JPH0744376B2 - Onboard antenna drive controller for ship stations for satellite communication - Google Patents

Onboard antenna drive controller for ship stations for satellite communication

Info

Publication number
JPH0744376B2
JPH0744376B2 JP24410189A JP24410189A JPH0744376B2 JP H0744376 B2 JPH0744376 B2 JP H0744376B2 JP 24410189 A JP24410189 A JP 24410189A JP 24410189 A JP24410189 A JP 24410189A JP H0744376 B2 JPH0744376 B2 JP H0744376B2
Authority
JP
Japan
Prior art keywords
onboard
satellite
antenna
onboard antenna
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24410189A
Other languages
Japanese (ja)
Other versions
JPH03106204A (en
Inventor
秀則 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24410189A priority Critical patent/JPH0744376B2/en
Publication of JPH03106204A publication Critical patent/JPH03106204A/en
Publication of JPH0744376B2 publication Critical patent/JPH0744376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、衛星通信用の船舶局の船上アンテナを衛星に
向けて正しく指向させるために、船上アンテナの仰角及
び方位角を駆動制御する衛星通信用船舶局の船上アンテ
ナ駆動制御装置(以下、特別の場合を除き船上アンテナ
駆動制御装置という。)に関する。
The present invention relates to a satellite for driving and controlling the elevation angle and azimuth angle of an onboard antenna in order to correctly orient the onboard antenna of a ship station for satellite communication toward the satellite. The present invention relates to a shipboard antenna drive control device for a communication ship station (hereinafter, referred to as a shipboard antenna drive control device unless special cases).

(従来の技術) 従来において衛星通信用の船舶局の船上アンテナを衛星
に指向させるためには、船舶局の個有の装置である航法
装置たとえばジャイロコンパスから船舶の位置及び船舶
の進行方向に関する情報を得て、これらの情報に基づい
て衛星に対する船上アンテナの仰角や方位角を算出し、
船上アンテナの仰角や方位角を変更するようにしてい
る。
(Prior Art) Conventionally, in order to direct an onboard antenna of a ship station for satellite communication to a satellite, information on the position of the ship and the traveling direction of the ship is obtained from a navigation device, which is a device unique to the ship station, such as a gyro compass. And calculate the elevation angle and azimuth angle of the onboard antenna with respect to the satellite based on these information,
The elevation angle and azimuth angle of the onboard antenna are changed.

(発明が解決しようとする課題) しかしながら従来の船上アンテナの指向方法では、航法
装置からの情報と予め与えられた衛星の位置とに基づい
て間接的に船上アンテナの仰角や方位角を求めて船上ア
ンテナを駆動制御するようにしているので、以下に述べ
るような欠点があった。
(Problems to be Solved by the Invention) However, in the conventional onboard antenna directing method, the elevation angle and the azimuth angle of the onboard antenna are indirectly obtained based on the information from the navigation device and the position of the satellite given in advance. Since the antenna is driven and controlled, there are drawbacks as described below.

すなわち、船上アンテナの駆動制御部を船舶の航法装置
にケーブル等で接続しなければならず、このケーブル配
線のために多大な艤装工事が必要となり、コストの増大
や工事期間の長期化を招くという欠点がある。
In other words, the drive control unit of the ship's antenna must be connected to the navigation device of the ship with a cable, etc., and a large amount of outfitting work is required for this cable wiring, resulting in an increase in cost and a prolonged construction period. There are drawbacks.

また、船上アンテナの駆動制御データは航法装置から得
られた情報から間接的に求めたものであり、駆動制御デ
ータの精度は航法装置の性能に左右されてしまい、船上
アンテナの指向精度が低下することがあるという欠点が
ある。
In addition, the drive control data for the onboard antenna is indirectly obtained from the information obtained from the navigation device, and the accuracy of the drive control data depends on the performance of the navigation device, and the pointing accuracy of the onboard antenna decreases. There is a drawback that sometimes.

また、同じく船上アンテナの駆動制御データは船舶の航
法装置からの情報により求めているので、航法装置に故
障等の障害が発生した場合には、船上アンテナを衛星に
向って正しく指向することができなくなり、衛星通信を
行うことができなくなるという欠点がある。
Similarly, the drive control data for the onboard antenna is obtained from the information from the navigation system of the ship, so if a failure such as a malfunction occurs in the navigation system, the onboard antenna can be correctly pointed toward the satellite. There is a drawback that the satellite communication is lost and satellite communication cannot be performed.

さらに、船上アンテナの仰角や方位角を求めるのに衛星
位置が不動であるとして予め与えられた位置に基づいて
なされているので、衛星が摂動等により衛星の位置が変
動した場合には船上アンテナの指向方向に誤差が生ずる
ことがあるという欠点がある。
Furthermore, since the satellite position is determined to be immovable in order to obtain the elevation angle and azimuth angle of the onboard antenna, it is based on the position given in advance, so if the satellite position fluctuates due to perturbation, etc. There is a drawback that an error may occur in the pointing direction.

本発明は、上記欠点を解消することを課題とするもので
あって、艤装工事を少なくすることができコストの低減
や工事期間の短縮を図ることができると共に、船上アン
テナを高精度衛星に対して指向することができる衛星通
信用船舶局の船上アンテナ駆動制御装置を提供すること
を目的とする。
An object of the present invention is to solve the above-mentioned drawbacks, and it is possible to reduce the outfitting work, reduce the cost and shorten the construction period, and use the onboard antenna for high-precision satellites. It is an object of the present invention to provide a shipboard antenna drive control device for a satellite communication ship station that can be directed in any direction.

(課題を解決するための手段) 上記課題は、衛星通信用の船舶局の長手方向に所定間隔
だけ離間して設けられた複数の船上アンテナと、前記各
船上アンテナから衛星に向けて電磁波を送信し前記衛星
からの反射波を前記各船上アンテナで受信して前記各船
上アンテナと前記衛星との距離をそれぞれ測定する測距
手段と、前記測距手段による各測定距離に基づいて前記
各船上アンテナが前記衛星に正確指向する仰角及び方位
角を演算する演算手段と、前記演算手段による演算仰角
及び演算方位角に基づいて前記各船上アンテナの仰角と
方位角を駆動して前記各船上アンテナを前記衛星に指向
させる駆動手段とを備えることにより解決できる。
(Means for Solving the Problem) The above problem is to provide a plurality of onboard antennas that are provided at predetermined intervals in the longitudinal direction of a ship station for satellite communication, and transmit electromagnetic waves from each of the onboard antennas to the satellite. Distance measuring means for receiving the reflected waves from the satellites by the respective onboard antennas to measure the distances between the respective onboard antennas and the satellites, and the respective onboard antennas based on the distances measured by the distance measuring means. Is a means for calculating an elevation angle and an azimuth angle which are accurately directed to the satellite, and an elevation angle and an azimuth angle of each of the onboard antennas are driven based on the calculation elevation angle and the calculation azimuth angle by the operation means to cause the onboard antennas to The problem can be solved by providing a driving means for directing to the satellite.

(作用) 本発明によれば、まず測距手段により複数の船上アンテ
ナのそれぞれと衛星との間の距離が直接測定される。次
に、この各測定結果に基づいて幾何学的条件に従って船
上アンテナの仰角及び方位角が演算される。最後に、求
められた仰角及び方位角に基づいて船上アンテナの仰角
及び方位角を変更駆動する。
(Operation) According to the present invention, first, the distance measuring means directly measures the distance between each of the plurality of onboard antennas and the satellite. Then, the elevation angle and the azimuth angle of the onboard antenna are calculated according to the geometrical conditions based on the measurement results. Finally, the elevation angle and azimuth angle of the onboard antenna are changed and driven based on the obtained elevation angle and azimuth angle.

本発明によれば、複数の船上アンテナと衛星との距離を
直接測定してこの測定結果に基づいて船上アンテナを駆
動制御するようにしているので、従来のように船上アン
テナの指向精度が航法装置の性能や衛星の摂動によって
低下することがなく、船上アンテナの指向精度を向上さ
せることができる。また、船上アンテナ駆動制御装置を
船上アンテナの近くに設けることができ、艤装工事が少
なくて済みコストの低減や工期の短縮が図れる。
According to the present invention, the distances between a plurality of onboard antennas and satellites are directly measured, and the onboard antennas are drive-controlled based on the measurement results. It is possible to improve the pointing accuracy of the onboard antenna without deteriorating due to the performance of the above and the perturbation of the satellite. In addition, the onboard antenna drive control device can be provided near the onboard antenna, and the outfitting work can be reduced, which can reduce the cost and the construction period.

(実施例) 以下に、図面を参照して本発明の一実施例について説明
する。第1図は本実施例の船上アンテナ駆動制御装置の
系統図、第2図(a)は本実施例の船舶局の側面図、第
2図(b)は本実施例の船舶局の平面図である。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an onboard antenna drive control device of this embodiment, FIG. 2 (a) is a side view of a ship station of this embodiment, and FIG. 2 (b) is a plan view of a ship station of this embodiment. Is.

第2図に示すように、衛星通信用の船舶局1は全長150
m、全幅16mの船舶からなっている。船舶局1には、第1
の船上アンテナ10及び第2の船上アンテナ20が船舶局1
の長手方向に所定の距離Cだけ離間して設けられてい
る。この距離Cは、後述するように船舶局1から通信衛
星Aを見込んだ方位角を求める際に分解能が高まるよう
に可能な限り大きく採る。また、第1及び第2の船上ア
ンテナ10,20は通信衛星Aに対するブロッキングがない
ように配置される。
As shown in FIG. 2, the ship station 1 for satellite communication has a total length of 150.
It consists of a vessel measuring 16 m and a total width of 16 m. Ship Station 1
The onboard antenna 10 and the second onboard antenna 20 of the ship station 1
Are provided at a predetermined distance C in the longitudinal direction. This distance C is set to be as large as possible so as to increase the resolution when obtaining the azimuth angle in which the communication satellite A is considered from the ship station 1 as described later. Further, the first and second onboard antennas 10 and 20 are arranged so as not to block the communication satellite A.

第1図に示すように、本実施例の船上アンテナ駆動制御
装置は以下の構成からなる。すなわち、第1の船上アン
テナ10にそれぞれ接続された第1の送信機11及び第1の
受信機12と、第2の船上アンテナ20にそれぞれ接続され
た第2の送信機21及び第2の受信機22と、第1図及び第
2の送信機11,21から送信される搬送波を変調用の測距
符号を発生する符号発生器30と、第1又は第2の送信機
11,21から通信衛星Aに向けて送信され通信衛星Aで反
射して第1又は第2の受信機12,22で受信された搬送波
から測距符号をそれぞれ検出する第1の検出器13及び第
2の検出器23と、第1又は第2の送信機11,21から送信
された測距符号と第1又は第2の受信機12,22で受信さ
れた測距符号との間のビット差(位相差)を検出する符
号ビット差測定器31と、符号ビット差測定器31で求めた
ビット差から第1又は第2船上アンテナ10,20と通信衛
星Aとの距離を測定する本発明の測距手段としての測距
機能とこの測定距離から第1又は第2の船上アンテナ1
0,20が通信衛星Aに正確に指向する仰角及び方位角を演
算する本発明の演算手段としての演算機能とを具備する
制御器32と、制御器32で演算された仰角及び方位角に基
づいて第1又は第2の船上アンテナ10,20の仰角及び方
位角をそれぞれ変更駆動する本発明の駆動手段としての
第1の駆動器14及び第2の駆動器24とから構成されてい
る。
As shown in FIG. 1, the shipboard antenna drive controller of this embodiment has the following configuration. That is, the first transmitter 11 and the first receiver 12 connected to the first shipboard antenna 10, respectively, and the second transmitter 21 and the second receiver connected to the second shipboard antenna 20, respectively. Machine 22, a code generator 30 for generating a ranging code for modulating a carrier wave transmitted from the transmitters 11 and 21 shown in FIGS. 1 and 2, and a first or second transmitter.
A first detector 13 for detecting a distance measuring code from a carrier wave transmitted from 11, 21 to the communication satellite A, reflected by the communication satellite A, and received by the first or second receiver 12, 22; Bits between the second detector 23 and the ranging code transmitted from the first or second transmitter 11, 21 and the ranging code received by the first or second receiver 12, 22 A code bit difference measuring device 31 for detecting a difference (phase difference), and the present invention for measuring the distance between the first or second onboard antenna 10 or 20 and the communication satellite A from the bit difference obtained by the code bit difference measuring device 31. The distance measuring function as the distance measuring means and the first or second onboard antenna 1 from this measured distance
Based on the controller 32 having a calculation function as a calculation means of the present invention for calculating the elevation angle and the azimuth angle at which 0 and 20 are accurately directed to the communication satellite A, and the elevation angle and the azimuth angle calculated by the controller 32. The first or second on-board antenna 10 or 20 comprises a first driver 14 and a second driver 24 as driving means of the present invention for changing and driving the elevation angle and azimuth angle, respectively.

ここで、第3図又は第4図により上述した制御器32にお
ける演算機能の概要について説明する。
Here, the outline of the arithmetic function in the controller 32 described above with reference to FIG. 3 or FIG. 4 will be described.

まず、第3図を参図して、第1及び第2の船上アンテナ
10,20が通信衛星Aに正確に指向する仰角を演算する場
合について説明する。dを第1の船上アンテナ10と通信
衛星Aとの距離、θを通信衛星Aを指向するための第1
の船上アンテナ10の仰角、Rを地球の半径、hを通信
衛星Aの高度とすると、dとθとの間には、次のような
式が成り立つ。
First, referring to FIG. 3, first and second onboard antennas
A case will be described in which the elevation angles 10 and 20 accurately point to the communication satellite A are calculated. d is the distance between the first onboard antenna 10 and the communication satellite A, and θ is the first for pointing the communication satellite A.
Assuming that the elevation angle of the on-board antenna 10 is R E , the radius of the earth is h, and h is the altitude of the communication satellite A, the following equation holds between d and θ.

ここで、R及びhは既知であり、dは上述した制御器
32の測距機能により測定されて既知となる。したがっ
て、(1)式に従って仰角θを求めることができる。
Where R E and h are known and d is the controller described above.
It becomes known by being measured by 32 distance measuring functions. Therefore, the elevation angle θ can be obtained according to the equation (1).

次に、第4図を参照して、第1及び第2の船上アンテナ
10,20が通信衛星Aに正確に指向する方位角を演算する
場合について説明する。a1を第1の船上アンテナ10と通
信衛星Aとの距離、a2を第2の船上アンテナ20と通信衛
星Aとの距離、θを通信衛星Aを指向したときの第1
の船上アンテナ10の仰角、θを通信衛星Aを指向した
ときの第2の船上アンテナ20の仰角、b1をa1の水平面へ
の投影距離、b2をa2の水平面への投影距離とすると、a1
とb1及びa2とb2との間には次のような式が成り立つ。
Next, referring to FIG. 4, the first and second onboard antennas
A case in which the azimuths 10 and 20 accurately point to the communication satellite A are calculated will be described. a 1 is the distance between the first onboard antenna 10 and the communication satellite A, a 2 is the distance between the second onboard antenna 20 and the communication satellite A, and θ 1 is the first when pointing to the communication satellite A.
Angle of elevation of the onboard antenna 10 of, the elevation angle of the second onboard antenna 20 when θ 2 is directed to the communication satellite A, b 1 is the projection distance of a 1 onto the horizontal plane, and b 2 is the projection distance of a 2 onto the horizontal plane. Then, a 1
And b 1 and a 2 and b 2 have the following equations.

b1=a1 cosθ1, b2=a2 cosθ a1,a2は測定値で既知であり、θ1は前述の(1)
式からもとめられるのでb1,b2は求められる。
b 1 = a 1 cos θ 1 and b 2 = a 2 cos θ 2 a 1 and a 2 are known as measured values, and θ 1 and θ 2 are the above-mentioned (1)
Since it can be obtained from the equation, b 1 and b 2 can be obtained.

ここで、前述したように、Cを第1の船上アンテナ10と
第2の船上アンテナ20との距離、αを通信衛星Aを指
向するための第1の船上アンテナ10の方位角、αを通
信衛星Aを指向するための第2の船上アンテナ20の方位
角とすると、αとb1,b2,cとの間及びαとb1,b2,cと
の間には次のような式が成り立つ。
Here, as described above, C is the distance between the first onboard antenna 10 and the second onboard antenna 20, α 1 is the azimuth angle of the first onboard antenna 10 for pointing the communication satellite A, and α 2 Is the azimuth angle of the second onboard antenna 20 for pointing the communication satellite A, and between α 1 and b 1 , b 2 , c and between α 2 and b 1 , b 2 , c The following formula holds.

(1)式においてb1,b2,cは既知であるので、方位角α
は求められる。同様に(2)式においても、b1,b2,c
は既知であるので、方位角αは求められる。
Since b 1 , b 2 , and c are known in the equation (1), the azimuth α
2 is required. Similarly, in the equation (2), b 1 , b 2 , c
Is known, the azimuth α 1 is determined.

次に、第1図を参照して本実施例の船上アンテナ駆動制
御装置の作動について説明する。ここでは第1の船上ア
ンテナ10について説明するが、第2の船上アンテナ20に
ついても同様である。
Next, the operation of the onboard antenna drive controller of this embodiment will be described with reference to FIG. Here, the first onboard antenna 10 will be described, but the same applies to the second onboard antenna 20.

まず、符号発生器30から測距符号が発生し、この測距符
号によって搬送波が変調されて、第1の送信機11から通
信衛星Aに向けて変調された搬送波が送信される。この
搬送波は通信衛星Aで反射して折り返して第1の受信機
12において受信される。受信された搬送波は第2の検出
器13に入力され測距符号が検出される。そして、測距符
号の有する十分長い符号長及び補捉性の良好な特性を利
用し、送信した測距符号と受信した測距符号との間のビ
ット差が符号ビット差測定器31で測定される。このピッ
ト差から、制御器32で第1の船上アンテナ10又は第2の
船上アンテナ20と通信衛星Aとの間の距離が測定され
る。また、制御器32では、この測定距離に基づいて上述
した計算式(1)〜(3)に従って仰角及び方位角が演
算される。この演算仰角及び演算方位角になるように、
第1の駆動器14を駆動して第1の船上アンテナ10の仰角
及び方位角を変更制御する。
First, a distance measuring code is generated from the code generator 30, the carrier wave is modulated by this distance measuring code, and the modulated carrier wave is transmitted from the first transmitter 11 toward the communication satellite A. This carrier wave is reflected by the communication satellite A and returned to the first receiver.
Received at 12. The received carrier wave is input to the second detector 13 and the ranging code is detected. Then, by utilizing the sufficiently long code length of the ranging code and good characteristics of the catching property, the bit difference between the transmitted ranging code and the received ranging code is measured by the code bit difference measuring device 31. It From this pit difference, the controller 32 measures the distance between the first onboard antenna 10 or the second onboard antenna 20 and the communication satellite A. Further, the controller 32 calculates the elevation angle and the azimuth angle according to the above-mentioned calculation formulas (1) to (3) based on the measured distance. To obtain this calculated elevation angle and calculated azimuth angle,
The first driver 14 is driven to change and control the elevation angle and azimuth angle of the first onboard antenna 10.

このように、本実施例では、第1及び第2の船上アンテ
ナ10,20の仰角及び方位角を、第1及び第2の船上アン
テナ10,20と通信衛星Aとの距離に基づいて演算するよ
うにし、この演算仰角及び演算方位角に基づいて第1及
び第2の船上アンテナ10,20の仰角及び方位角を変更す
るようにしているので、次に述べるような利点が生ず
る。
As described above, in this embodiment, the elevation angle and the azimuth angle of the first and second onboard antennas 10 and 20 are calculated based on the distance between the first and second onboard antennas 10 and 20 and the communication satellite A. In this way, the elevation angle and the azimuth angle of the first and second onboard antennas 10 and 20 are changed based on the calculated elevation angle and the calculation azimuth angle, so that the following advantages occur.

すなわち、従来のように船上アンテナ10,20をジャイロ
コンバス等の航法装置に接続しなくてもよくなり、第1
及び第2の船上アンテナ10,20の近くに船上アンテナの
駆動制御装置を設ければよくなる。したがって、艤装工
事を最小限のものとすることができ、コストの低減や工
事期間の短縮を図ることが可能となる。
That is, it is not necessary to connect the onboard antennas 10 and 20 to a navigation device such as a gyroconbus as in the conventional case.
It is sufficient to provide a drive control device for the onboard antenna near the second onboard antennas 10 and 20. Therefore, the outfitting work can be minimized, and the cost and the construction period can be shortened.

