JPH0744784B2 - System connection method for harmonic compensator - Google Patents

System connection method for harmonic compensator

Info

Publication number
JPH0744784B2
JPH0744784B2 JP61224751A JP22475186A JPH0744784B2 JP H0744784 B2 JPH0744784 B2 JP H0744784B2 JP 61224751 A JP61224751 A JP 61224751A JP 22475186 A JP22475186 A JP 22475186A JP H0744784 B2 JPH0744784 B2 JP H0744784B2
Authority
JP
Japan
Prior art keywords
harmonic
current
power factor
factor improving
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61224751A
Other languages
Japanese (ja)
Other versions
JPS6380722A (en
Inventor
和成 小松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61224751A priority Critical patent/JPH0744784B2/en
Publication of JPS6380722A publication Critical patent/JPS6380722A/en
Publication of JPH0744784B2 publication Critical patent/JPH0744784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、静止形電力変換装置を用いた高調波補償装
置を、高調波電流発生源となる整流器等の他の静止形電
力変換装置の交流電源側(系統側)に接続するための系
統接続方法に関する。
The present invention relates to a harmonic compensator using a static power converter, and a harmonic compensator using another static power converter such as a rectifier serving as a harmonic current source. The present invention relates to a system connection method for connecting to an AC power supply side (system side).

〔従来の技術〕[Conventional technology]

この種の高調波補償装置は例えば第3図の如く、電圧形
インバータにて構成されるのが一般的である。同図にお
いて、10は制御回路、11は2重化された電圧形インバー
タ、12は直流電圧検出器、13はインバータ出力トラン
ス、14はインバータ出力電流を検出する検出器、15は負
荷電流を検出する検出器である。
A harmonic compensator of this type is generally constituted by a voltage type inverter as shown in FIG. 3, for example. In the figure, 10 is a control circuit, 11 is a double voltage source inverter, 12 is a DC voltage detector, 13 is an inverter output transformer, 14 is a detector for detecting the inverter output current, and 15 is a load current. It is a detector that does.

すなわち、インバータ11は出力トランス13を介して負荷
へ高調波電流を供給するが、このとき制御回路10は検出
器12からの直流電圧Vdおよび検出器14,15からのインバ
ータ出力電流iC,負荷電流iLにもとづき直流電圧Vdが一
定となり、所望の高調波電流を出力するように出力電流
icを制御すべくインバータ11の点弧制御を行う。つま
り、この種の高調波補償装置は出力電流制限が可能なこ
と、焼損したり系統から切り離されることがない等の利
点をもつことから、従来のL−C交流フイルタにかわり
用いられるようになる。
That is, the inverter 11 supplies the harmonic current to the load via the output transformer 13, but at this time, the control circuit 10 causes the DC voltage Vd from the detector 12 and the inverter output current i C from the detectors 14 and 15 to load the load. The DC voltage Vd becomes constant based on the current i L , so that the desired harmonic current is output.
Ignition control of the inverter 11 is performed to control ic. In other words, this type of harmonic compensator has the advantages that it can limit the output current and that it is not burnt out or disconnected from the system. Therefore, it can be used in place of the conventional LC alternating current filter. ..

