JPH0744922B2 - Medical tube - Google Patents

Medical tube

Info

Publication number
JPH0744922B2
JPH0744922B2 JP61276087A JP27608786A JPH0744922B2 JP H0744922 B2 JPH0744922 B2 JP H0744922B2 JP 61276087 A JP61276087 A JP 61276087A JP 27608786 A JP27608786 A JP 27608786A JP H0744922 B2 JPH0744922 B2 JP H0744922B2
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
insertion portion
shape
memory alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61276087A
Other languages
Japanese (ja)
Other versions
JPS63130036A (en
Inventor
康弘 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP61276087A priority Critical patent/JPH0744922B2/en
Publication of JPS63130036A publication Critical patent/JPS63130036A/en
Publication of JPH0744922B2 publication Critical patent/JPH0744922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、体腔内へ挿入して検査,処理等を行なう内
視鏡等の医療用チューブに関する。
Description: TECHNICAL FIELD The present invention relates to a medical tube such as an endoscope which is inserted into a body cavity for inspection, treatment and the like.

[従来の技術] 内視鏡等の医療用チューブでは、形状記憶合金を使っ
て、挿入部を彎曲させるようにしたものが提案されてい
る。
[Prior Art] For medical tubes such as endoscopes, it has been proposed to use a shape memory alloy to bend the insertion portion.

こうした医療用チューブには、従来、実開昭59−2344号
公報に示されるように挿入部内に彎曲形状が記憶された
複数本の形状記憶合金を設ける他、これらの形状記憶合
金をそれぞれ独立に通電させる手段を設けた構造が用い
られている。そして、彎曲させたい方向側に配置された
形状記憶合金に通電して加温することにより、変態点か
ら高温側では強く(硬く,降伏応力が大きい)、低温側
では弱い(軟かく,降伏応力が小さい)ことを利用し
て、挿入部をその方向へ彎曲させていた。
Conventionally, such a medical tube is provided with a plurality of shape memory alloys in which a curved shape is memorized in the insertion portion as shown in Japanese Utility Model Publication No. 59-2344, and these shape memory alloys are independently provided. A structure provided with means for energizing is used. Then, by heating by energizing the shape memory alloy arranged on the side to be bent, it is strong (hard and large in yield stress) on the high temperature side from the transformation point, and weak (soft and yield stress on the low temperature side. Was small) was used to bend the insertion part in that direction.

[発明が解決しようとする問題点] ところが、こうした形状記憶合金を個々に加温する技術
は、実開昭59−2344号公報のような形状記憶合金に電流
を流して加温するものであれば、その通電に必要な通電
線を多く必要(最低でも形状記憶合金の数量に1を加え
た本数が必要)とする問題は避けられない。このため、
挿入部がその分、太径化になる不都合を生じていた。
[Problems to be Solved by the Invention] However, the technique for individually heating such shape memory alloys may be one in which an electric current is applied to a shape memory alloy as disclosed in Japanese Utility Model Laid-Open No. 59-2344 to heat it. If this is the case, the problem of requiring a large number of current-carrying wires necessary for the current-carrying (at least the number of shape-memory alloys plus one) is unavoidable. For this reason,
As a result, the diameter of the insertion portion is increased, which is a problem.

そこで、開発されている2方向性の形状記憶合金を用い
ることが考えられるが、現状では1方向性より力が弱く
(特に細い線材の形状記憶合金において)、強くするた
めには径を太くしなければならない問題をもっていた。
Therefore, it is conceivable to use the developed bidirectional shape memory alloy, but at present, the force is weaker than that of the unidirectional one (especially in the shape memory alloy of a thin wire), and in order to make it stronger, the diameter should be increased. I had a problem that had to be.

この発明は、このような問題点に着目してなされたもの
で、挿入部の細径化を図ることができる医療用チューブ
を提供することを目的とする。
The present invention has been made in view of such problems, and an object thereof is to provide a medical tube in which the diameter of the insertion portion can be reduced.

