JPH0744386Y2 - Laser beam processing optical system with uniform intensity - Google Patents

Laser beam processing optical system with uniform intensity

Info

Publication number
JPH0744386Y2
JPH0744386Y2 JP1988044075U JP4407588U JPH0744386Y2 JP H0744386 Y2 JPH0744386 Y2 JP H0744386Y2 JP 1988044075 U JP1988044075 U JP 1988044075U JP 4407588 U JP4407588 U JP 4407588U JP H0744386 Y2 JPH0744386 Y2 JP H0744386Y2
Authority
JP
Japan
Prior art keywords
optical system
workpiece
laser beam
intensity
sided prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988044075U
Other languages
Japanese (ja)
Other versions
JPH01151993U (en
Inventor
之夫 久所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1988044075U priority Critical patent/JPH0744386Y2/en
Publication of JPH01151993U publication Critical patent/JPH01151993U/ja
Application granted granted Critical
Publication of JPH0744386Y2 publication Critical patent/JPH0744386Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は強度均一化レーザビーム加工光学系に関し,特
に四面プリズムを透したガウシアンビーム光を均一な強
度分布に変換するための強度分布に変換するための強度
均一化レーザビーム加工光学系に関する。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to an intensity homogenizing laser beam processing optical system, and particularly, to an intensity distribution for transforming Gaussian beam light transmitted through a tetrahedral prism into a uniform intensity distribution. Intensity homogenizing laser beam processing optical system.

〔従来の技術〕[Conventional technology]

従来より,レーザ光のビーム強度の均一化に関する技術
は数多く提案されている。四面プリズムを用いた方法も
その1つである。この四面プリズムを用いた方法は,第
5図に示すように,強度分布が曲線Aで示されるような
ガウシアンビームであるレーザ光1は,四面プリズム2
に光軸が互いに一致するように入射して四分割化され
る。このとき,光軸8付近の強度の大きいレーザ光はA1
に示すように光軸8から離れるように屈折するのに対
し,ガウシアンビームの裾部の光軸8から離れたところ
の強度の小さいレーザ光はA2に示すように反対に光軸に
近づくように屈折する。このようにして,四面プリズム
によって四分割化されたレーザ光は弱いところと強いと
ころが夫々重畳されて,四面プリズムにおける斜面(側
面)と,入射レーザ光の光軸に対して垂直な面とで作る
入射角θと,入射レーザ光のビーム径2aとによって一意
的に定められる距離Lのところで,均一な強度分布Bを
有するレーザ光に変換される。
Heretofore, many techniques have been proposed for making the beam intensity of laser light uniform. The method using a four-sided prism is one of them. As shown in FIG. 5, the method using this four-sided prism is such that the laser beam 1 which is a Gaussian beam whose intensity distribution is shown by the curve A is
Are incident so that their optical axes coincide with each other and are divided into four. At this time, the laser light with high intensity near the optical axis 8 is A1
While refracting away from the optical axis 8 as shown in Fig. 3, the laser light with small intensity at the skirt of the Gaussian beam at the hem is opposite to the optical axis as shown at A2. Refract. In this way, the laser light divided into four parts by the four-sided prism is made up of the inclined surface (side surface) of the four-sided prism and the surface perpendicular to the optical axis of the incident laser light, by overlapping the weak and strong parts. At a distance L uniquely determined by the incident angle θ and the beam diameter 2a of the incident laser light, it is converted into laser light having a uniform intensity distribution B.

第6図は光軸方向に見た各レーザ光1と四面プリズム2
を示すもので,Cは合成された均一な(正)方形ビーム像
(合成像)である。
FIG. 6 shows each laser beam 1 and the tetrahedral prism 2 viewed in the optical axis direction.
And C is a combined uniform (square) square beam image (composite image).

