請求項4】 ターゲットにレーザを照射することによ
りターゲット表面から飛散する物質を基板上に堆積させ
ることにより前記基板上に中間層を成膜し、さらに前記
中間層上にY1 Ba2 Cu3 7-x 酸化物超電導膜の成
膜を行なうレーザアブレーション法を用いた成膜方法で
あって、 前記中間層の成膜前、成膜中または成膜後に、前記基板
または膜面に対して5゜以上85゜以下の方向からエキ
シマレーザを照射することを特徴とする、レーザアブレ
ーション法を用いた成膜方法。
4. An intermediate layer is formed on the substrate by depositing a substance scattered from the target surface on the substrate by irradiating the target with a laser, and Y 1 Ba 2 Cu 3 is further formed on the intermediate layer. A film forming method using a laser ablation method for forming an O 7-x oxide superconducting film, wherein the substrate or film surface is formed before, during or after forming the intermediate layer. A film forming method using a laser ablation method, which comprises irradiating an excimer laser from a direction of 5 ° or more and 85 ° or less.
JP5191232A 1993-08-02 1993-08-02 Method for forming film using laser ablation technique Pending JPH0745141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191232A JPH0745141A (en) 1993-08-02 1993-08-02 Method for forming film using laser ablation technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191232A JPH0745141A (en) 1993-08-02 1993-08-02 Method for forming film using laser ablation technique

Publications (1)

Publication Number Publication Date
JPH0745141A true JPH0745141A (en) 1995-02-14

Family

ID=16271103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191232A Pending JPH0745141A (en) 1993-08-02 1993-08-02 Method for forming film using laser ablation technique

Country Status (1)

Country Link
JP (1) JPH0745141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003980A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing oxide superconducting thin film wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003980A (en) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd Method and apparatus for manufacturing oxide superconducting thin film wire rod

Similar Documents

Publication Publication Date Title
US6190752B1 (en) Thin films having rock-salt-like structure deposited on amorphous surfaces
Tarsa et al. Growth and characterization of (111) and (001) oriented MgO films on (001) GaAs
JP3623001B2 (en) Method for forming single crystalline thin film
US7736761B2 (en) Buffer layer for thin film structures
US5872080A (en) High temperature superconducting thick films
US6933065B2 (en) High temperature superconducting thick films
US6426320B1 (en) Low vacuum vapor process for producing superconductor articles with epitaxial layers
US6800591B2 (en) Buffer layers on metal alloy substrates for superconducting tapes
RU2332737C2 (en) Superconductive wire and method of its manufacturing
US6884527B2 (en) Biaxially textured composite substrates
Tian et al. Preparation and microstructural study of CeO2 thin films
JPH0745141A (en) Method for forming film using laser ablation technique
US7727934B2 (en) Architecture for coated conductors
US7560291B2 (en) Method for fabrication of high temperature superconductors
Cantoni et al. Growth of oxide seed layers on Ni and other technologically interesting metal substrates: issues related to formation and control of sulfur superstructures for texture optimization
Reade et al. Ion-beam nanotexturing of buffer layers for near-single-crystal thin-film deposition: Application to YBa 2 Cu 3 O 7-δ superconducting films
US20050039672A1 (en) Methods for surface-biaxially-texturing amorphous films
Kim et al. Atomic control of homoepitaxial SrTiO3 films using laser molecular beam epitaxy
Russek et al. Growth of Laser Ablated YBa2Cu3O7− δ Films as Examined by Rheed and Scanning Tunneling Microscopy
Koenen et al. Influence of the substrate surface morphology on the texture of magnesium oxide films grown via inclined substrate deposition
Hühne et al. Formation of biaxially textured MgO buffer layers using ion-beam assisted pulsed laser deposition
JPH0692787A (en) Formation of single crystalline thin film
JP2004362785A (en) Oxide superconductor and its manufacturing method
Ma et al. Fabrication and Characterization of YBCO Coated Conductors by Inclined Substrate Deposition
JPH02248304A (en) Production of superconductor thin film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224