[問題点を解決するための手段及び作用] この医療用チューブでは、挿入部3内にそれぞれ異なる
変態温度でそれぞれ異なる彎曲形状が記憶された少なく
とも2本の形状記憶合金10,11を設け、これら形状記憶
合金10,11の彎曲力を異ならせる手段「D1>D2」を設
け、さらに少なくとも2本の形状記憶合金10,11を同時
に加温して彎曲動作を行なわせる手段12,13,14,16,17を
設けることにより、変態温度が異なる1方向性の形状記
憶合金10,11を同時に加温で変態させて、挿入部3を少
なくとも2方向へ曲げるようにする。
[Means and Actions for Solving Problems] In this medical tube, at least two shape memory alloys 10 and 11 having different curved shapes stored at different transformation temperatures are provided in the insertion portion 3, and A means "D 1 > D 2 " for varying the bending force of the shape memory alloys 10, 11 is provided, and means 12, 13 for causing at least two shape memory alloys 10, 11 to be simultaneously heated to perform a bending operation. By providing 14, 16 and 17, the unidirectional shape memory alloys 10 and 11 having different transformation temperatures are simultaneously transformed by heating to bend the insertion portion 3 in at least two directions.

[実施例] 以下、この発明を第1図ないし第5図に示す第1の実施
例にもとづいて説明する。第2図中1は内視鏡(医療用
チューブ)である。内視鏡1は、先端側に彎曲部2を備
える挿入部3およびユニバーサルコード4を操作部5に
連結した構造となっている。またこの彎曲部2および挿
入部3には、ポリウレタン樹脂,テフロン樹脂等からな
るマルチルーメン(レンコン)構造のチューブが用いら
れている。こうしたチューブの各大小の孔に、第3図に
示されるように操作部5の接眼部5aと接ながるイメージ
ガイドファイバー6,ユニバーサルコード4の先端のコネ
クタ4aに接ながるライトガイドファイバー7が設けら
れ、1つのチューブ孔を処置具挿通用チャンネル8に設
定して、いわゆるファイバーコープとしている。
[Embodiment] Hereinafter, the present invention will be described based on a first embodiment shown in FIGS. 1 to 5. In FIG. 2, 1 is an endoscope (medical tube). The endoscope 1 has a structure in which an insertion portion 3 having a curved portion 2 on the distal end side and a universal cord 4 are connected to an operation portion 5. For the curved portion 2 and the insertion portion 3, a tube having a multi-lumen (lotus root) structure made of polyurethane resin, Teflon resin or the like is used. As shown in FIG. 3, an image guide fiber 6 that connects to the eyepiece 5a of the operation unit 5 and a light guide that connects to the connector 4a at the end of the universal cord 4 in each of the large and small holes of the tube. A fiber 7 is provided, and one tube hole is set in the treatment instrument insertion channel 8 to form a so-called fiber corp.