ところで、このような高調波補償装置でその出力電流を
制限する方法として、実効値または瞬時的な出力電流変
化率を制限する方法がある。前者の実効値を制限する方
法は、単に装置容量だけが問題で、補償対象となる波形
々状等による補償程度の良し悪しには関係がない。これ
に対し、後者の出力電流変化率を制限する方法は、直接
補償程度の良し悪しに影響を及ぼすため、基本的に補償
対象となる高調波電流の大きさ,次数に適した出力電流
変化率を持つように設計される。このとき、高調波発生
源となる整流器(電力変換装置)の転流時には2相短絡
現象が生じるが、この短絡現象に起因する高い電流変化
に対しては、出力電流変化率がこれに追従可能な値とな
つていないのが普通である。これは、補償装置が転流時
に発生する高次調波を本質的に補償対象としていないこ
と、また、転流時の分まで補償しようとすると、装置が
本来補償対象としている20次程度までの補償に必要な補
償容量に対し、これを大きく越えてしまいコスト高にな
ること、および制御的に不安定になる等の理由に依る。
By the way, as a method of limiting the output current in such a harmonic compensator, there is a method of limiting the effective value or the instantaneous output current change rate. In the former method of limiting the effective value, only the device capacity is a problem, and it is not related to the goodness or badness of the degree of compensation due to the waveforms to be compensated. On the other hand, the latter method of limiting the output current change rate directly affects the quality of the compensation, so basically the output current change rate suitable for the magnitude and order of the harmonic current to be compensated is applied. Designed to have. At this time, a two-phase short circuit phenomenon occurs at the time of commutation of the rectifier (power conversion device) that is a harmonic generation source, but the output current change rate can follow the high current change caused by this short circuit phenomenon. It is normal that it is not a value. This is because the compensator does not essentially compensate for the higher harmonics that occur during commutation, and when trying to compensate up to the commutation time, the compensator only up to the 20th order This is because the compensation capacity required for compensation is greatly exceeded, resulting in high cost and unstable control.

さて、高調波電流発生源となる整流器負荷は、通常は第
4図に示すように力率改善用コンデンサとゝもに系統へ
接続される。なお、同図において、1が整流器であり、
2が力率改善用コンデンサである。この場合、整流器1
の転流時には、その短絡電流の大半を力率改善用コンデ
ンサ2が供給する形となり、次のような影響が現われ
る。
The rectifier load, which is the source of harmonic current, is normally connected to the system together with a power factor improving capacitor as shown in FIG. In the figure, 1 is a rectifier,
2 is a power factor improving capacitor. In this case, rectifier 1
At the time of commutation, the power factor improving capacitor 2 supplies most of the short-circuit current, and the following effects appear.

(イ)短絡電流をコンデンサが供給するため、コンデン
サの許容電流を越える場合がある。
(B) Since the short-circuit current is supplied by the capacitor, the allowable current of the capacitor may be exceeded.

(ロ)このコンデンサよりも系統側に存在する配線リア
クタンスおよびコンデンサのキヤパシタンスによつて共
振現象が生じ、高次の高調波電流がコンデンサに流れて
過負荷となる。
(B) A resonance phenomenon occurs due to the wiring reactance existing on the system side of this capacitor and the capacitance of the capacitor, and a high-order harmonic current flows into the capacitor, resulting in an overload.

しかるに、従来は例えば第5図の如く、高調波補償装置
(AF)3を整流器1の受電端(交流端)に設置して対処
するようにしているため、上述の理由により転流時の電
流変化には追従できないこと、また転流時に必要な短絡
電流の大半を力率改善用コンデンサ2が供給することか
ら、依然として転流時の系統側に与える影響が残るこ
と、等の問題があつた。
However, conventionally, as shown in FIG. 5, for example, the harmonic compensating device (AF) 3 is installed at the power receiving end (AC end) of the rectifier 1 so as to deal with it. There are problems such as not being able to follow the change and that the power factor improving capacitor 2 supplies most of the short-circuit current required during commutation, so that the effect on the system side during commutation still remains. .

そのため、出願人は第6図の如く、力率改善用コンデン
サ2の系統側にリアクトル5を挿入する方法(提案済方
法とも云う)を提案している。これは、上記(イ)の点
はそのまゝとし、(ロ)の如き共振現象にて生じる高調
波電流を低次のものとし、補償装置の能力内に入るよう
にするものである。
Therefore, the applicant has proposed a method (also called a proposed method) of inserting the reactor 5 into the system side of the power factor improving capacitor 2 as shown in FIG. This is to keep the above point (a) as it is, and to set the harmonic current generated by the resonance phenomenon as in (b) to a low order so as to be within the capability of the compensator.

