JPH0744767Y2 - Compressor oil separator - Google Patents

Compressor oil separator

Info

Publication number
JPH0744767Y2
JPH0744767Y2 JP1989082391U JP8239189U JPH0744767Y2 JP H0744767 Y2 JPH0744767 Y2 JP H0744767Y2 JP 1989082391 U JP1989082391 U JP 1989082391U JP 8239189 U JP8239189 U JP 8239189U JP H0744767 Y2 JPH0744767 Y2 JP H0744767Y2
Authority
JP
Japan
Prior art keywords
oil
compressor
storage chamber
pressure
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989082391U
Other languages
Japanese (ja)
Other versions
JPH0321578U (en
Inventor
健二 竹中
哲行 神徳
Original Assignee
株式会社豊田自動織機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機製作所 filed Critical 株式会社豊田自動織機製作所
Priority to JP1989082391U priority Critical patent/JPH0744767Y2/en
Publication of JPH0321578U publication Critical patent/JPH0321578U/ja
Application granted granted Critical
Publication of JPH0744767Y2 publication Critical patent/JPH0744767Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は冷媒ガス中に含まれる潤滑用オイルを圧縮機の
高圧部にて冷媒ガスから分離し、該分離したオイルを圧
縮機の低圧部に戻すように構成された圧縮機のオイルセ
パレータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention separates lubricating oil contained in a refrigerant gas from a refrigerant gas in a high pressure part of a compressor, and separates the separated oil from a low pressure part of the compressor. The invention relates to an oil separator of a compressor configured to be returned to.

[従来の技術] 斜板式圧縮機等の圧縮機では、可動部分の潤滑を行う潤
滑油が冷媒ガス中にミスト状になって含まれる。従っ
て、圧縮機内部で圧縮された冷媒ガスが外部冷却回路に
吐出循環される際に、ミスト状の潤滑油も冷却回路に吐
出循環され、この潤滑油が冷却回路中の蒸発器の内壁等
に付着して、熱交換の妨げとなる。
[Prior Art] In a compressor such as a swash plate compressor, lubricating oil for lubricating a movable part is contained in a refrigerant gas in a mist form. Therefore, when the refrigerant gas compressed inside the compressor is discharged and circulated to the external cooling circuit, mist-like lubricating oil is also discharged and circulated to the cooling circuit, and this lubricating oil is distributed to the inner wall of the evaporator in the cooling circuit. It adheres and hinders heat exchange.

そのため、従来は圧縮機の外部にオイルセパレータを別
設して圧縮機と冷却回路との間に配管接続し、圧縮機内
部で圧縮された冷媒ガスが冷却回路に吐出される際、そ
の冷媒ガスに含まれる潤滑油をオイルセパレータで分離
すると共に、分離された潤滑油を油戻しパイプを通して
圧縮機内部に戻すように構成したものが提案されてい
る。
Therefore, conventionally, an oil separator is separately provided outside the compressor, and a pipe is connected between the compressor and the cooling circuit, and when the refrigerant gas compressed inside the compressor is discharged to the cooling circuit, the refrigerant gas It has been proposed that the lubricating oil contained in (1) is separated by an oil separator and that the separated lubricating oil is returned to the inside of the compressor through an oil return pipe.

しかしながら、この従来構成においては、オイルセパレ
ータが圧縮機の外部に別設されているため、圧縮機を含
めた冷凍回路の全体構造が大型となって広い設置スペー
スが必要となり、又、オイルセパレータと圧縮機との間
の配管が必要となって、配管構造が複雑になると共に、
配管接続部からガス漏れが生じ易くなるという不都合が
あった。
However, in this conventional configuration, since the oil separator is separately provided outside the compressor, the entire structure of the refrigeration circuit including the compressor becomes large and a large installation space is required. Piping to the compressor is required, which complicates the piping structure and
There is a disadvantage that gas leakage easily occurs from the pipe connection portion.

これらの不都合を解消するため、冷媒ガス中に含まれる
潤滑用オイルを圧縮機の高圧部にて冷媒ガスから分離
し、該分離したオイルを圧縮機の低圧部に戻すように構
成された圧縮機も提案されている。この種の圧縮機では
圧縮機の吐出孔からオイルを含む冷媒ガスが、圧縮機ケ
ーシングに膨出形成された膨脹室(容積室)内に吐出通
路を経て導かれ、吐出側のサービスフランジに入る間に
オイルが分離されてオイル貯溜室に溜まる。そして、オ
イル貯溜室に溜まったオイルが、オイル戻し通路を通っ
て斜板室等の低圧部に戻されるようになっている。又、
オイル戻し通路の口径は、圧縮機の通常運転時における
オイルの戻り量が所定量となる一定の大きさに形成され
ている。
In order to eliminate these disadvantages, a compressor configured to separate the lubricating oil contained in the refrigerant gas from the refrigerant gas in the high pressure part of the compressor and return the separated oil to the low pressure part of the compressor. Is also proposed. In this type of compressor, a refrigerant gas containing oil is discharged from a discharge hole of the compressor through a discharge passage into an expansion chamber (volume chamber) that is bulged in the compressor casing, and enters a discharge side service flange. Oil is separated in the meantime and collects in the oil storage chamber. Then, the oil accumulated in the oil storage chamber is returned to the low pressure portion such as the swash plate chamber through the oil return passage. or,
The diameter of the oil return passage is formed to have a constant size such that the amount of oil returned during normal operation of the compressor is a predetermined amount.