そして、彎曲部2内の外周側に形成された一対のチュー
ブ孔に、第1図および第3図に示されるように例えばTi
−Ni系合金やCu−Zn−Al系合金等の1方向性の形状記憶
合金(SMA)10,11が線材として設けられている。形状記
憶合金10,11には、例えば全長が同じで、処置具挿通用
チャンネル8と隣接した側(形状記憶合金10)の線径D1
を、反対側(形状記憶合金11)の線径D2より太くして、
径を変えたものが用いられている(D1>D2で彎曲量を異
ならせる手段に相当)。そして、処置具挿通用チャンネ
ル8と隣接する形状記憶合金10には、第3図において左
側へ円弧を描いて曲がる彎曲形状が記憶され、またファ
イバー6,7側と隣接する形状記憶合金11には逆に第3図
において右側へ円弧を描いて曲がる彎曲形状が記憶され
ているが、形状を記憶するにあたり異なる変態点の温度
で形状記憶することが行なわれている。詳しくは、径の
太い形状記憶合金10のオーステナイト相変態終了温度を
Af1とし、同じくオーステナイト相変態開始温度をAs1
し、また径の細い形状記憶合金11のオーステナイト相変
態終了温度をAf2とし、同じくオーステナイト相変態開
始温度をAs2としたとき、Af1>Af2、でかつAs1>As2
関係が成立する温度で形状記憶処理を行っている。具体
的には本実施例では、形状記憶合金10の変態点を、例え
ば「Af1=65℃」,「As1=60℃」に設定し、形状記憶合
金11の変態点を、例えば「Af2=55℃」「As2=50℃」に
設定して、それぞれ彎曲形状を記憶させている。
Then, in a pair of tube holes formed on the outer peripheral side in the curved portion 2, as shown in FIGS.
A unidirectional shape memory alloy (SMA) 10, 11 such as —Ni-based alloy or Cu—Zn—Al-based alloy is provided as a wire rod. For example, the shape memory alloys 10 and 11 have the same overall length, and the wire diameter D 1 on the side adjacent to the treatment instrument insertion channel 8 (shape memory alloy 10)
To be thicker than the wire diameter D 2 on the opposite side (shape memory alloy 11),
Different diameters are used (corresponding to a means to make the amount of bending different when D 1 > D 2 ). The shape memory alloy 10 adjacent to the treatment instrument insertion channel 8 stores a curved shape that bends in an arc toward the left side in FIG. 3, and the shape memory alloy 11 adjacent to the fiber 6 and 7 sides stores the curved shape. On the contrary, in FIG. 3, the curved shape that bends by drawing a circular arc to the right is stored, but the shape is stored at different transformation temperature when storing the shape. Specifically, the austenite phase transformation end temperature of shape memory alloy 10 with a large diameter is
When Af 1 is set, the austenite phase transformation start temperature is set to As 1 , the austenite phase transformation end temperature of the shape memory alloy 11 having a small diameter is set to Af 2 , and the austenite phase transformation start temperature is set to As 2 , Af 1 > Shape memory processing is performed at the temperature at which Af 2 and As 1 > As 2 are satisfied. Specifically, in this embodiment, the transformation point of the shape memory alloy 10 is set to, for example, “Af 1 = 65 ° C.” and “As 1 = 60 ° C.”, and the transformation point of the shape memory alloy 11 is set to, for example, “Af 1 = 65 ° C.” 2 = 55 ° C ”and“ As 2 = 50 ° C ”are set, and each curved shape is stored.

そして、こうした形状記憶合金10,11の各先端が通電線1
2で接続される。また形状記憶合金10,11の残る端は挿入
部3,操作部5,ユニバーサルコード4のコネクタ4a内に渡
り挿通された通電線13,14に接続され、両形状記憶合金1
0,11を直列に接続している。そして、こうした通電線1
3,14がコネクタ4aを通じて光源装置15(内視鏡1へ照明
光を供給するもの)に内蔵された通電回路16に接続さ
れ、通電回路16からパルス通電で電流を流すことによ
り、両形状記憶合金10,11を同時に加温することができ
るようにしている。なお、操作部5には通電量をコント
ロールするためのスイッチ部17が設けられている。
Then, the tips of the shape memory alloys 10 and 11 are connected to the conducting wire 1
Connected in 2. The remaining ends of the shape memory alloys 10 and 11 are connected to the current-carrying wires 13 and 14 inserted through the insertion portion 3, the operation portion 5 and the connector 4a of the universal cord 4 so that both shape memory alloys 1 and 11 are connected.
0 and 11 are connected in series. And such a conducting wire 1
3, 14 are connected to a light source device 15 (which supplies illumination light to the endoscope 1) through a connector 4a to an energization circuit 16 incorporated therein, and a current is passed from the energization circuit 16 by pulse energization, whereby both shape memories are stored. The alloys 10 and 11 can be heated at the same time. The operation unit 5 is provided with a switch unit 17 for controlling the energization amount.

つぎに、こうした内視鏡1の作用について説明する。Next, the operation of the endoscope 1 will be described.