〔発明が解決しようとする問題点〕 上記提案済方法では上記(ロ)の点は改良されるが、力
率改善用コンデンサの過電流耐量を上げる必要があると
云う問題が残ることになる。
[Problems to be Solved by the Invention] Although the above-mentioned point (b) is improved by the proposed method, there remains a problem that it is necessary to increase the overcurrent withstanding capability of the power factor improving capacitor.

したがつて、この発明は力率改善用コンデンサの過電流
耐量を上げることなく、転流時の系統側との高調波共振
の抑制を図ることを目的とする。
Therefore, an object of the present invention is to suppress the harmonic resonance with the system side during commutation without increasing the overcurrent withstanding capability of the power factor improving capacitor.

〔問題点を解決するための手段〕[Means for solving problems]

出力側に交流リアクトルを備えた高調波補償装置の前記
交流リアクトルを、高調波電流発生源となる他の静止形
電力変換装置とその近傍に設置される力率改善用コンデ
ンサとの間に挿入し、前記高調波補償装置を、前記交流
リアクトルと力率改善用コンデンサとの間に力率改善用
コンデンサと並列に設置する。つまり、第1図の如くす
る。なお、第1図はこの発明の特徴を最も良く表わす主
要図で、5が交流リアクトルである。
The AC reactor of the harmonic compensator having an AC reactor on the output side is inserted between another static power converter that serves as a harmonic current source and a power factor improving capacitor installed in the vicinity thereof. The harmonic compensator is installed in parallel with the power factor improving capacitor between the AC reactor and the power factor improving capacitor. That is, as shown in FIG. Incidentally, FIG. 1 is a main view which best shows the features of the present invention, and 5 is an AC reactor.

〔作用〕[Action]

上記の如く、整流器等の電力変換装置と力率改善用コン
デンサとの間に交流リアクトルを挿入することにより、
転流時の2相短絡電流の電流変化率を減少させ(ゆるや
かにする)、高調波補償装置の出力電流変化能力で追従
できるようにする。
As described above, by inserting an AC reactor between the power conversion device such as a rectifier and the power factor improving capacitor,
The current change rate of the two-phase short-circuit current during commutation is reduced (graded) so that the output current change capability of the harmonic compensator can be followed.

〔実施例〕〔Example〕

第2図はこの発明の実施例を説明するための接続構成図
である。同図において、1は整流器、2は力率改善用コ
ンデンサ、3は高調波補償装置、4は変流器(CT)、5
は交流リアクトル、6は変圧器(トランス)である。
FIG. 2 is a connection configuration diagram for explaining an embodiment of the present invention. In the figure, 1 is a rectifier, 2 is a power factor improving capacitor, 3 is a harmonic compensator, 4 is a current transformer (CT), 5
Is an AC reactor, and 6 is a transformer.

高調波補償装置3は入力トランス6の一次側(高圧側)
に力率改善用コンデンサ2と並列に接続され、その補償
対象電流検出端(CT接続位置)を力率改善用コンデンサ
2の入力トランス6側、すなわち負荷側にとる。そし
て、交流リアクトル5を入力トランス6の二次側(低圧
側)、すなわち整流器1の交流側に挿入する。これによ
り、整流器1の転流時における2相短絡電流の電流変化
率をリアクトル5の作用で減少させることができ、入力
トランス6の一次側の電流変化も小さくすることができ
る。その結果、高調波補償装置3により定常通電時の高
調波電流だけでなく、転流時の2相短絡電流をも供給し
得ることゝなり、転流時の2相短絡電流を力率改善用コ
ンデンサ2が供給することによつて生じる系統側への共
振現象を抑制できることになる。なお、当然のことなが
ら、挿入する交流リアクトル5は、整流器1の能力,性
能に著しく悪い影響を与えることのないリアクタンス値
に選ばれる。
The harmonic compensator 3 is the primary side (high voltage side) of the input transformer 6.
Is connected in parallel with the power factor improving capacitor 2 and the current detection end (CT connection position) of the compensation target is taken to be the input transformer 6 side of the power factor improving capacitor 2, that is, the load side. Then, the AC reactor 5 is inserted into the secondary side (low voltage side) of the input transformer 6, that is, the AC side of the rectifier 1. As a result, the current change rate of the two-phase short-circuit current during commutation of the rectifier 1 can be reduced by the action of the reactor 5, and the current change on the primary side of the input transformer 6 can also be reduced. As a result, the harmonic compensator 3 can supply not only the harmonic current during steady conduction but also the two-phase short-circuit current during commutation, and the two-phase short-circuit current during commutation can be used for power factor improvement. It is possible to suppress the resonance phenomenon on the system side caused by the supply of the capacitor 2. Naturally, the AC reactor 5 to be inserted is selected as a reactance value that does not significantly affect the ability and performance of the rectifier 1.

〔発明の効果〕〔The invention's effect〕

この発明によれば、電力変換装置からなる高調波補償装
置を、高調波発生源となる整流器等の他の電力変換装置
の系統側(交流側)に設置するに当たり、力率改善用コ
ンデンサと他の電力変換装置との間に交流リアクトルを
挿入するようにしたので、転流時における2相短絡電流
の電流変化率を小さくすることができる。これにより、
転流時の2相短絡電流をも高調波補償装置が供給できる
ようになり、2相短絡電流を力率改善用コンデンサが供
給することによつて生じる系統側での高調波の共振電流
を無くすことができる。また、この構成により力率改善
用コンデンサの電流耐量を上げる必要もないので既存の
もので良く、挿入する交流リアクトルも低圧用のもので
済ませることができる。
According to the present invention, when the harmonic compensating device including the power converter is installed on the system side (AC side) of another power converter such as a rectifier serving as a harmonic generation source, a power factor improving capacitor and other Since the AC reactor is inserted between the power converter and the power converter, the current change rate of the two-phase short-circuit current during commutation can be reduced. This allows
The harmonic compensator can also supply the two-phase short-circuit current during commutation, and eliminates the harmonic resonance current on the system side caused by the power-factor improving capacitor supplying the two-phase short-circuit current. be able to. Further, with this configuration, it is not necessary to increase the current withstanding capacity of the power factor improving capacitor, so an existing one can be used, and the AC reactor to be inserted can be a low voltage one.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の特徴を最も良く表わす主要図、第2
図はこの発明の実施例を説明するための接続構成図、第
3図は無効電力補償装置の従来例を示す構成図、第4図
は整流器と力率改善用コンデンサとの関係を示す概要
図、第5図は補償装置適用方法の従来例を説明するため
の接続構成図、第6図は提案済方法を説明するための接
続構成図である。 符号説明 1……整流器、2……力率改善用コンデンサ、3……高
調波補償装置、4……変流器、5……交流リアクトル、
6……変圧器、10……制御回路、11……インバータ、12
……電圧検出器、13……出力トランス、14,15……電流
検出器。
FIG. 1 is a main view which best shows the features of the present invention, and FIG.
FIG. 1 is a connection configuration diagram for explaining an embodiment of the present invention, FIG. 3 is a configuration diagram showing a conventional example of a reactive power compensator, and FIG. 4 is a schematic diagram showing a relationship between a rectifier and a power factor improving capacitor. FIG. 5 is a connection configuration diagram for explaining a conventional example of a compensation device application method, and FIG. 6 is a connection configuration diagram for explaining a proposed method. Explanation of code 1 ... Rectifier, 2 ... Capacitor for power factor improvement, 3 ... Harmonic compensator, 4 ... Current transformer, 5 ... AC reactor,
6 ... Transformer, 10 ... Control circuit, 11 ... Inverter, 12
...... Voltage detector, 13 …… Output transformer, 14,15 …… Current detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高調波電流発生源となる他の静止形電力変
換装置の交流電源側に、静止形電力変換装置によって構
成され出力側に交流リアクトルを備えた高調波補償装置
を接続する高調波補償装置の系統接続方法において、 前記交流リアクトルを、前記高調波電流発生源となる他
の静止形電力変換装置とその近傍に設置される力率改善
用コンデンサとの間に挿入し、 前記高調波補償装置を、前記交流リアクトルと力率改善
用コンデンサとの間に力率改善用コンデンサと並列に設
置すること、 を特徴とする高調波補償装置の系統接続方法。
1. A harmonic wave connecting a harmonic compensating device having an AC reactor on the output side, which is constituted by a static power converter, to the AC power source side of another static power converter which serves as a harmonic current source. In a system connection method of a compensating device, the AC reactor is inserted between another static power converter that serves as the harmonic current source and a power factor improving capacitor installed in the vicinity thereof, and the harmonic A compensator is installed between the AC reactor and a power factor improving capacitor in parallel with the power factor improving capacitor.
JP61224751A 1986-09-25 1986-09-25 System connection method for harmonic compensator Expired - Lifetime JPH0744784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224751A JPH0744784B2 (en) 1986-09-25 1986-09-25 System connection method for harmonic compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224751A JPH0744784B2 (en) 1986-09-25 1986-09-25 System connection method for harmonic compensator