また、従来のようにジャイロコンパス等の航法装置から
得られた情報から間接的に仰角及び方位角を求めなくて
も、通信衛星Aとの距離を直接測定して仰角及び方位角
を求めることができる。したがって、他の機器の性能に
影響されることなく、かつ、通信衛星の摂動があって
も、高精度に船上アンテナを通信衛星に対して指向する
ことが可能となる。
Further, even if the elevation angle and the azimuth angle are not indirectly obtained from the information obtained from the navigation device such as the gyrocompass as in the conventional case, the elevation angle and the azimuth angle can be obtained by directly measuring the distance to the communication satellite A. it can. Therefore, it is possible to orient the onboard antenna with respect to the communication satellite with high accuracy without being affected by the performance of other devices and even when the communication satellite is perturbed.

さらに、航法装置が故障の場合においても衛星通信を行
なうことができるようになる。したがって、航法装置が
故障した場合でも、衛星通信の結果を利用すれば、船舶
局1を所定の航路に沿って航行させることが可能とな
る。
Further, satellite communication can be performed even when the navigation device is out of order. Therefore, even if the navigation device fails, it is possible to cause the ship station 1 to travel along a predetermined route by using the result of satellite communication.

なお、本実施例では船舶局1に第1及び第2の船上アン
テナ10,20を設けているが、2以上の船上アンテナを用
いるものであれば3つ以上設けたものであってもよい。
In this embodiment, the ship station 1 is provided with the first and second onboard antennas 10 and 20, but three or more may be provided as long as two or more onboard antennas are used.

また、本実施例では式(1)〜(3)に基づいて仰角及
び方位角を演算するようにしているが、所望の精度が得
られれば近似式を用いて演算するようにしたものであっ
てもよい。
Further, in the present embodiment, the elevation angle and the azimuth angle are calculated based on the equations (1) to (3), but if desired accuracy is obtained, the approximate angle is used for the calculation. May be.

(発明の効果) 以上に説明したように、本発明の船上アンテナ駆動制御
装置を使用すれば、艤装工事を少なくすることができコ
ストの低減や工事期間の短縮を図ることができる。さら
に、本発明の船上アンテナ駆動制御装置を使用すれば、
船上アンテナを衛星に対して高精度に指向させることが
できる。
(Effect of the Invention) As described above, if the onboard antenna drive control device of the present invention is used, the outfitting work can be reduced, and the cost and the construction period can be shortened. Furthermore, if the onboard antenna drive control device of the present invention is used,
The onboard antenna can be directed to the satellite with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の船上アンテナ駆動制御装置
の系統図、第2図(a)は第1図の船上アンテナ駆動制
御装置が搭載される船舶局の側面図、第2図(b)は第
2図(a)の船舶局の平面図、第3図は第1図の船上ア
ンテナ駆動制御装置において船上アンテナの仰角を求め
る原理を説明した図、第4図は第1図の船上アンテナ駆
動制御装置において船上アンテナの方位角を求める原理
を説明した図である。 1……船舶局、10……第1の船上アンテナ、 11……第1の送信機、12……第1の受信機、 13……第1の検出器、14……第1の駆動器、 20……第2の船上アンテナ、21……第2の送信機、 22……第2の受信機、23……第2の検出器、 24……第2の駆動器、30……符号発生器、 31……符号ビット差測定器、32……制御器。
FIG. 1 is a system diagram of an onboard antenna drive controller of one embodiment of the present invention, FIG. 2 (a) is a side view of a ship station in which the onboard antenna drive controller of FIG. 1 is installed, and FIG. 2B is a plan view of the ship station of FIG. 2A, FIG. 3 is a view for explaining the principle of obtaining the elevation angle of the onboard antenna in the onboard antenna drive control device of FIG. 1, and FIG. 4 is of FIG. It is a figure explaining the principle which calculates | requires the azimuth of an onboard antenna in an onboard antenna drive control device. 1 ... Ship station, 10 ... First shipboard antenna, 11 ... First transmitter, 12 ... First receiver, 13 ... First detector, 14 ... First driver , 20 ... second on-board antenna, 21 ... second transmitter, 22 ... second receiver, 23 ... second detector, 24 ... second driver, 30 ... sign Generator, 31 …… Sign bit difference measuring device, 32 …… Controller.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】衛星通信用の船舶局の長手方向に所定間隔
だけ離間して設けられた複数の船上アンテナと、前記各
船上アンテナから衛星に向けて電磁波を送信し前記衛星
からの反射波を前記各船上アンテナで受信して前記各船
上アンテナと前記衛星との距離をそれぞれ測定する測距
手段と、前記測距手段による各測定距離に基づいて前記
各船上アンテナが前記衛星に正確指向する仰角及び方位
角を演算する演算手段と、前記演算手段による演算仰角
及び演算方位角に基づいて前記各船上アンテナの仰角と
方位角を駆動して前記各船上アンテナを前記衛星に指向
させる駆動手段とを備える衛星通信用船舶局の船上アン
テナ駆動制御装置。
1. A plurality of onboard antennas provided at predetermined intervals in the longitudinal direction of a ship station for satellite communication, and an electromagnetic wave transmitted from each of the onboard antennas to the satellite to generate a reflected wave from the satellite. Distance measuring means for receiving the respective onboard antennas to measure the distances between the respective onboard antennas and the satellites, and elevation angles at which the onboard antennas accurately point to the satellites based on the distances measured by the distance measuring means. And calculating means for calculating the azimuth angle, and driving means for driving the elevation angle and the azimuth angle of each of the onboard antennas based on the calculated elevation angle and the calculated azimuth angle by the calculating means to direct each of the onboard antennas to the satellite. An onboard antenna drive control device for a ship station for satellite communication.
JP24410189A 1989-09-20 1989-09-20 Onboard antenna drive controller for ship stations for satellite communication Expired - Lifetime JPH0744376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24410189A JPH0744376B2 (en) 1989-09-20 1989-09-20 Onboard antenna drive controller for ship stations for satellite communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24410189A JPH0744376B2 (en) 1989-09-20 1989-09-20 Onboard antenna drive controller for ship stations for satellite communication

Publications (2)

Publication Number Publication Date
JPH03106204A JPH03106204A (en) 1991-05-02
JPH0744376B2 true JPH0744376B2 (en) 1995-05-15

Family

ID=17113770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24410189A Expired - Lifetime JPH0744376B2 (en) 1989-09-20 1989-09-20 Onboard antenna drive controller for ship stations for satellite communication

Country Status (1)

Country Link
JP (1) JPH0744376B2 (en)

Also Published As

Publication number Publication date
JPH03106204A (en) 1991-05-02

Similar Documents

Publication Publication Date Title
EP0679973B1 (en) Integrated vehicle positioning and navigations system, apparatus and method
US6587761B2 (en) Unambiguous integer cycle attitude determination method
EP0687892B1 (en) Method and apparatus of establishing a vehicle azimuth
US5906655A (en) Method for monitoring integrity of an integrated GPS and INU system
US4652884A (en) Satellite navigational system and method
US20050242052A1 (en) Method and apparatus for gantry crane sway determination and positioning
JPH10260051A (en) System and method for providing working point
US5327140A (en) Method and apparatus for motion compensation of SAR images by means of an attitude and heading reference system
US6512992B1 (en) Irrigation positioning system
US3564543A (en) Aircraft landing control system
US3430234A (en) Navigation systems using earth satellites
JPH11237916A (en) Interference estimating device for automated vehicle
US4727374A (en) Aerial surveying system
US3664748A (en) Device for automatically setting the initial heading aboard craft utilizing gyroscopic navigation system
JPH0744376B2 (en) Onboard antenna drive controller for ship stations for satellite communication
US10656262B2 (en) Airborne precision doppler velocity radar
JP3474658B2 (en) Hazardous area remote surveying method
US4203665A (en) Aerial surveying method to determine ground contours
US3721985A (en) Navigational system
JP2831205B2 (en) Group control device for positioning of moving objects
US4492963A (en) Method and apparatus for determining lane count error in a radio navigational system
JPH09184720A (en) Geodetic survey method and device therefor
JPS58102177A (en) Apparatus for measuring present position and direction of moving object
JPH0255804B2 (en)
JP2644155B2 (en) Automatic surveying method for position of trailing bogie of shield machine