内視鏡1の挿入部3は、常態では第1図に示されるよう
に略直線の状態となっている。そして、この状態からス
イッチ部17を操作すれば、通電回路16から形状記憶回路
10,11に向けパルス通電が行なわれていく。これによ
り、各形状記憶合金10,11は自身の抵抗熱で同時に加温
されていく。
The insertion portion 3 of the endoscope 1 is normally in a substantially linear state as shown in FIG. Then, if the switch section 17 is operated from this state, the energizing circuit 16 is moved to the shape memory circuit.
Pulse energization is performed toward 10, 11. As a result, the shape memory alloys 10 and 11 are simultaneously heated by their own resistance heat.

ここで、例えば形状記憶合金10,11の温度Tが50℃にな
るよう通電量を制御回路(図示しない)を使い制御すれ
ば、「50℃」にオーステナイト相変態開始温度を定めて
いた形状記憶合金11のみが逆変態を開始し、低温側のマ
ルテンサイト相(M相)又はロンボヘドラル相(R相)
から高温側のオーステナイト用(A相)へ変態してい
く。これにより、記憶されていた彎曲形状が表れてく
る。
Here, for example, if the energizing amount is controlled by using a control circuit (not shown) so that the temperature T of the shape memory alloys 10 and 11 becomes 50 ° C., the shape memory in which the austenite phase transformation start temperature is set to “50 ° C.” Only alloy 11 starts reverse transformation, and low temperature side martensite phase (M phase) or rhombohedral phase (R phase)
From high temperature to austenite (A phase). As a result, the memorized curved shape appears.

ここで、変態しない形状記憶合金10における低温側のマ
ルテンサイト相(M相)又はロンボへドラル相(R相)
は軟かく、自身で彎曲させようする力、いわゆる回復力
F1は「ゼロ」(F1=0)であるから、第4図に示される
ように形状記憶合金11の彎曲力を受けて彎曲部2が彎曲
を開始していく。
Here, the low temperature side martensite phase (M phase) or rhombohedral phase (R phase) in the shape memory alloy 10 that does not transform
Is soft and has the power to bend itself, so-called resilience
Since F 1 is “zero” (F 1 = 0), the bending portion 2 begins to bend due to the bending force of the shape memory alloy 11 as shown in FIG.

そして、さらに温度Tを55℃まで上昇するよう通電量を
上げれば、形状記憶合金11の変態を終えて、記憶形状の
回復を終了する。
Then, when the energization amount is further increased to raise the temperature T to 55 ° C., the transformation of the shape memory alloy 11 is completed, and the recovery of the memorized shape is completed.

またこうした状態から、さらに通電量を多くして温度T
を60℃まで上昇させると、「60℃」にオーステナイト相
変態開始温度を定めていた形状記憶合金10が逆変態を開
始する。
From such a state, the amount of electricity is further increased to increase the temperature T
Is increased to 60 ° C., the shape memory alloy 10 whose austenite phase transformation start temperature is set to “60 ° C.” starts reverse transformation.

ここで、線径D1を線径D2より大きくした分、形状記憶合
金10の回復力F1(彎曲させようとする力)は、既に彎曲
している形状記憶合金11の回復力F2より大きく定められ
ているから、回復力F2に逆らって逆方向へ彎曲し始め
る。
Here, the recovery force F 1 of the shape memory alloy 10 (the force to bend) is increased by the amount by which the wire diameter D 1 is made larger than the wire diameter D 2 , and the recovery force F 2 of the already bent shape memory alloy 11 is F 2. Since it is determined to be larger, it begins to bend in the opposite direction against the recovery force F 2 .

そして、さらに温度Tを65℃まで上げれば、第5図に示
されるように形状記憶合金10の変態を終えて、彎曲部2
が逆方向へ彎曲することになる。
Then, when the temperature T is further raised to 65 ° C., the transformation of the shape memory alloy 10 is finished as shown in FIG.
Will bend in the opposite direction.