合成像Cはオプチカルコムニケーション(Opt.Commu
n.)48,1983,44〜46に詳細に報告されているように,そ
の1辺がガウシアンビーム半径aの1.1倍である1.1aに
なるときその均一性が最良になる。
The composite image C is an optical communication (Opt.Commu
n.) 48,1983,44-46, the uniformity is best when one side is 1.1a, which is 1.1 times the Gaussian beam radius a.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上述した従来の四面プリズムのみを用いた均一ビーム光
学系ではガウシアンビームを入射光としている。このガ
ウシアンビームをレーザ発振器から取り出そうとすると
き,通常はTEM00モードと呼ばれる最もコヒーレンシー
(Coherency)の高い光として取り出されるため,入射
光は可干渉性に優れている。従って,四面プリズムを用
いた均一ビーム光学系では,四分割されたコヒーレンシ
ーの高い光を重ね合わせているので,均一ビーム上に必
ず干渉縞が現われるという問題点がある。これは原理的
にどうしても避けられないものである。
In the uniform beam optical system using only the conventional four-sided prism described above, the Gaussian beam is used as the incident light. When this Gaussian beam is to be extracted from the laser oscillator, it is usually extracted as light with the highest coherency called TEM 00 mode, so the incident light has excellent coherence. Therefore, in the uniform beam optical system using the four-sided prism, since the four-divided light with high coherency is superposed, there is a problem that interference fringes always appear on the uniform beam. This is inevitable in principle.

第7図はこの干渉縞の模様を示した図であり,多数の干
渉縞がλ/2sinθの間隔でX,Y方向に#型状に整然と並ん
でいる。ここにλは入射レーザ光の波長を示し,入射角
θは90°以下である。これは通常のルーフトップ状のプ
リズムが2組あり,それぞれが90°の角度をなして配置
されていると考えれば理解できる。
FIG. 7 is a diagram showing the pattern of the interference fringes, and a large number of the interference fringes are arranged in # -type in the X and Y directions at intervals of λ / 2sinθ. Where λ is the wavelength of the incident laser light, and the incident angle θ is 90 ° or less. This can be understood by considering that there are two sets of ordinary rooftop prisms, each of which is arranged at an angle of 90 °.

したがって,本考案は,従来のもののこのような問題点
を解決しようとするもので,均一ビーム上に干渉縞の現
われない強度均一化レーザビーム加工用光学系を提供し
ようとするものである。
Therefore, the present invention is intended to solve such problems of the conventional ones, and to provide an optical system for processing an intensity uniformized laser beam in which interference fringes do not appear on a uniform beam.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は,合成像上に生じた干渉縞によってできる不均
一さをなくすために,合成像の干渉縞の間隔に合わせて
動かす構造としたものである。
The present invention has a structure that is moved according to the interval of the interference fringes of the composite image in order to eliminate the nonuniformity caused by the interference fringes generated on the composite image.

すなわち本考案によれば,ガウシアンビームを出力する
レーザ光源と、前記ガウシアンビームを屈折させて被加
工物上にビーム強度が均一な合成方形ビームを照射させ
る四面プリズムと、該四面プリズムから見て前記被加工
物側に配置され、前記合成方形ビームを前記被加工物上
に導く全反射ミラーとを有するレーザビーム加工光学系
において、前記合成方形ビームが該合成方形ビームによ
って被加工物上に生じる干渉縞の間隔に対応した振幅で
揺動するように、前記全反射ミラーを振動させる手段を
有することを特徴とする強度均一化レーザビーム加工光
学系が得られる。
That is, according to the present invention, a laser light source that outputs a Gaussian beam, a four-sided prism that refracts the Gaussian beam and irradiates a combined rectangular beam with a uniform beam intensity on a workpiece, and the four-sided prism when viewed from the four-sided prism are used. In a laser beam processing optical system having a total reflection mirror arranged on the side of a workpiece and guiding the combined square beam onto the workpiece, the interference of the combined square beam on the workpiece by the combined square beam. An intensity-uniformized laser beam processing optical system is provided which has a means for vibrating the total reflection mirror so as to oscillate with an amplitude corresponding to the interval between stripes.

〔考案の原理〕[Principle of device]

第1図は本考案の原理を説明する構成図である。レーザ
発振器からガウシアンビームで出射されたレーザビーム
は,入射レーザ光1として四面プリズム2を透過し,ビ
ームベンダとしての全反射鏡3に45°の角度で入射す
る。反射光は,入射ガウシアンビームの半径をaとする
とき,1.1aとなるところまで導かれ,その場所に対象物
7が来る様に調整される。この時,対象物7上には先に
説明したように第1図のようなX軸とY軸方向の干渉縞
があらわれている。
FIG. 1 is a block diagram for explaining the principle of the present invention. A laser beam emitted as a Gaussian beam from a laser oscillator passes through a four-sided prism 2 as an incident laser beam 1 and enters a total reflection mirror 3 as a beam bender at an angle of 45 °. The reflected light is guided up to 1.1a where the radius of the incident Gaussian beam is a, and is adjusted so that the object 7 comes to that location. At this time, as described above, the interference fringes in the X-axis and Y-axis directions appear on the object 7 as shown in FIG.

ここでビームベンダとしての全反射鏡3をたとえばリニ
アトランスレータ4でY軸方向に高い周波数で振動させ
る。振動させる際の振幅は,この実施例のように45°の
四面プリズムを用いたときは,干渉縞の間隔 倍でよい。要は干渉縞の山が振動により谷の位置にくれ
ばよい。
Here, the total reflection mirror 3 as a beam bender is vibrated at a high frequency in the Y-axis direction by a linear translator 4, for example. The amplitude when vibrating is such that when a 45 ° four-sided prism is used as in this embodiment, the spacing between the interference fringes is large. You can double it. The point is that the crests of the interference fringes reach the positions of the valleys due to the vibration.

この様にすればX軸に沿って生じていた干渉縞が±Y軸
方向に高速に移動を繰り返す。このため,時間的に平均
して見れば,あたかもX軸に沿って生じた干渉縞はなく
なった様にみなすことができる。
In this way, the interference fringes generated along the X axis repeatedly move in the ± Y axis directions at high speed. Therefore, when viewed in terms of time, it can be regarded as if the interference fringes generated along the X-axis disappeared.

同様にして,X軸方向に高い周波数で振動できる全反射鏡
を設ければ,今度はY軸に沿って生じた干渉縞もないも
のとみなせる。
Similarly, if a total reflection mirror capable of vibrating at a high frequency in the X-axis direction is provided, it can be considered that there is no interference fringe generated along the Y-axis this time.

〔実施例〕〔Example〕

第2図は本考案の第1図の構成を示す図である。ガウシ
アン分布を有する入射レーザ光11としてHe−Neレーザ光
(λ=632.8μm)を用い,四面プリズム12として傾斜
角3°のものを用い,リニアトランスレータとして数kH
zの周波数で振動するPZT(Piezo−electric Transduce
r)14,16を用いる。入射レーザ光11は四面プリズム2を
通り,X軸用のPZT14により振動する全反射ミラー13で直
角方向に曲げられ、−Xと+Xの方向の微小(干渉縞間
隔は約6μm)に振動するビームとして全反射鏡15に照
射される。全反射鏡15は別のY軸用のPZT16により微小
に振動しており,ここで直角に曲げられたレーザ光ビー
ムは,−Yと+Yの方向にも微小に振動して対象物17に
照射される。したがってX軸方向の干渉縞もY軸方向の
干渉縞も見掛けの上ではなくなって一様なビーム光が照
射されたのと同じになる。
FIG. 2 is a diagram showing the configuration of FIG. 1 of the present invention. He-Ne laser light (λ = 632.8 μm) was used as the incident laser light 11 having a Gaussian distribution, a tetrahedral prism 12 with an inclination angle of 3 ° was used, and a linear translator of several kH
PZT (Piezo−electric Transduce
r) Use 14 and 16. The incident laser beam 11 passes through the four-sided prism 2 and is bent at a right angle by the total reflection mirror 13 that is vibrated by the PZT 14 for the X axis, and is a beam that vibrates minutely in the −X and + X directions (interference fringe spacing is about 6 μm). Is radiated to the total reflection mirror 15. The total reflection mirror 15 is slightly vibrated by another PZT 16 for the Y axis, and the laser light beam bent at a right angle here is also slightly vibrated in the −Y and + Y directions to irradiate the object 17. To be done. Therefore, neither the interference fringes in the X-axis direction nor the interference fringes in the Y-axis direction are apparent, and it is the same as when the uniform beam light is applied.

上記において,PZTの振動の振幅は構造的に100μm程度
が限度であるので,これ以上の振幅を必要とする場合は
次のようにする。
In the above, the amplitude of the PZT vibration is structurally limited to about 100 μm, so if more than this is required, the following is done.

第3図は本考案の第2の実施例の構成を示す図である。
この場合入射レーザ光21としてCO2レーザ(λ=10.6μ
m)の出力光を用い,リニアトランスレータとしてガル
バノメータ24,26を用いてある。四面プリズム22,全反射
鏡23,25は第1の実施例と同じであり,装置としての機
能は,数値的な相異はあるが,第1の実施例と同じであ
り,見掛上均一なレーザ光ビームが照射されたのと同じ
になる。
FIG. 3 is a diagram showing the configuration of the second embodiment of the present invention.
In this case, the incident laser light 21 is a CO 2 laser (λ = 10.6 μ
The output light of m) is used, and the galvanometers 24 and 26 are used as linear translators. The four-sided prism 22 and the total reflection mirrors 23 and 25 are the same as those in the first embodiment, and the functions of the apparatus are the same as those in the first embodiment, though there are numerical differences, and are apparently uniform. It is the same as if it was irradiated with a different laser light beam.

この実施例では干渉縞の間隔は約100μmとなるが,ガ
ルバノメータ24,26を用いることにより充分に対応でき
る。このガルバノメータは振動幅を相当大きくできるの
で,干渉縞の間隔が広く,合成像を振動させる振動距離
を大きくとることが必要な場合に有効になる。
In this embodiment, the distance between the interference fringes is about 100 μm, which can be sufficiently dealt with by using the galvanometers 24 and 26. Since this galvanometer can considerably increase the vibration width, it is effective when the distance between the interference fringes is wide and it is necessary to increase the vibration distance for vibrating the composite image.

第4図に本考案の第3の実施例の正面図(a)と側面図
(b)を示す。前記第2の実施例が反射板を用いて四面
プリズムによって合成された像を動かしたのに対し,こ
の例では適当な厚みdを有する透過板33を用い,この透
過板33の傾きθをガルバノメータ34によって変え,この
透過板39を通り抜けるレーザビームを透過板33の屈折率
に従って曲げ,これにより四面プリズム32から出た合成
像を動かすようにしたものである。このとき,この動く
量は透過板33の傾きθの厚みdによって決められる。こ
の第4図はX軸のみを振る場合を示したがもう1枚Y軸
を振る透過板を透過板33の近くに追加すれば,第2の実
施例と全く同様の機能を持たせることが可能となる。
FIG. 4 shows a front view (a) and a side view (b) of a third embodiment of the present invention. In contrast to the second embodiment, in which the image synthesized by the four-sided prism is moved by using the reflection plate, in this example, the transmission plate 33 having an appropriate thickness d is used, and the inclination θ of the transmission plate 33 is adjusted by the galvanometer. The laser beam passing through the transmissive plate 39 is bent according to the refractive index of the transmissive plate 33, thereby moving the composite image emitted from the four-sided prism 32. At this time, this amount of movement is determined by the thickness d of the inclination θ of the transmission plate 33. This FIG. 4 shows the case where only the X axis is shaken, but if another transmitting plate that shakes the Y axis is added near the transmitting plate 33, the same function as in the second embodiment can be provided. It will be possible.

本実施例は四面プリズムの傾斜角θが比較的大きく四面
プリズムと対象物上での合成像までの距離が長くとれな
いときに有用である。さらに,四面プリズムに入射され
るレーザビームの光軸と合成像の中心をほぼ一致させら
れることにも利点がある。尚,透過板の材質としてはZn
Se(屈折率n=2.4)等を用いればよい。
This embodiment is useful when the inclination angle θ of the tetrahedral prism is relatively large and the distance between the tetrahedral prism and the combined image on the object cannot be long. Another advantage is that the optical axis of the laser beam incident on the four-sided prism and the center of the composite image can be made to substantially coincide with each other. The material of the transmission plate is Zn.
Se (refractive index n = 2.4) or the like may be used.

〔考案の効果〕[Effect of device]

以上説明したように,本考案は四面プリズムを透過させ
たレーザ光を合成像のでき面上にてX軸方向,Y軸方向に
それぞれ干渉縞の間隔に合わせて揺動さす手段を持たせ
ることにより,四面プリズムで作られた強度均一ビーム
上の干渉縞の影響をなくすことができる効果がある。
As described above, the present invention is provided with means for swinging the laser light transmitted through the four-sided prism in the X-axis direction and the Y-axis direction according to the intervals of the interference fringes on the surface where a composite image is formed. This has the effect of eliminating the effect of interference fringes on a uniform-intensity beam created by a four-sided prism.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の原理を説明する構成図,第2図乃至第
4図は本考案の実施例の構成図,第5図,第6図は従来
のビームの強度を均一化する方法の説明図,第7図はこ
のとき生ずる干渉縞の説明図である。 記号の説明:1…入射レーザ光,2…四面プリズム,3…全反
射鏡,4…リニアトランスレータ,7…対象物。
FIG. 1 is a block diagram for explaining the principle of the present invention, FIGS. 2 to 4 are block diagrams of an embodiment of the present invention, and FIGS. 5 and 6 show a conventional method for uniformizing the beam intensity. An explanatory diagram and FIG. 7 are explanatory diagrams of interference fringes generated at this time. Explanation of the symbols: 1 ... Incident laser light, 2 ... Four-sided prism, 3 ... Total reflection mirror, 4 ... Linear translator, 7 ... Object.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ガウシアンビームを出力するレーザ光源
と、前記ガウシアンビームを屈折させて被加工物上にビ
ーム強度が均一な合成方形ビームを照射させる四面プリ
ズムと、該四面プリズムから見て前記被加工物側に配置
され、前記合成方形ビームを前記被加工物上に導く全反
射ミラーとを有するレーザビーム加工光学系において、 前記合成方形ビームが該合成方形ビームによって被加工
物上に生じる干渉縞の間隔に対応した振幅で揺動するよ
うに、前記全反射ミラーを振動させる手段を有すること
を特徴とする強度均一化レーザビーム加工光学系。
1. A laser light source for outputting a Gaussian beam, a four-sided prism for refracting the Gaussian beam to irradiate a combined rectangular beam having a uniform beam intensity on a workpiece, and the workpiece as viewed from the four-sided prism. In a laser beam processing optical system having a total reflection mirror that is disposed on the object side and guides the combined square beam onto the workpiece, the combined square beam causes interference fringes generated on the workpiece by the combined square beam. An intensity-uniformized laser beam processing optical system having means for vibrating the total reflection mirror so as to swing with an amplitude corresponding to the interval.
JP1988044075U 1988-03-31 1988-03-31 Laser beam processing optical system with uniform intensity Expired - Lifetime JPH0744386Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988044075U JPH0744386Y2 (en) 1988-03-31 1988-03-31 Laser beam processing optical system with uniform intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988044075U JPH0744386Y2 (en) 1988-03-31 1988-03-31 Laser beam processing optical system with uniform intensity

Publications (2)

Publication Number Publication Date
JPH01151993U JPH01151993U (en) 1989-10-19
JPH0744386Y2 true JPH0744386Y2 (en) 1995-10-11

Family

ID=31270452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988044075U Expired - Lifetime JPH0744386Y2 (en) 1988-03-31 1988-03-31 Laser beam processing optical system with uniform intensity

Country Status (1)

Country Link
JP (1) JPH0744386Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577836A (en) * 1980-06-17 1982-01-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of coated optical fiber
JPS5927825B2 (en) * 1980-07-15 1984-07-09 松下電工株式会社 picture frame structure

Also Published As

Publication number Publication date
JPH01151993U (en) 1989-10-19

Similar Documents

Publication Publication Date Title
US4475787A (en) Single facet wobble free scanner
CN104959730B (en) Rotary table femtosecond laser direct-write methods and device
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
JP2000137139A (en) Optical luminous flux converter
JPH0151801B2 (en)
US4768381A (en) Optical vibrometer
JPH0744386Y2 (en) Laser beam processing optical system with uniform intensity
US4973152A (en) Method and device for the noncontact optical measurement of paths, especially in the triangulation method
JPH058072A (en) Laser beam machining method
JPS62265613A (en) Two-dimensional deflecting device for light beam
JPS588444B2 (en) displacement measuring device
JPS5813890B2 (en) Niji Genteki Hikari Henkousouchi
JP2709928B2 (en) 2D scanning device
JPS60253945A (en) Shape measuring instrument
JP2992075B2 (en) Light beam scanning device
JP2939944B2 (en) 3D object shape measurement device
TW449663B (en) Brightness image manufacture method
JP2585263B2 (en) Film image reading device
JP2584645B2 (en) Line image scanner
JPH04255819A (en) Light beam scanning device
JPH0861927A (en) Contour measuring method and device therefor
JPH0425611Y2 (en)
JP2538611B2 (en) Light flux forming device
JPS61120910A (en) Shape measuring apparatus
JP2740665B2 (en) How to make a holographic fθ lens