[考案が解決しようとする課題] ところが、圧縮機の通常運転時には吐出ガスの圧力は14
〜15気圧であるが、例えば、真夏において道路が渋滞し
ている状態のように冷房負荷が大きなときや、コンデン
サの冷却が不十分となったときには最大30気圧に達す
る。そして、吐出圧力が高くなると膨脹室(容積室)内
の圧力も上昇し、オイル貯溜室に貯溜されたオイルが必
要以上に圧縮機の低圧部に戻され、その結果オイル貯溜
室内のオイルがなくなる状態が生じる。この状態では吐
出ガスの一部が圧縮機の低圧部に逆流することになり、
圧縮機の体積効率が悪くなるばかりか、吐出温度の上昇
や斜板等に付着していたオイルが洗い流されることによ
りピストン、シュー等の焼付に至るという問題がある。
[Problems to be solved by the invention] However, the discharge gas pressure is 14% during normal operation of the compressor.
The pressure is about 15 atm, but it reaches a maximum of 30 atm when the cooling load is large, such as when the road is congested in midsummer, or when the condenser is insufficiently cooled. Then, when the discharge pressure becomes higher, the pressure in the expansion chamber (volume chamber) also rises, and the oil stored in the oil storage chamber is returned to the low pressure portion of the compressor more than necessary, and as a result, the oil in the oil storage chamber is exhausted. A condition arises. In this state, part of the discharge gas will flow back to the low pressure part of the compressor,
There is a problem that not only the volume efficiency of the compressor deteriorates, but also the discharge temperature rises and the oil adhering to the swash plate and the like is washed away, resulting in the seizure of the pistons, shoes and the like.

本考案は前記の問題点に鑑みてなされたものであって、
その目的は圧縮機の高圧部において冷媒ガスから分離さ
れてオイル貯溜部に貯溜されたオイルの低圧部に戻され
る量を、吐出圧力の高低に拘らずほぼ一定に保持するこ
とができる圧縮機のオイルセパレータを提供することに
ある。
The present invention has been made in view of the above problems,
The purpose of the compressor is to keep the amount of the oil separated from the refrigerant gas in the high pressure part of the compressor and returned to the low pressure part of the oil storage part to be substantially constant regardless of the discharge pressure. To provide an oil separator.

[課題を解決するための手段] 前記の目的を達成するために本考案においては、冷媒ガ
ス中に含まれる潤滑用オイルを圧縮機の高圧部にて冷媒
ガスから分離し、該分離したオイルを圧縮機の低圧部に
戻すように構成された圧縮機において、前記分離された
オイルを一時貯溜するため高圧部に設けられたオイル貯
溜室と、低圧部とを連通するオイル通路に、前記オイル
貯溜室の圧力を直接感知してその開口面積が変化し、か
つ圧力上昇に伴いその開口面積が狭くなる可変オリフィ
スを設けた。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the present invention, the lubricating oil contained in the refrigerant gas is separated from the refrigerant gas in the high pressure portion of the compressor, and the separated oil is separated. In the compressor configured to return to the low pressure part of the compressor, the oil storage chamber provided in the high pressure part for temporarily storing the separated oil and an oil passage communicating with the low pressure part A variable orifice was provided in which the opening area was changed by directly sensing the pressure of the chamber, and the opening area was narrowed as the pressure increased.

[作用] 本考案のオイルセパレータが装備された圧縮機が運転さ
れると、圧縮機内部で圧縮された冷媒ガスは高圧部に設
けられたオイルセパレータに導かれ、冷媒ガスからオイ
ルが分離されてオイル貯溜室に貯溜される。そして、オ
イル貯溜室に貯溜されたオイルはオイル貯溜室と、圧縮
機の低圧部(例えば、斜板室)とを連通するオイル通路
を通って圧縮機の低圧部に戻される。圧縮機の運転状況
により吐出圧力が変化し、オイル貯溜室内の圧力もそれ
に対応して変化する。オイル通路の途中に設けられた可
変オリフィスの開口面積は、オイル貯溜室内の圧力が上
昇すると狭くなり、圧力が下降すると広くなる。従っ
て、オイル通路を通って圧縮機の低圧部に戻されるオイ
ルの量は、吐出圧力が変動しても常にほぼ一定に保持さ
れ、オイル貯溜室内からオイルがなくなることはない。
[Operation] When the compressor equipped with the oil separator of the present invention is operated, the refrigerant gas compressed inside the compressor is guided to the oil separator provided in the high pressure part, and the oil is separated from the refrigerant gas. It is stored in the oil storage chamber. Then, the oil stored in the oil storage chamber is returned to the low pressure portion of the compressor through an oil passage that connects the oil storage chamber and the low pressure portion (for example, the swash plate chamber) of the compressor. The discharge pressure changes depending on the operating condition of the compressor, and the pressure in the oil storage chamber also changes correspondingly. The opening area of the variable orifice provided in the middle of the oil passage narrows as the pressure in the oil storage chamber rises, and widens as the pressure falls. Therefore, the amount of oil returned to the low pressure part of the compressor through the oil passage is always kept substantially constant even if the discharge pressure fluctuates, and the oil is not exhausted from the oil storage chamber.

[実施例1] 以下、本考案を斜板式圧縮機に具体化した一実施例を、
第1〜6図に従って説明する。
[Example 1] An example in which the present invention is embodied in a swash plate compressor will be described below.
It will be described with reference to FIGS.

第4図に示すように、前後に対設されたシリンダブロッ
ク1,2の両端部はそれぞれバルブプレート3,4を介してフ
ロント及びリヤハウジング5,6により閉鎖され、これら
は複数本のボルト7によって結合されている。シリンダ
ブロック1,2の結合部分には斜板室8が形成され、斜板
室8には両シリンダブロック1,2の中心の軸孔1a,2aを貫
通する駆動軸9に固定された斜板10が収容されている。
第4〜6図に示すように、前記シリンダブロック1,2に
は5対のシリンダボア11が、駆動軸9と平行にかつ駆動
軸9を中心とする放射位置に形成され、各シリンダボア
11には両頭ピストン12が嵌挿されている。各ピストン12
はシュー13を介して斜板10に係留され、駆動軸9の回転
に伴う斜板10の揺動によってシリンダボア11内で往復移
動される。
As shown in FIG. 4, both ends of the cylinder blocks 1 and 2 arranged in front and back are closed by front and rear housings 5 and 6 via valve plates 3 and 4, respectively, and these are formed by a plurality of bolts 7 Are joined by. A swash plate chamber 8 is formed in the connecting portion of the cylinder blocks 1 and 2, and a swash plate 10 fixed to a drive shaft 9 penetrating through the central shaft holes 1a and 2a of both cylinder blocks 1 and 2 is formed in the swash plate chamber 8. It is housed.
As shown in FIGS. 4 to 6, five pairs of cylinder bores 11 are formed in each of the cylinder blocks 1 and 2 in parallel with the drive shaft 9 and at a radial position around the drive shaft 9, and
A double-headed piston 12 is fitted and inserted in 11. Each piston 12
Is moored to the swash plate 10 via the shoe 13, and is reciprocated in the cylinder bore 11 by the swing of the swash plate 10 accompanying the rotation of the drive shaft 9.

前記フロント及びリヤハウジング5,6にはそれぞれ中心
側に吸入室14,15が形成され、外周側に吐出室16,17が形
成されている。又、両バルブプレート3,4にはそれぞれ
吸入口18,19及び吐出口20,21が形成されている。さら
に、バルブプレート3,4のシリンダブロック1,2側には吸
入弁22,23が設けられ、バルブプレート3,4のハウジング
5,6側には吐出弁24,25が設けられている。
Suction chambers 14 and 15 are formed on the center sides of the front and rear housings 5 and 6, respectively, and discharge chambers 16 and 17 are formed on the outer peripheral sides thereof. The valve plates 3 and 4 are formed with suction ports 18 and 19 and discharge ports 20 and 21, respectively. Further, intake valves 22 and 23 are provided on the cylinder blocks 1 and 2 side of the valve plates 3 and 4, respectively, and the housings of the valve plates 3 and 4 are provided.
Discharge valves 24 and 25 are provided on the fifth and sixth sides.

前記リヤ側シリンダブロック2の上部には冷媒ガスGの
吸入、吐出用の突出部26が設けられ、この突出部26には
第5図に示すように、斜板室8に開口するガス入口27が
形成されている。両シリンダブロック1,2における各シ
リンダボア11の狭間には、斜板室8と吸入室14,15とを
連通するための吸入通路28,29が各5個形成され、前記
ガス入口27から斜板室8に吸入された冷媒ガスGがこの
吸入通路28,29を通って吸入室14,15内に導入される。
A protrusion 26 for sucking in and discharging the refrigerant gas G is provided on the upper portion of the rear cylinder block 2, and a gas inlet 27 opening to the swash plate chamber 8 is provided in the protrusion 26 as shown in FIG. Has been formed. Five suction passages 28 and 29 for communicating the swash plate chamber 8 with the suction chambers 14 and 15 are formed between the cylinder bores 11 of the cylinder blocks 1 and 2, respectively. The refrigerant gas G sucked in is introduced into the suction chambers 14, 15 through the suction passages 28, 29.

第1,5,6図に示すように、前記突出部26上には遮蔽板31
及び細孔形成板32を介してシェル33が取り付けられ、そ
の内部には膨脹室34が形成されている。膨脹室34内にお
いて遮蔽板31上には一対の放出パイプ35が横向きに突設
され、その上端部が膨脹室34の中心に向かって開口され
ている。各放出パイプ35と前記吐出室16,17とを連通す
るように、リヤ側シリンダブロック2には一対のガス出
口36が形成され、圧縮冷媒ガスが吐出室16,17からこの
ガス出口36及び放出パイプ35を経て膨脹室34内に放出さ
れる。
As shown in FIGS. 1, 5 and 6, a shield plate 31 is provided on the protrusion 26.
The shell 33 is attached through the pore forming plate 32, and the expansion chamber 34 is formed inside the shell 33. In the expansion chamber 34, a pair of discharge pipes 35 are laterally projected on the shield plate 31, and the upper ends of the discharge pipes 35 are opened toward the center of the expansion chamber 34. A pair of gas outlets 36 is formed in the rear cylinder block 2 so as to connect the discharge pipes 35 and the discharge chambers 16 and 17, and the compressed refrigerant gas is discharged from the discharge chambers 16 and 17 to the gas outlets 36 and discharge. It is discharged into the expansion chamber 34 through the pipe 35.

前記シェル33には吸入パイプ37が突設され、その基端に
おいてガス入口27に接続されている。又、シェル33には
吐出パイプ38がその端部が膨脹室34内の前記放出パイプ
35の開口部より下方まで突出する状態に固定され、放出
パイプ35から膨脹室34を通って吐出パイプ38へ導かれる
冷媒ガス流がこの吐出パイプ38の下端部38aに衝突し、
そのガス流に含まれるミスト状のオイルOが下端部38a
の外周に付着して分離回収される。又、膨脹室34内の冷
媒ガスは吐出パイプ38を介して図示しない外部冷却回路
に供給される。
A suction pipe 37 is projected from the shell 33, and is connected to the gas inlet 27 at the base end thereof. Further, the shell 33 has a discharge pipe 38 whose end is the discharge pipe in the expansion chamber 34.
The refrigerant gas flow, which is fixed so as to project downward from the opening of 35, is guided from the discharge pipe 35 through the expansion chamber 34 to the discharge pipe 38, collides with the lower end 38a of the discharge pipe 38,
The mist-like oil O contained in the gas flow is the lower end portion 38a.
It is attached to the outer periphery of and separated and collected. Further, the refrigerant gas in the expansion chamber 34 is supplied to an external cooling circuit (not shown) via the discharge pipe 38.

前記膨脹室34の下部においてリヤ側シリンダブロック2
の突出部26上には、分離回収されたオイルOを貯留する
ためのオイル貯溜室39が形成されている。膨脹室34とオ
イル貯溜室39との間の遮蔽板31には、吐出パイプ38の下
端部38aの直下に位置するように透孔40が形成され、そ
の下部にはオイルOに混入した塵等を過するためのフ
ィルタ41が取着されている。第6図に示すように、透孔
40の外周縁に対応して細孔形成板32には一対の細孔42が
形成され、この細孔42を介して膨脹室34とオイル貯溜室
39とが連通されている。オイル貯溜室39の底部と、低圧
部としての斜板室8との間には両者を連通するオイル通
路43がほぼ垂直に延びるように形成され、オイル貯溜室
39内のオイルがオイル通路43を通って斜板室8内に滴下
供給される。
In the lower part of the expansion chamber 34, the rear cylinder block 2
An oil storage chamber 39 for storing the separated and recovered oil O is formed on the protruding portion 26. A through hole 40 is formed in the shielding plate 31 between the expansion chamber 34 and the oil storage chamber 39 so as to be located immediately below the lower end portion 38a of the discharge pipe 38, and dust and the like mixed in the oil O is formed under the through hole 40. A filter 41 is attached for the purpose. As shown in FIG. 6, through holes
A pair of pores 42 are formed in the pore forming plate 32 so as to correspond to the outer peripheral edge of 40, and the expansion chamber 34 and the oil reservoir chamber are formed through the pores 42.
It is in communication with 39. An oil passage 43 is formed between the bottom portion of the oil storage chamber 39 and the swash plate chamber 8 serving as a low pressure portion so as to extend therebetween so as to extend substantially vertically.
The oil in 39 is dropped and supplied into the swash plate chamber 8 through the oil passage 43.

オイル通路43は第2,3図に示すように、オイル貯溜室39
寄りに断面ほぼ楕円形状に形成された大径部43aが形成
され、大径部43aに連続して断面円形状の小径部43bが形
成されている。大径部43a内にはオイル貯溜室39内の圧
力変化に対応してその開口面積が変化し、かつ圧力上昇
に伴いその開口面識が狭くなる可変オリフィス33が配設
されている。可変オリフィス44は最小開口面積を保証す
る金属等の剛体製のパイプ45と、該パイプ45の外周に嵌
着された連続気泡を有する弾性発泡合成樹脂製の流量調
整体46とから形成され、その一端が大径部43aの下端に
当接する状態でオイル通路43に嵌着されている。流量調
整体46の外周両側面と、大径部43aの内面との間には間
隙δが形成されている。
The oil passage 43, as shown in FIGS.
A large-diameter portion 43a having a substantially elliptical cross-section is formed toward the side, and a small-diameter portion 43b having a circular cross-section is formed continuously with the large-diameter portion 43a. In the large diameter portion 43a, a variable orifice 33 is provided, the opening area of which changes in response to the pressure change in the oil storage chamber 39, and the opening face width of which narrows as the pressure rises. The variable orifice 44 is formed of a pipe 45 made of a rigid body such as metal that guarantees a minimum opening area, and a flow rate adjusting body 46 made of elastic foam synthetic resin having open cells fitted on the outer periphery of the pipe 45. It is fitted into the oil passage 43 with one end abutting the lower end of the large diameter portion 43a. A gap δ is formed between both outer peripheral side surfaces of the flow rate adjuster 46 and the inner surface of the large diameter portion 43a.

次に前記のように構成された装置の作用を説明する。Next, the operation of the device configured as described above will be described.

さて、駆動軸9の回転により斜板10が回転されると、各
ピストン12がシリンダボア11内で第4図における左右方
向に往復移動されて冷媒ガスGの吸入、圧縮及び吐出が
行われる。圧縮された冷媒ガスGは、吐出室16,17から
ガス出口36及び放出パイプ35を通って膨脹室34内に放出
され、膨脹室34内で流速が低下された後に吐出パイプ38
を通って図示しない外部冷却回路に供給される。そし
て、前記放出パイプ35の開口端部から膨脹室34内に冷媒
ガスGが放出される際、冷媒ガス流が吐出パイプ38の下
端部38aに衝突することにより、そのガス流に含まれる
ミスト状のオイルOが下端部38aの外周に付着して分離
回収される。分離回収されたオイルOは下端部38aから
膨脹室34の底部に落下し、透孔40、フィルタ41及び細孔
42を通ってオイル貯溜室39内に滴下貯留される。さら
に、この貯留されたオイルOがオイル通路43を通って圧
縮機の斜板室8に滴下供給され、ピストン12等の可動部
の潤滑に供される。
When the swash plate 10 is rotated by the rotation of the drive shaft 9, each piston 12 is reciprocated in the cylinder bore 11 in the left-right direction in FIG. 4, so that the refrigerant gas G is sucked, compressed, and discharged. The compressed refrigerant gas G is discharged into the expansion chamber 34 from the discharge chambers 16 and 17 through the gas outlet 36 and the discharge pipe 35, and the flow velocity is reduced in the expansion chamber 34, and then the discharge pipe 38.
And is supplied to an external cooling circuit (not shown). When the refrigerant gas G is discharged from the opening end of the discharge pipe 35 into the expansion chamber 34, the refrigerant gas flow collides with the lower end portion 38a of the discharge pipe 38, thereby forming a mist shape in the gas flow. Oil O adheres to the outer periphery of the lower end portion 38a and is separated and collected. The oil O that has been separated and collected falls from the lower end portion 38a to the bottom portion of the expansion chamber 34, and the through hole 40, the filter 41, and the pores.
It is dripped and stored in the oil storage chamber 39 through 42. Further, the stored oil O is dripped and supplied to the swash plate chamber 8 of the compressor through the oil passage 43, and is used for lubricating movable parts such as the piston 12.

オイル貯溜室39からオイル通路43を通って斜板室8に滴
下供給されるオイルは、可変オリフィス44を通過する
際、一部はパイプ45を通過し一部は流量調整体46を通過
する。流量調整体46はオイル貯溜室39内の圧力が低いと
きには、その弾性力にて半径方向に拡開された状態にあ
り、連続気泡の開口面積が大きな状態にある。流量調整
体46の外周には大径部43aとの間隙δの部分に存在する
オイルOを介してオイル貯溜室39内と同じ圧力が加わ
る。従って、オイル貯溜室39内の圧力が上昇するに従
い、流量調整体46はこの圧力を直接感知してその弾性に
抗して半径方向に押圧縮小され、連続気泡の開口面積が
小さくなって連続気泡部分を通過可能なオイルOの量が
減少し、吐出圧力が最大となった場合には連続気泡部分
はほとんど塞がれてオイルOはパイプ45のみを通って斜
板室8に供給される。
The oil dripped and supplied from the oil storage chamber 39 to the swash plate chamber 8 through the oil passage 43 partially passes through the pipe 45 and partially through the flow rate adjuster 46 when passing through the variable orifice 44. When the pressure in the oil storage chamber 39 is low, the flow rate adjuster 46 is in a state of being expanded in the radial direction by its elastic force, and the open area of the open cells is large. The same pressure as that in the oil storage chamber 39 is applied to the outer circumference of the flow rate adjusting body 46 via the oil O existing in the gap δ with the large diameter portion 43a. Therefore, as the pressure in the oil storage chamber 39 rises, the flow rate adjuster 46 directly senses this pressure and is pressed and contracted in the radial direction against its elasticity, and the open area of the open cells is reduced and the open cells are reduced. When the amount of oil O that can pass through the portion decreases and the discharge pressure reaches the maximum, the open air bubble portion is almost closed and the oil O is supplied to the swash plate chamber 8 only through the pipe 45.

オイル通路43の開口面積が一定であれば、オイル貯留室
39内の圧力上昇に伴ってオイル通路43内のオイルOの流
量が増加してオイル貯溜室39内からオイルOがなくなる
事態が生じる。しかし、オイル通路43に設けられた可変
オリフィス44が前記のように作用するため、オイル貯溜
室39内の圧力が変化してもオイル通路43を通過するオイ
ルOの流量はほぼ一定となる。従って、オイル貯溜室39
内にオイルOがなくなって吐出ガスが斜板室8内に逆流
することによる、体積効率の悪化やピストン12、シュー
13等の焼付き等が確実に防止される。
If the opening area of the oil passage 43 is constant, the oil storage chamber
As the pressure in 39 increases, the flow rate of oil O in the oil passage 43 increases, and the oil O may disappear from the oil storage chamber 39. However, since the variable orifice 44 provided in the oil passage 43 operates as described above, the flow rate of the oil O passing through the oil passage 43 becomes substantially constant even if the pressure in the oil storage chamber 39 changes. Therefore, the oil storage chamber 39
Since the oil O is exhausted inside and the discharge gas flows back into the swash plate chamber 8, the volume efficiency is deteriorated and the piston 12 and the shoe are
The seizure of 13 etc. is surely prevented.

又、この実施例においてはオイル通路43がオイル貯溜室
39と斜板室8との間において最短距離でほぼ垂直に延び
るように形成されているため、オイル通路43に目詰まり
が生じ難い。
Further, in this embodiment, the oil passage 43 is the oil storage chamber.
Since it is formed so as to extend substantially vertically at the shortest distance between the swash plate chamber 39 and the swash plate chamber 8, the oil passage 43 is unlikely to be clogged.

[実施例2] 次に第2実施例を第7図に従って説明する。この実施例
においては可変オリフィス44の構成のみが前記実施例と
異なっている。すなわち、可変オリフィス44を構成する
パイプ47は、その内径が軸方向の中央で最小となり両端
側に向かって漸次大径となるように形成されるととも
に、両端にフランジ47aが形成され、かつ周壁にはパイ
プ47の軸方向に延びる透孔47bが形成されている。パイ
プ47の外周には弾性発泡合成樹脂あるいはゴム等により
円筒状に形成された流量調整体48が嵌装され、パイプ47
の外周面と流量調整体48の内周面との間に透孔47bに連
通する間隙49が形成されている。
[Second Embodiment] Next, a second embodiment will be described with reference to FIG. In this embodiment, only the structure of the variable orifice 44 is different from that of the previous embodiment. That is, the pipe 47 that constitutes the variable orifice 44 is formed such that the inner diameter thereof becomes the minimum at the center in the axial direction and gradually increases toward both ends, and the flanges 47a are formed at both ends and the peripheral wall is formed. A through hole 47b extending in the axial direction of the pipe 47 is formed. A cylindrical flow rate adjuster 48 made of elastic foam synthetic resin, rubber or the like is fitted around the outer periphery of the pipe 47.
A gap 49 communicating with the through hole 47b is formed between the outer peripheral surface of the inner peripheral surface and the inner peripheral surface of the flow rate adjusting body 48.

この実施例ではオイル貯溜室39内の圧力が低い場合には
流量調整体48が変形せずに円筒状に保持され、可変オリ
フィス44を通過するオイルOはパイプ47の中心部と、壁
面に形成された透孔47bとの両者を通過する。一方、オ
イル貯溜室39内の圧力が高圧になると、流量調整体48は
その外周面に加わる圧力の作用によって半径方向内側に
向かって撓み、間隙49の開口面積が小さくなる。従っ
て、この実施例の場合にもオイル貯溜室39内の圧力が変
化しても、オイル通路43を通って斜板室8に戻されるオ
イルOの量はほぼ一定となる。
In this embodiment, when the pressure in the oil storage chamber 39 is low, the flow rate adjusting body 48 is held in a cylindrical shape without being deformed, and the oil O passing through the variable orifice 44 is formed in the central portion of the pipe 47 and the wall surface. It passes through both the formed through hole 47b. On the other hand, when the pressure in the oil storage chamber 39 becomes high, the flow rate adjusting body 48 bends inward in the radial direction by the action of the pressure applied to the outer peripheral surface thereof, and the opening area of the gap 49 becomes smaller. Therefore, even in the case of this embodiment, even if the pressure in the oil storage chamber 39 changes, the amount of oil O returned to the swash plate chamber 8 through the oil passage 43 becomes substantially constant.

[実施例3] 次に第3実施例を第8図に従って説明する。この実施例
においては可変オリフィス44が連続気泡を有する弾性発
泡合成樹脂あるいはゴムで形成された流量調整体50のみ
で構成されている点と、オイル通路43の大径部43aが断
面円形状に形成されている点とが前記両実施例と異なっ
ている。流量調整体50はオイル貯溜室39側が半球状に形
成されている。この実施例ではオイル貯溜室39内の圧力
が低い状態でその中心部に形成された通路50aの開口面
積が最大となり、オイル貯溜室39内の圧力が上昇するに
従い流量調整体50が圧縮されて通路50aの開口面積が小
さくなる。従って、この実施例の場合にもオイル貯溜室
39内の圧力が変化しても、オイル通路43を通って斜板室
8に戻されるオイルOの量はほぼ一定となる。又、この
実施例の場合には前記両実施例と異なり、通路50aの口
径が変化するためオイルOのなかに異物が存在した場合
でも、孔づまりを防ぐことができる。
[Third Embodiment] Next, a third embodiment will be described with reference to FIG. In this embodiment, the variable orifice 44 is constituted only by the flow rate adjusting body 50 made of elastic foam synthetic resin or rubber having open cells, and the large diameter portion 43a of the oil passage 43 is formed in a circular cross section. This is different from both of the above embodiments. The flow rate adjuster 50 is formed in a hemispherical shape on the oil storage chamber 39 side. In this embodiment, when the pressure in the oil storage chamber 39 is low, the opening area of the passage 50a formed in the center of the oil storage chamber 39 is maximized, and the flow rate adjuster 50 is compressed as the pressure in the oil storage chamber 39 increases. The opening area of the passage 50a is reduced. Therefore, also in this embodiment, the oil storage chamber
Even if the pressure in 39 changes, the amount of oil O returned to the swash plate chamber 8 through the oil passage 43 becomes substantially constant. Also, in the case of this embodiment, unlike both the above-mentioned embodiments, since the diameter of the passage 50a changes, it is possible to prevent clogging even when foreign matter is present in the oil O.

なお、本考案は前記各実施例限定されるものではなく、
例えば、オイル貯溜室39内のオイルOを直接斜板室8へ
戻さずに斜板室8に連通する低圧部を介して斜板室8へ
戻すようにしたり、冷媒ガスからオイルOを分離する構
造として別の構造を採用してもよい。又、斜板式圧縮機
以外の圧縮機に適用してもよい。
The present invention is not limited to the above embodiments,
For example, the oil O in the oil storage chamber 39 is not returned directly to the swash plate chamber 8 but is returned to the swash plate chamber 8 via a low pressure portion communicating with the swash plate chamber 8, or the structure for separating the oil O from the refrigerant gas is different. The structure of may be adopted. Further, it may be applied to a compressor other than the swash plate compressor.

[考案の効果] 以上詳述したように本考案によれば、圧縮機の高圧部に
おいて冷媒ガスから分離されてオイル貯溜室に貯溜され
たオイルを低圧部に戻すオイル通路内に配設された可変
オリフィスの作用により、低圧部に戻されるオイルの量
が吐出圧力の変動に拘らずほぼ一定に保持され、吐出圧
力が著しく高くなったときにもオイル貯溜室内のオイル
がなくなることがなく、オイルの戻し通路から吐出ガス
の一部が圧縮機の低圧部に逆流することによる圧縮機の
体積効率の悪化、吐出温度の上昇や斜板等に付着してい
たオイルが洗い流されることによるピストン、シュー等
の焼付の発生が確実に防止される。
[Effects of the Invention] As described in detail above, according to the present invention, the oil is separated from the refrigerant gas in the high pressure portion of the compressor and is disposed in the oil passage for returning the oil stored in the oil storage chamber to the low pressure portion. Due to the action of the variable orifice, the amount of oil returned to the low pressure part is kept almost constant regardless of the fluctuation of the discharge pressure, and even when the discharge pressure becomes extremely high, the oil in the oil storage chamber does not run out, and the oil Part of the discharge gas flows back to the low pressure part of the compressor from the return passage of the compressor, the volumetric efficiency of the compressor deteriorates, the discharge temperature rises and the oil adhering to the swash plate is washed away and the piston and shoe It is possible to reliably prevent the occurrence of seizure.

又、本考案は吐出圧力に伴うオイル貯溜室の圧力を直接
感知して可変オリフィスの開口面積を調整する構造のた
め、熱負荷の変動あるいはその他の理由により吐出圧力
が変動した場合にも前記開口面積の調整を適正に行い、
低圧部に戻されるオイルの量をほぼ一定に保持すること
ができる。
In addition, the present invention has a structure in which the opening area of the variable orifice is adjusted by directly detecting the pressure of the oil storage chamber associated with the discharge pressure. Therefore, even if the discharge pressure fluctuates due to fluctuations in heat load or other reasons, Properly adjust the area,
The amount of oil returned to the low pressure part can be kept substantially constant.

【図面の簡単な説明】[Brief description of drawings]

第1〜6図は本考案を具体化した第1実施例を示すもの
であって、第1図はオイルセパレータの構成を示す部分
断面図、第2図はオイル通路の拡大断面図、第3図は第
2図のIII−III線における断面図、第4図は圧縮機全体
を示す断面図、第5図は第1図のV−V線における断面
図、第6図は第1図のVI−VI線における断面図、第7図
は第2実施例の要部断面図、第8図は第3実施例の要部
断面図である。 シリンダブロック1,2、圧縮機の低圧部としての斜板室
8、膨脹室34、吐出パイプ38、オイル貯溜室39、オイル
通路43、大径部43a、小径部43b、可変オリフィス44、パ
イプ45,47、流量調整体46,48,50、間隙δ、冷媒ガス
G、オイルO。
1 to 6 show a first embodiment embodying the present invention. FIG. 1 is a partial sectional view showing the structure of an oil separator, FIG. 2 is an enlarged sectional view of an oil passage, and FIG. 2 is a sectional view taken along line III-III in FIG. 2, FIG. 4 is a sectional view showing the entire compressor, FIG. 5 is a sectional view taken along line VV in FIG. 1, and FIG. 6 is shown in FIG. FIG. 7 is a sectional view taken along line VI-VI, FIG. 7 is a sectional view of an essential portion of the second embodiment, and FIG. 8 is a sectional view of an essential portion of the third embodiment. Cylinder blocks 1 and 2, swash plate chamber 8 as a low pressure part of the compressor, expansion chamber 34, discharge pipe 38, oil storage chamber 39, oil passage 43, large diameter portion 43a, small diameter portion 43b, variable orifice 44, pipe 45, 47, flow rate adjusters 46, 48, 50, gap δ, refrigerant gas G, oil O.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】冷媒ガス中に含まれる潤滑オイルを圧縮機
の高圧部にて冷媒ガスから分離し、該分離したオイルを
圧縮機の低圧部に戻すように構成された圧縮機におい
て、前記分離されたオイルを一時貯溜するため高圧部に
設けられたオイル貯溜室と、低圧部とを連通するオイル
通路に、前記オイル貯溜室の圧力を直接感知してその開
口面積が変化し、かつ圧力上昇に伴いその開口面積が狭
くなる可変オリフィスを設けた圧縮機のオイルセパレー
タ。
1. A compressor configured to separate lubricating oil contained in a refrigerant gas from a refrigerant gas in a high pressure portion of a compressor and return the separated oil to a low pressure portion of the compressor. The oil storage chamber provided in the high pressure part for temporarily storing the stored oil and the oil passage communicating with the low pressure part, the pressure of the oil storage chamber is directly sensed, the opening area changes, and the pressure rises. An oil separator for a compressor provided with a variable orifice whose opening area becomes narrower as a result.
JP1989082391U 1989-07-13 1989-07-13 Compressor oil separator Expired - Lifetime JPH0744767Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989082391U JPH0744767Y2 (en) 1989-07-13 1989-07-13 Compressor oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989082391U JPH0744767Y2 (en) 1989-07-13 1989-07-13 Compressor oil separator

Publications (2)

Publication Number Publication Date
JPH0321578U JPH0321578U (en) 1991-03-04
JPH0744767Y2 true JPH0744767Y2 (en) 1995-10-11

Family

ID=31629161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989082391U Expired - Lifetime JPH0744767Y2 (en) 1989-07-13 1989-07-13 Compressor oil separator

Country Status (1)

Country Link
JP (1) JPH0744767Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110428A (en) * 2016-03-23 2017-10-11 한온시스템 주식회사 Compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588950U (en) * 1981-07-10 1983-01-20 日本電気株式会社 semiconductor equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170110428A (en) * 2016-03-23 2017-10-11 한온시스템 주식회사 Compressor

Also Published As

Publication number Publication date
JPH0321578U (en) 1991-03-04

Similar Documents

Publication Publication Date Title
US5580224A (en) Reciprocating type compressor with oil separating device
JPH11182430A (en) Oil recover structure of compressor
US7029243B2 (en) Gas compressor having oil separation filter
JP3120697B2 (en) Swash plate compressor
JPH02230979A (en) Swash plate type compressor
JPH0744767Y2 (en) Compressor oil separator
US6726456B2 (en) Foreign matter removing structure in a fluid circuit and a compressor therewith
JP2792126B2 (en) Oil separator
JP3084934B2 (en) Compressor oil separator
JP3120537B2 (en) Reciprocating compressor
KR101805783B1 (en) Porous oil flow controller
KR100490320B1 (en) Reciprocating piston type refrigerant compressor
KR100759791B1 (en) Compressor having an oil spraration apparatus
JP3747533B2 (en) Cam compressor
JPH02308986A (en) Compressor
KR100529860B1 (en) Oil separator
KR100542149B1 (en) Oil separator
JP2797494B2 (en) Oil separation structure of compressor
JPH0311167A (en) Reciprocating movement type compressor
KR100523230B1 (en) Compressor Built-in Oil Separator
JP2797496B2 (en) Swash plate compressor
KR100600625B1 (en) Oil separator
KR100755913B1 (en) Oil separator embedded in compressor
KR100697674B1 (en) Oil separator embedded in compressor
JP2943181B2 (en) Oil separation structure of compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term