すなわち、温度Tが「50℃≦T≦55℃」のとき「F2>F1
=0」となり、同じく「60℃≦T≦65℃」のとき「F2
F1」となって、同時加温による両方向(2方向)の彎曲
が実現されていく。
That is, when the temperature T is “50 ° C. ≦ T ≦ 55 ° C.”, “F 2 > F 1
= 0 ", and when" 60 ° C ≤ T ≤ 65 ° C "," F 2 >"
It becomes "F 1 " and bending in both directions (two directions) is realized by simultaneous heating.

しかして、こうした同時加温によって形状記憶合金10,1
1を彎曲動作させる構造は、挿入部3内に挿通する通電
線の数量としては形状記憶合金10,11の数に対応した本
数(2本)だけですむ。
By such simultaneous heating, shape memory alloy 10,1
The structure for bending 1 is only the number (2) corresponding to the number of shape memory alloys 10 and 11 as the number of current-carrying wires inserted in the insertion portion 3.

これ故、従来に比べ、挿入部3を細径にすることができ
るようになり、細くなる分、患者に与える苦痛を軽減で
き、細径の管腔内への挿入ができるようになる。
Therefore, as compared with the conventional case, the insertion portion 3 can be made smaller in diameter, and the thinner the insertion portion 3, the less pain can be given to the patient, and the smaller diameter insertion can be performed in the lumen.

また、この発明は第1の実施例に限らず、第6図に示さ
れる第2の実施例、第7図に示される第3の実施例、第
8図に示される第4の実施例のようにしてもよい。
Further, the present invention is not limited to the first embodiment, but includes the second embodiment shown in FIG. 6, the third embodiment shown in FIG. 7, and the fourth embodiment shown in FIG. You may do it.

第2の実施例は、4方向の彎曲動作を行なわせるように
したものである。具体的には、第1の実施例で示した形
状記憶合金10,11の配列方向とは直交する方向に、さら
に変態温度が異なる1方向性の一対の形状記憶合金20,2
1を設け、これら形状記憶合金20,21の線径D3,D4を第1
の実施例と同様に異ならせたもので、形状記憶合金10,1
1および形状記憶合金20,21を各1組として通電加温する
ことにより、上下左右方向(4方向)の彎曲を実現して
いる。なお、22は挿入部3に形成された送液用チャンネ
ルを示す。
In the second embodiment, a bending operation in four directions is performed. Specifically, a pair of unidirectional shape memory alloys 20 and 2 having different transformation temperatures in the direction orthogonal to the arrangement direction of the shape memory alloys 10 and 11 shown in the first embodiment.
1 is provided, and the wire diameters D 3 and D 4 of these shape memory alloys 20 and 21 are firstly set.
The shape memory alloy 10,1
1 and the shape memory alloys 20 and 21 are each set as one set and are heated by energization to realize bending in the vertical and horizontal directions (4 directions). Reference numeral 22 denotes a liquid feeding channel formed in the insertion portion 3.

第3の実施例は、内視鏡1でなく、血管造影用カテーテ
ル23等に適用したものである。具体的には、カテーテル
23を構成する中空円筒状のチューブ23aの周壁に、第1
の実施例に示した形状記憶合金10,11を内蔵して、第1
の実施例と同様な同時加温でチューブ23aを彎曲させる
ようにしている。
The third embodiment is applied not to the endoscope 1 but to the angiographic catheter 23 or the like. Specifically, the catheter
First, on the peripheral wall of the hollow cylindrical tube 23a that composes 23
Incorporating the shape memory alloys 10 and 11 shown in the embodiment of
The tube 23a is bent by the same simultaneous heating as in the above embodiment.

第4の実施例は、形状記憶合金10,11を直接通電で加温
するのでなく、別な加熱素子を使い同時に加温するよう
にしたものである。具体的には、各形状記憶合金10,11
の外周にニクロム線24をそれぞれ巻回し、双方のニクロ
ム線24,24を第1の実施例と同時に通電線12,13,14を使
って直列に接続する構造にしている。もちろん、通電以
外に温水を使って加温したり,体外から電磁波を与えて
加温するなどして構わない。
In the fourth embodiment, the shape memory alloys 10 and 11 are not directly heated by heating, but are heated simultaneously by using another heating element. Specifically, each shape memory alloy 10,11
A nichrome wire 24 is wound around the outer circumference of each of the two, and both nichrome wires 24, 24 are connected in series using the current-carrying wires 12, 13, 14 simultaneously with the first embodiment. Of course, it is possible to use warm water for heating other than energization, or to apply electromagnetic waves from outside the body to heat.