Publications (2)

Publication Number Publication Date
JPS6380722A JPS6380722A (en) 1988-04-11
JPH0744784B2 true JPH0744784B2 (en) 1995-05-15

Family

ID=16818667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224751A Expired - Lifetime JPH0744784B2 (en) 1986-09-25 1986-09-25 System connection method for harmonic compensator

Country Status (1)

Country Link
JP (1) JPH0744784B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574144U (en) * 1992-03-06 1993-10-08 日新電機株式会社 Voltage fluctuation countermeasure device with harmonic suppression function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112630A (en) * 1974-07-22 1976-01-31 Hitachi Ltd
JPS56159936A (en) * 1980-05-09 1981-12-09 Sanken Electric Co Ltd Method of controlling electric power

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112630A (en) * 1974-07-22 1976-01-31 Hitachi Ltd
JPS56159936A (en) * 1980-05-09 1981-12-09 Sanken Electric Co Ltd Method of controlling electric power

Also Published As

Publication number Publication date
JPS6380722A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
EP0361389B1 (en) Dc/ac power converting apparatus including dc component remover
US20080130335A1 (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
EP0372109B1 (en) Reactive power controller
US7884582B2 (en) Method and device in frequency converter
JPH0744784B2 (en) System connection method for harmonic compensator
JP4672093B2 (en) Power quality compensator
JP2002272113A (en) Dc reactor device and high-frequency suppression control device
US5867378A (en) AC/DC power converter device
JP3180991B2 (en) Grid connection protection device
JP2790403B2 (en) Reverse charging protection device for grid-connected inverter
JP2519924B2 (en) Harmonic current suppression circuit
JP3075578B2 (en) Reactive power compensator
JP3480123B2 (en) Compensation method for reactive power etc. of power supply system with power generation equipment
JP2000217256A (en) Automatic voltage adjuster
JP3435198B2 (en) Harmonic current suppression method of power factor improving capacitor
JPH0625951B2 (en) Reactive power compensator
JPH07107669A (en) Restraining method for higher harmonic of capacitor for power factor improvement
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
JP2906923B2 (en) Voltage fluctuation suppression device
JPH10145976A (en) Control of phase advance capacitor installation
JPH08123564A (en) Reactive power compensator
JPH073802Y2 (en) Resonant active filter
JPH0865890A (en) Harmonic current controller in capacitor for improving power factor
JP3162578B2 (en) Power converter
JP3599524B2 (en) Power conversion system