また、上述した実施例では全長が同じ形状記憶合金を用
いたが、同じ長さに一致させる必要はなく、彎曲角,彎
曲長等に合せて適宜に変えるようにしてもよい。もちろ
ん、形状記憶合金の形状は線材以外に、板材,さらには
コイル状にしたもの等を用いてもよい。
Further, although the shape memory alloys having the same overall length are used in the above-described embodiments, it is not necessary to match the lengths with the same length, and the shape memory alloys may be appropriately changed according to the bending angle, the bending length and the like. Of course, the shape of the shape memory alloy may be a plate, a coil, or the like other than the wire.

またこの発明をファイバーコープ(内視鏡),カテーテ
ルに適用したが、それ以外の生検鉗子等の処置具(医療
用チューブ)といった医療用チューブに適用しても、さ
らにはファイバーコープ以外の電子スコープ(内視鏡)
に適用してもよい。
Further, although the present invention is applied to a fiber corp (endoscope) and a catheter, it can be applied to medical tubes such as other treatment tools (medical tubing) such as biopsy forceps, and to electronic devices other than the fiber corp. Scope (endoscope)
May be applied to.

また上述した実施例では、形状記憶合金の変態を用い
て、挿入部を略直線状態に復元するようにしているが、
挿入部の樹脂がもつそのものの弾性で戻るようにしても
よい。
Further, in the above-described embodiment, the transformation of the shape memory alloy is used to restore the insertion portion to the substantially straight state,
You may make it return by the elasticity of the resin of the insertion part itself.

さらに、上述した実施例では、大小の径で形状記憶合金
の彎曲力に差をもたせて2方向の曲りを実現している
が、これに限らず、例えば挿入部の外径形状を楕円にし
たり、挿入部内に板バネを設けたり、同じ板材を例えば
「−I」のように配置したり、さらにはTi−Ni系合金の
Ni成分の含有量を多くしたりする等してもよい。
Further, in the above-mentioned embodiment, the bending force of the shape memory alloy is made different with large and small diameters to realize bending in two directions. However, the present invention is not limited to this, and for example, the outer diameter shape of the insertion portion may be elliptical. , A leaf spring is provided in the insertion part, the same plate material is arranged, for example, as "-I", and further, a Ti-Ni alloy
The content of the Ni component may be increased.

[発明の効果] 以上説明したようにこの発明によれば、同時加温にて1
方向性の形状記憶合金を、少なくとも2方向へ曲げるこ
とができるようになる。しかるに、同時加温により、挿
入部の細径化を図ることができる。
[Effects of the Invention] As described above, according to the present invention, the simultaneous heating
It enables the directional shape memory alloy to be bent in at least two directions. However, simultaneous heating can reduce the diameter of the insertion portion.

この結果、患者に与える苦痛を軽減でき、また細径の管
腔内への挿入ができる。
As a result, the pain given to the patient can be reduced, and the patient can be inserted into the lumen having a small diameter.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の要部となる挿入部に設けた形状記憶
合金廻りを示す斜視図、第2図はそれを適用した内視鏡
を示す構成図、第3図はその第2図A〜A線に沿う断面
図、第4図は挿入部を一方側に彎曲させたときを示す斜
視図、第5図はその挿入部を逆方向へ彎曲させたときを
示す斜視図、第6図はこの発明の第2の実施例の要部を
示す断面図、第7図はこの発明の第3の実施例の要部を
示す断面図、第8図はこの発明の第4の実施例の要部を
示す側面図である。 3…挿入部、10,11…形状記憶合金、12,13,14,16,17…
通電線,通電回路,スイッチ部(同時に加温する手
段)。
FIG. 1 is a perspective view showing a shape memory alloy and its surroundings provided in an insertion portion which is a main part of the present invention, FIG. 2 is a configuration diagram showing an endoscope to which the shape memory alloy is applied, and FIG. FIG. 4 is a perspective view showing the insertion portion bent to one side, and FIG. 5 is a perspective view showing the insertion portion bent in the opposite direction. Is a sectional view showing an essential part of a second embodiment of the present invention, FIG. 7 is a sectional view showing an essential part of a third embodiment of the present invention, and FIG. 8 is a fourth embodiment of the present invention. It is a side view which shows a principal part. 3 ... Insert part, 10, 11 ... Shape memory alloy, 12, 13, 14, 16, 17 ...
Energizing wire, energizing circuit, switch (means for heating at the same time).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】挿入部内に設けられそれぞれ異なる変態温
度でそれぞれ異なる彎曲形状が記憶された少なくとも2
本の形状記憶合金と、前記形状記憶合金の彎曲力を異な
らせる手段と、少なくとも2本の形状記憶合金を同時に
加温して彎曲動作を行なわせる手段とを具備したことを
特徴とする医療用チューブ。
1. At least two, which are provided in the insertion part and store different curved shapes at different transformation temperatures, respectively.
Medical device comprising: a shape memory alloy; a means for varying the bending force of the shape memory alloy; and a means for simultaneously heating at least two shape memory alloys to perform a bending operation. tube.
JP61276087A 1986-11-19 1986-11-19 Medical tube Expired - Fee Related JPH0744922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61276087A JPH0744922B2 (en) 1986-11-19 1986-11-19 Medical tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61276087A JPH0744922B2 (en) 1986-11-19 1986-11-19 Medical tube

Publications (2)

Publication Number Publication Date
JPS63130036A JPS63130036A (en) 1988-06-02
JPH0744922B2 true JPH0744922B2 (en) 1995-05-17

Family

ID=17564617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61276087A Expired - Fee Related JPH0744922B2 (en) 1986-11-19 1986-11-19 Medical tube

Country Status (1)

Country Link
JP (1) JPH0744922B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0769027B2 (en) * 1990-04-03 1995-07-26 住友ゴム工業株式会社 Elastic cylinder
JPH03127886U (en) * 1990-04-06 1991-12-24
JP5085426B2 (en) * 2008-05-16 2012-11-28 株式会社東芝 Droplet measuring device and droplet measuring method in a steam turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948710A (en) * 1982-09-10 1984-03-21 Sumitomo Electric Ind Ltd Fiber scope

Also Published As

Publication number Publication date
JPS63130036A (en) 1988-06-02

Similar Documents

Publication Publication Date Title
US4742817A (en) Endoscopic apparatus having a bendable insertion section
US4601705A (en) Steerable and aimable catheter
US4944727A (en) Variable shape guide apparatus
US4776844A (en) Medical tube
EP0778044B1 (en) Guidewire unit
US5090956A (en) Catheter with memory element-controlled steering
JPH0246907Y2 (en)
JPS63136014A (en) Active bending device for flexible tube
US5403297A (en) Elongate device having steerable distal extremity and proximal bend and method
JP3142928B2 (en) Variable hardness device for flexible tubes
JP3135134B2 (en) Flexible tube bending device
EP0383914B1 (en) Catheter
JPH0744922B2 (en) Medical tube
CN215875897U (en) Sheath tube
JP2000161543A (en) Flexible pipe
JPH08206061A (en) Curving device
JP2923308B2 (en) Bending operation device for tubular insert
RU2057488C1 (en) Papillotome device
JP2531923B2 (en) Catheter
JPH0461840A (en) Curving device for insertion tool
JPS6321066A (en) Medical tube
JP2653818B2 (en) Endoscope
JP3115880B2 (en) Medical probe
JPH0386142A (en) Deflection operation device for tubular insertion tool
JPH05285089A (en) Bending mechanism for flexible pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees