JP3474658B2 - Hazardous area remote surveying method - Google Patents

Hazardous area remote surveying method

Info

Publication number
JP3474658B2
JP3474658B2 JP33259994A JP33259994A JP3474658B2 JP 3474658 B2 JP3474658 B2 JP 3474658B2 JP 33259994 A JP33259994 A JP 33259994A JP 33259994 A JP33259994 A JP 33259994A JP 3474658 B2 JP3474658 B2 JP 3474658B2
Authority
JP
Japan
Prior art keywords
vehicle
measurement
gps
total station
automatic tracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33259994A
Other languages
Japanese (ja)
Other versions
JPH08166240A (en
Inventor
正典 石井
保 小西
耕治 橘▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP33259994A priority Critical patent/JP3474658B2/en
Publication of JPH08166240A publication Critical patent/JPH08166240A/en
Application granted granted Critical
Publication of JP3474658B2 publication Critical patent/JP3474658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、火山危険地域等の危険
区域を無人で自動的に測量する危険区域の遠隔測量方法
に関するもので、さらに詳しくは、人が近づくことが可
能な地点より遠く離れた危険区域の測量を行なう危険区
域の遠隔測量方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a remote survey method for a dangerous area such as a volcanic dangerous area which is automatically surveyed by an unmanned person. The present invention relates to a remote survey method for a dangerous area in which a remote dangerous area is surveyed.

【0002】[0002]

【従来の技術】従来、この種の測量には光波測距儀の機
能とトランシットの測角儀の機能を合わせ持った「トー
タルステーション」で、危険地域を遠隔操作で運転され
る測量車両のターゲットを視準して測量する方法が提案
されている。
2. Description of the Related Art Conventionally, a "total station" that has both the function of a light-wave rangefinder and the function of a transit angle finder for this type of survey has been used as a target for surveying vehicles that are remotely operated in dangerous areas. A method of collimating and surveying has been proposed.

【0003】また、最近は人工衛星を利用したGPS
(汎地球測位システム:GlobalPosition
ing System)の使用が提案されている。具体
的には無人にて遠隔運転される測量車両にGPSを搭載
するもので、このGPSで移動中に連続測量するか、測
量車両の一時停車時に間欠測量を行ない、その計測値を
無線にて進入可能場所P2まで送信するようになってい
る。
Recently, GPS using an artificial satellite
(Global Positioning System: Global Position
ing System) has been proposed. Specifically, a GPS is mounted on a surveying vehicle that is operated remotely by an unmanned vehicle, and continuous measurement is performed while the GPS is moving, or intermittent surveying is performed when the surveying vehicle is temporarily stopped, and the measured value is wirelessly transmitted. The information is transmitted to the accessible location P2.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記トータル
ステーションでの測量には、危険地域を視準できる位置
までトータルステーションを搬入しなくてはならず、危
険地域全域を視準できる位置まで人が進入できない場合
は測量できないという課題を有している。
However, for surveying at the above-mentioned total station, the total station must be carried in to a position where the dangerous area can be collimated, and a person cannot enter the position where the entire dangerous area can be collimated. There is a problem that it is not possible to measure.

【0005】すなわち、「図2」においてP1が測量を
行ないたい作業箇所で、この付近には、進入可能場所P
2との間に岡Hが存在し、進入可能場所P2より作業箇
所P1は直接見渡せることができない。したがって、こ
のような場合トータルステーションでの測量は不可能と
なる。
That is, in FIG. 2, P1 is a work location where surveying is desired, and an approachable location P
Oka H exists between 2 and the work place P1 cannot be directly seen from the approachable place P2. Therefore, in such a case, surveying at the total station becomes impossible.

【0006】また、従来のGPSによる測量は衛星の位
置の誤差等から測量精度に10〜100mの誤差を有す
るとされており、この誤差を少なくするには、GPSを
二台距離を隔てて設置して両GPSで同じGPS用人工
衛星を観測し、各種の誤差要因を打ち消し合う相対測位
法を採用する必要性がある。すなわち、「図2」を例に
すると、危険地域を遠隔操作で運転される測量車両にG
PSを搭載すると共に、進入可能場所P2にもGPSを
設置し、両GPSで同じGPS用人工衛星を観測する。
そして、進入可能場所P2の設置位置は他の測量で正確
な測定が可能で有るので既知位置として使用し、両GP
Sは測定値の差を求めることで2点間の相対的位置関係
(基線ベクトル:本願では基線長とも言う)が求めら
れ、一方を上記既知位置とする2点間の相対的位置関係
を演算すれば測量車両のGPSの位置が測定できること
になる。
Further, it is said that conventional GPS surveying has an error of 10 to 100 m in the surveying accuracy due to an error in the position of the satellite. To reduce this error, two GPS units are installed apart from each other. Then, it is necessary to observe the same GPS satellite with both GPS and adopt a relative positioning method for canceling various error factors. That is, in the case of "Fig. 2" as an example, a survey vehicle driven by remote control in a dangerous area is
The PS is installed, and the GPS is also installed at the approachable place P2, and the same GPS artificial satellite is observed by both GPSs.
The installation position of the approachable place P2 is used as a known position because it can be accurately measured by another survey, and both GPs are used.
S obtains a relative positional relationship (baseline vector: also referred to as a baseline length in the present application) between two points by obtaining a difference between measured values, and calculates a relative positional relationship between two points with one of them as the known position. Then, the GPS position of the survey vehicle can be measured.

【0007】しかし、上記のGPS相対測位は、測定結
果を得るのに時間をかけないと(通常、測量値をコンピ
ュータで演算するのに最低2秒程度必要といわれてい
る。また、正確性を期すには何回かの測定を行ない、異
常と思われる測定値は排除して、平均値を採る等の演算
が行なわれる。)正確性が保証できず、連続測量すると
測量車両の走行速度に比例して測量誤差が大きくなり正
確な測量ができなくなるという課題を有している。
[0007] However, the above-mentioned GPS relative positioning requires that it takes time to obtain a measurement result (normally, it is said that at least about 2 seconds are required to calculate a surveyed value by a computer. In order to measure, several measurements are taken, abnormally measured values are excluded, and calculations such as taking the average value are performed.) Accuracy cannot be guaranteed, and continuous surveying will result in running speed of the surveying vehicle. There is a problem that the surveying error increases proportionately and accurate surveying becomes impossible.

【0008】また、上記GPSによる間欠測量では、測
量車両を間欠的に停車させ、停車時に測量値の演算を行
なうが、この場合連続測量が行なえないという課題と、
一応の正確性は担保されるも器機(特に、遠隔操作され
る測量車両)の頻繁な一時停止(一時停車)は機械的な
悪影響を与え故障が頻発する原因となるという課題を有
している。
In the intermittent survey by GPS, the surveying vehicle is intermittently stopped and the surveyed value is calculated when the surveyed vehicle is stopped. However, in this case, continuous surveying cannot be performed.
Although the accuracy is tentatively secured, there is a problem that frequent stoppage (temporary stoppage) of equipment (particularly, remotely operated surveying vehicle) has a mechanical adverse effect and causes frequent failures. .

【0009】そこで本発明は上記課題に鑑みなされたも
ので、超遠隔地や直接見渡せない場所であっても、正確
に連続的な測量が行なえる危険区域の遠隔測量方法を提
供することを目的としたものである。
Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a remote surveying method for a dangerous area in which accurate continuous surveying can be performed even in an extremely remote place or a place that cannot be overlooked directly. It is what

【0010】[0010]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、有人固定局10に固定GPS11とデ
ータ送受信装置12と計測用コンピュータ13とを設置
し、中継車両20に移動GPS21と自動追尾式トータ
ルステーション22と傾斜計23と方位計24とデータ
送受信装置25とを搭載し、遠隔運転される計測車両3
0には全周プリズム31と方位計34とデータ送受信装
置35とを搭載し、上記中継車両20を作業箇所近傍に
移動停車させ、位置が既知の固定GPS11と固定され
た移動GPS21とでGPS2局固定スタティック相対
測量で中継車両20の位置測量を行い、次いで、中継車
両(20)の位置をその方位計(24)のデータで自動
追尾式トータルステーション(22)の位置に換算し、
次に、自動追尾式トータルステーション22で計測車両
30の全周プリズム31を追尾してプリズム位置を算出
し、このプリズム位置を計測車両30の傾斜計33と方
位計34とのデータで該計測車両30の下方の計測座標
に換算して測量する技術的手段を講じたものである。
In order to solve the above-mentioned problems, the configuration of the present invention, which has the above-mentioned claims as its gist, has a fixed GPS 11 and a data transmission / reception device 12 in a manned fixed station 10. The measurement computer 13 is installed, and the relay vehicle 20 is equipped with a mobile GPS 21, an automatic tracking type total station 22, an inclinometer 23, an azimuth meter 24, and a data transmitting / receiving device 25, and the measurement vehicle 3 is operated remotely.
An omnidirectional prism 31, an azimuth meter 34, and a data transmitter / receiver 35 are mounted at 0, and the relay vehicle 20 is moved and stopped near the work location, and a fixed GPS 11 whose position is known and a fixed mobile GPS 21 are used for two GPS stations. The position of the relay vehicle 20 is measured by the fixed static relative survey, and then the position of the relay vehicle (20) is converted into the position of the automatic tracking type total station (22) by the data of the compass (24).
Next, the automatic tracking type total station 22 tracks the omnidirectional prism 31 of the measurement vehicle 30 to calculate the prism position, and the prism position is calculated based on the data of the inclinometer 33 and the azimuth meter 34 of the measurement vehicle 30. It is a technical measure that is converted to the measurement coordinates below and measured.

【0011】また、「請求項2」の発明は、上記「請求
項1」の発明の中継車両20と計測車両30との双方
を、有人固定局10で共に遠隔操作する技術的手段を講
じたものである。
Further, the invention of "Claim 2" takes a technical means to remotely control both the relay vehicle 20 and the measuring vehicle 30 of the invention of "Claim 1" by the manned fixed station 10. It is a thing.

【0012】[0012]

【作用】それ故、本発明危険区域の遠隔測量方法は、中
継車両20を「図2」に示す様に作業箇所P1近傍に移
動停車させ、位置が既知の固定GPS11と固定された
移動GPS21とでGPS2局固定スタティック相対測
量で中継車両20の位置測量を行なうので、この中継車
両20の位置は(衛星軌道のずれ、対流圏の影響、電離
層の影響等を排除して)正確に算出できる作用を呈す
る。この中継車両20の位置計測精度は、水平方向が
0.5cm+基線長×1ppm(基線長は固定GPS1
1と移動GPS21との距離)、上下方向が1.0cm
+基線長×1ppmが確保されるとされている。
Therefore, according to the remote sensing method of the dangerous area of the present invention, the relay vehicle 20 is moved and stopped near the work point P1 as shown in FIG. 2, and the fixed GPS 11 whose position is known and the fixed GPS 21 are fixed. Since the position measurement of the relay vehicle 20 is performed by the GPS 2 station fixed static relative survey, the position of the relay vehicle 20 can be accurately calculated (excluding the satellite orbit shift, the influence of the troposphere, the influence of the ionosphere, etc.). Present. The position measurement accuracy of this relay vehicle 20 is 0.5 cm in the horizontal direction + baseline length × 1 ppm (baseline length is fixed GPS 1
1 and mobile GPS 21), up and down 1.0 cm
+ Baseline length x 1 ppm is said to be secured.

【0013】中継車両20の位置(移動GPS21のア
ンテナ位置)が求められたら、この中継車両20に搭載
した自動追尾式トータルステーション22の位置を方位
計24のデータを参酌して求める。なお、この際に該中
継車両20の停車姿勢で双方の位置関係が変わることも
あるので、後記するように中継車両20または自動追尾
式トータルステーション22に傾斜計23を搭載して、
このデータをも参酌するか、あるいは自動追尾式トータ
ルステーション22を自動整準台23aに載せることで
正確な自動追尾式トータルステーション22の位置が算
出できる。
When the position of the relay vehicle 20 (the antenna position of the mobile GPS 21) is obtained, the position of the automatic tracking type total station 22 mounted on the relay vehicle 20 is obtained by taking the data of the azimuth meter 24 into consideration. At this time, since the positional relationship between the relay vehicle 20 and the relay vehicle 20 may change depending on the stopped posture, the inclinometer 23 is mounted on the relay vehicle 20 or the automatic tracking type total station 22 as described later.
By taking this data into consideration, or by mounting the automatic tracking type total station 22 on the automatic leveling table 23a, the accurate position of the automatic tracking type total station 22 can be calculated.

【0014】自動追尾式トータルステーション22の位
置が算出できたら、自動追尾式トータルステーション2
2で計測車両30の全周プリズム31を追尾してプリズ
ム位置を算出し、このプリズム位置を計測車両30の傾
斜計33と方位計34とのデータで該計測車両30の下
方の計測座標を換算できる作用を呈する。なお、トータ
ルステーションの測距精度は基線長×10ppm(10
0mの距離で1mm程度)測角精度は3”程度が確保さ
れる。
When the position of the automatic tracking type total station 22 can be calculated, the automatic tracking type total station 2
In step 2, the prism position is calculated by tracking the omnidirectional prism 31 of the measurement vehicle 30, and this prism position is converted into the measurement coordinates below the measurement vehicle 30 by the data of the inclinometer 33 and the azimuth meter 34 of the measurement vehicle 30. Exhibit the action that can be done. Note that the distance measurement accuracy of the total station is the baseline length × 10 ppm (10
An angle measurement accuracy of about 3 "is secured at a distance of 0 m (about 1 mm).

【0015】そして、自動追尾式トータルステーション
22での測定精度には計測車両30の走行速度は影響を
無視できるのでリアルタイムな綿密な計測が行なえる作
用を呈するものである。
Since the traveling speed of the measuring vehicle 30 can be ignored for the measurement accuracy at the automatic tracking type total station 22, it has the effect of enabling detailed real-time measurement.

【0016】[0016]

【実施例】次に、本発明の実施例を添付図面を参照に詳
細に説明する。先ず本発明法は、有人固定局10に固定
GPS11とデータ送受信装置12と計測用コンピュー
タ13とを設置する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings. First, according to the method of the present invention, a fixed GPS 11, a data transmission / reception device 12, and a measurement computer 13 are installed in a manned fixed station 10.

【0017】上記有人固定局10は、中央指令室に相当
するもので、進入可能場所P2に設けられるのは無論で
有る。そして、この有人固定局10に固定GPS11を
設置する。この固定GPS11は従来公知なもので、複
数個のGPS用の人工衛星A1,A2,A3よりの電波
を受信してその位置を計測するものを使用するが、本発
明ではこの固定GPS11を設置する位置は他の手段で
容易に測量可能であるので、予め測量された既知の位置
に設置している。
The manned fixed station 10 corresponds to the central command room, and it is needless to say that it is provided at the approachable place P2. Then, the fixed GPS 11 is installed in the manned fixed station 10. This fixed GPS 11 is a conventionally known one, and one that receives radio waves from a plurality of GPS artificial satellites A1, A2, A3 and measures the position thereof is used. In the present invention, this fixed GPS 11 is installed. Since the position can be easily measured by other means, it is installed at a known position that has been measured in advance.

【0018】また、上記データ送受信装置12は、図示
例では一対の無線モデムを使用しており、一方の無線モ
デム12aは後記する中継車両20と計測車両30との
運転制御の送信用に、他方のモデム12bは計測データ
の受信用にもっぱら使用しているが、共用できる場合は
無論データ送受信装置12は一つでよく、また、図示は
していないが、実際には後記計測車両30にテレビカメ
ラを搭載しその映像を運転の参照としているのでこのテ
レビカメラの映像信号を受信するアンテナとモニター
(計測用コンピュータ13のモニターで兼用することも
可)とを設置してある。
The data transmission / reception device 12 uses a pair of wireless modems in the illustrated example, and one wireless modem 12a is used for transmitting operation control between the relay vehicle 20 and the measurement vehicle 30 which will be described later, and the other. The modem 12b is used exclusively for receiving measurement data, but if it can be shared, of course, only one data transmission / reception device 12 is necessary. Since a camera is mounted and its image is used as a reference for driving, an antenna for receiving the image signal of this television camera and a monitor (the monitor of the measuring computer 13 can also be used) are provided.

【0019】さらに、上記計測用コンピュータ13は、
各種制御と演算用に使用され、制御用としては、中継車
両20と計測車両30との運転制御用の信号整理に、演
算用には各装置の計測データを組みあわせ整理して演算
を行ない各種測定を行なうようになしてある。なお、こ
の計測用コンピュータ13はパーソナルコンピュータで
充分対応でき、計測結果は図示しないプリンターで印刷
したりプロッターで図面化するのが望ましいのは無論で
ある。また、後記する自動追尾式トータルステーション
22には通常ICカードが付設されており、このICカ
ードに記憶されたデータを後に伝票化するのも作業管理
に有益で有り、計測用コンピュータ13はカードリーダ
も付設しておくことが望ましい。
Further, the measuring computer 13 is
It is used for various controls and calculations. For control, signals are arranged for operation control of the relay vehicle 20 and the measurement vehicle 30, and for calculations, measurement data of each device are combined and arranged to perform calculations. It is designed to make measurements. It is needless to say that it is desirable that the measurement computer 13 can be sufficiently supported by a personal computer, and that the measurement result is printed by a printer (not shown) or plotted on a plotter. Further, an IC card is usually attached to the automatic tracking type total station 22 to be described later, and it is also useful for work management to make the data stored in this IC card into a slip later, and the measuring computer 13 also has a card reader. It is desirable to attach it.

【0020】さらに本発明は中継車両20を用意し、こ
の中継車両20に移動GPS21と自動追尾式トータル
ステーション22と方位計24とデータ送受信装置25
とを搭載する。
Further, according to the present invention, a relay vehicle 20 is prepared, and a mobile GPS 21, an automatic tracking type total station 22, an azimuth meter 24 and a data transmitting / receiving device 25 are provided on the relay vehicle 20.
And with.

【0021】この中継車両20は、遠隔操作可能なもの
で有人固定局10で操縦するか、ポータブル操縦装置で
安全地帯適所(進入可能場所P2)で遠隔操作できるよ
うになしてある。
The relay vehicle 20 is remotely controllable and can be operated by the manned fixed station 10 or can be remotely controlled by a portable control device at an appropriate place in the safety zone (accessible place P2).

【0022】また、上記移動GPS21はその構成は前
記固定GPS11と全く同じものを使用すればよく、こ
の移動GPS21と既知の位置に設置した固定GPS1
1との双方で同じGPS用の人工衛星A1,A2,A3
よりの電波を受信してその位置を前記したと同様に相対
的に計測する。
The mobile GPS 21 may have the same structure as the fixed GPS 11, and the fixed GPS 1 installed at a known position from the fixed GPS 1 may be used.
The same GPS satellites A1, A2, A3 for both 1 and
The radio wave is received and its position is relatively measured in the same manner as described above.

【0023】また、上記自動追尾式トータルステーショ
ン22は、従来公知なトータルステーションに自動追尾
装置を付設したもので、自動追尾式トータルステーショ
ン22より照射された光波(通常、レーザ光線を使用す
る)が視準点のプリズムで反射して戻る光束を捕らえ、
この光束が常に自動追尾式トータルステーション22の
視準方向中央に入光するよう該自動追尾式トータルステ
ーション22の向きを自動調整するもので、具体的には
視準点で反射して戻る光束を左右上下4つの光電変換素
子で受光し、その起電力が常に同一となすように向きを
自動調整すればよい。なお、実際にはこのような自動追
尾装置を設けても視準点のプリズムを見失うことがある
ので、サーチ機構をも付設し、視準点のプリズムを見失
うと自動的にある範囲を光波照射してスキャニングして
視準点のプリズムを捜すようになしている。
The automatic tracking type total station 22 is a conventionally known total station equipped with an automatic tracking device. Captures the light flux that is reflected and returned by the prism
The direction of the automatic tracking type total station 22 is automatically adjusted so that this luminous flux always enters the center of the collimation direction of the automatic tracking type total station 22. Specifically, the luminous flux reflected at the collimation point is returned to the left, right, up and down. Light may be received by four photoelectric conversion elements, and the direction may be automatically adjusted so that the electromotive forces thereof are always the same. Actually, even if such an automatic tracking device is provided, the prism at the collimation point may be lost.Therefore, a search mechanism should also be provided to automatically illuminate a certain range when the prism at the collimation point is lost. Then it scans and searches for the prism of the collimation point.

【0024】また、上記方位計24はジャイロコンパス
等が使用でき計測車両30の進行方向が測定される。な
お、上記自動追尾式トータルステーション22は自動整
準台23a上に搭載しておくのが望ましいのは無論であ
るが、自動整準台23aを用いない場合は中継車両20
に傾斜計23を搭載する。この傾斜計23は、従来公知
なものが使用でき、計測車両30のX軸方向とY軸方向
の傾斜角度が測定される。なお、傾斜計23は図示とは
異なり自動追尾式トータルステーション22に内蔵する
ことが望ましい。
A gyro compass or the like can be used as the azimuth meter 24 to measure the traveling direction of the measurement vehicle 30. Of course, it is desirable to mount the automatic tracking type total station 22 on the automatic leveling table 23a. However, if the automatic leveling table 23a is not used, the relay vehicle 20
An inclinometer 23 is mounted on. As the inclinometer 23, a conventionally known one can be used, and the inclination angle of the measurement vehicle 30 in the X-axis direction and the Y-axis direction is measured. It should be noted that the inclinometer 23, unlike the one shown in the figure, is preferably built in the automatic tracking type total station 22.

【0025】また、上記データ送受信装置25は、無線
モデム等が使用され、制御信号を受信して中継車両20
を制御(図示していないが、制御装置は別途搭載する)
し、計測した測定値を有人固定局10に送信するように
なしてある。
A wireless modem or the like is used as the data transmission / reception device 25, which receives a control signal and relay vehicle 20.
Control (not shown, but a controller is installed separately)
Then, the measured value is transmitted to the manned fixed station 10.

【0026】さらに、本発明は計測車両30を用意し、
この計測車両30は、危険地域P2にある作業現場内を
遠隔操作で走行できるようになしてあり、この計測車両
30には全周プリズム31と傾斜計33と方位計34と
データ送受信装置35とを搭載してある。
Further, the present invention provides a measurement vehicle 30,
The measurement vehicle 30 is configured to be able to travel by remote control in a work site in the dangerous area P2, and the measurement vehicle 30 includes an omnidirectional prism 31, an inclinometer 33, an azimuth meter 34, and a data transmission / reception device 35. It is equipped with.

【0027】上記全周プリズム31は自動追尾式トータ
ルステーション22より照射される光を入射方向と反対
方向に反射する(正確に入射方向に戻す)もので、プリ
ズム31は360度いずれの方向からの入射光をも確実
に入射方向に反射するようになしてある。
The omnidirectional prism 31 reflects the light emitted from the automatic tracking type total station 22 in the direction opposite to the incident direction (correctly returns to the incident direction), and the prism 31 is incident from any direction of 360 degrees. The light is also reflected surely in the incident direction.

【0028】そして、上記傾斜計33と方位計34とデ
ータ送受信装置35とは、中継車両20に搭載したもの
と同じものを使用すればよい。
The inclinometer 33, the compass 34, and the data transmitter / receiver 35 may be the same as those mounted on the relay vehicle 20.

【0029】そして、本発明危険区域の遠隔測量方法
は、上記中継車両20を作業箇所近傍に移動停車させ、
位置が既知の固定GPS11と中継車両20の停車で固
定された移動GPS21とでGPS2局固定スタティッ
ク相対測量で中継車両20の位置測量を行う。
Further, according to the remote surveying method of the dangerous area of the present invention, the relay vehicle 20 is moved and stopped near the work place,
The position measurement of the relay vehicle 20 is performed by the fixed relative GPS 2 station fixed GPS 11 with the fixed GPS 11 whose position is known and the mobile GPS 21 fixed when the relay vehicle 20 is stopped.

【0030】中継車両20の停車場所は、作業箇所P1
全域が見渡せる場所を選定するが、どうしてもそのよう
な場所が得られない場合は、途中で停車場所を変更する
ようになすとよい。また、この中継車両20の停車場所
である作業箇所P1の近傍は通常危険地域で有り、危険
性が皆無ではないので、原則としてこの中継車両20は
遠隔操作によって運転するようになすが、作業者が乗り
込んで運転することもできるようになしておいてもよ
く、立地条件の良い場合は停車場所まで直接有人で運転
するようになしてもよく、さらには、途中まで有人で運
転し、安全地帯適所で降りて以後ポータブル操縦装置で
遠隔操作するようになしてもよい。
The stop location of the relay vehicle 20 is the work location P1.
Select a place where you can see the whole area, but if you cannot find such a place, change the stop location on the way. Further, since the vicinity of the work place P1 where the relay vehicle 20 is stopped is usually a dangerous area and there is no danger, in principle, the relay vehicle 20 is operated by remote control. It may be possible to get on board and drive, and if the location is good, it may be possible to drive directly to the stop location with a manned person. The portable control device may be remotely operated after getting off at a proper position.

【0031】そして、GPS2局固定スタティック相対
測量は、固定GPS11と、中継車両20の停車で固定
された移動GPS21とで、同じGPS用人工衛星A
1,A2,A3を観測して行う。この相対測量自体は従
来公知なものであるが、本発明では短時間で測量する必
要性は無く、数十分以上をかけ、多数のデータをとって
正確性を確保するとよく、実施例では中継車両20を固
定する図示しないアウトリガーによる固定作業から始め
て、最終的に測定値を決定するまでに1時程度を費やし
た。なお、この中継車両20の位置測量は一度だけ行え
ばよいが、何らかの事情で中継車両20を移動したら再
度行うのは無論である。
The fixed static relative survey of the GPS 2 station is the same GPS artificial satellite A for the fixed GPS 11 and the moving GPS 21 fixed when the relay vehicle 20 is stopped.
Observe 1, A2, A3. This relative survey itself is a conventionally known one, but in the present invention, it is not necessary to perform survey in a short time, it is good to take several tens of minutes or more and acquire a lot of data to ensure accuracy. It took about 1 hour from the fixing work by the outrigger (not shown) for fixing the vehicle 20 to the final determination of the measured value. It should be noted that the position measurement of the relay vehicle 20 may be performed only once, but of course, if the relay vehicle 20 is moved for some reason, the position measurement is performed again.

【0032】そして本発明は、中継車両20の位置をそ
の方位計24とのデータで自動追尾式トータルステーシ
ョン22の位置に換算する。
Then, according to the present invention, the position of the relay vehicle 20 is converted into the position of the automatic tracking type total station 22 by using the data of the compass 24.

【0033】すなわち、GPS2局固定スタティック相
対測量で測量された中継車両20の位置は、正確には通
常移動GPS21のアンテナの位置である。したがっ
て、この中継車両20に搭載した自動追尾式トータルス
テーション22の位置はそれのみでは特定できない。す
なわち、中継車両20の向きによって移動GPS21と
自動追尾式トータルステーション22との相互の位置関
係は変化するものである。そこで、移動GPS21の求
められた位置に、方位計24とのデータを参酌すること
で自動追尾式トータルステーション22の正確な位置を
求めることができるものである。なお、自動整準台23
aを用いない場合は中継車両20の傾斜計23の値をも
参酌して自動追尾式トータルステーション22の正確な
位置を求めることにする。
That is, the position of the relay vehicle 20 measured by the static two-station fixed static relative survey is exactly the position of the antenna of the normal mobile GPS 21. Therefore, the position of the automatic tracking type total station 22 mounted on the relay vehicle 20 cannot be specified by itself. That is, the mutual positional relationship between the mobile GPS 21 and the automatic tracking type total station 22 changes depending on the orientation of the relay vehicle 20. Therefore, the accurate position of the automatic tracking type total station 22 can be calculated by taking into consideration the data with the azimuth meter 24 at the position obtained by the mobile GPS 21. The automatic leveling table 23
When a is not used, the accurate position of the automatic tracking type total station 22 is determined by also taking into consideration the value of the inclinometer 23 of the relay vehicle 20.

【0034】次に、自動追尾式トータルステーション2
2で計測車両30の全周プリズム31を追尾してプリズ
ム位置を算出し、このプリズム位置を計測車両30の傾
斜計33と方位計34とのデータで該計測車両30の下
方の計測座標に換算して測量する。
Next, the automatic tracking type total station 2
In step 2, the omnidirectional prism 31 of the measurement vehicle 30 is tracked to calculate the prism position, and the prism position is converted into measurement coordinates below the measurement vehicle 30 by the data of the inclinometer 33 and the azimuth meter 34 of the measurement vehicle 30. And measure.

【0035】自動追尾式トータルステーション22の正
確な位置が求められたら、この自動追尾式トータルステ
ーション22より計測車両30の全周プリズム31を視
準することで、該自動追尾式トータルステーション22
によってプリズムの位置を求めることができる。しか
し、この場合も計測されるのは計測車両30の全周プリ
ズム31の位置であって、測量しようとする地表面の計
測座標部位ではない。そこで、計測車両30の傾斜計3
3と方位計34とのデータを参酌することで該計測車両
30の下方の計測座標を求める。
When the accurate position of the automatic tracking type total station 22 is obtained, the automatic tracking type total station 22 collimates the omnidirectional prism 31 of the measurement vehicle 30 to obtain the automatic tracking type total station 22.
The position of the prism can be determined by However, also in this case, it is the position of the omnidirectional prism 31 of the measurement vehicle 30 that is measured, not the measurement coordinate portion of the ground surface to be surveyed. Therefore, the inclinometer 3 of the measurement vehicle 30
The measurement coordinates below the measurement vehicle 30 are obtained by taking into consideration the data of 3 and the azimuth meter 34.

【0036】上記計測車両30の傾斜計33と方位計3
4とのデータは、中継車両20に送られ、中継車両20
では自動追尾式トータルステーション22の測定値にこ
のデータを加えて計測座標を演算し、その結果を有人固
定局10に送るようになしてあるが、自動追尾式トータ
ルステーション22の測定値と傾斜計33と方位計34
とのデータとは別個に有人固定局10に送られ、上記の
演算は有人固定局10で行うようになしてもよいのは無
論である。
The inclinometer 33 and the compass 3 of the measuring vehicle 30
4 is sent to the relay vehicle 20, and the relay vehicle 20
Then, this data is added to the measurement value of the automatic tracking type total station 22 to calculate the measurement coordinates, and the result is sent to the manned fixed station 10. However, the measurement value of the automatic tracking type total station 22 and the inclinometer 33 Compass 34
It is needless to say that the data may be sent separately to the manned fixed station 10 and the above-mentioned calculation may be performed by the manned fixed station 10.

【0037】したがって、計測車両30を適宜場所に移
動すれば、その場所の地表面の座標を計測でき、逆に計
測地を参考にして計測車両30を適宜場所に移動するこ
とができる。例えば、計測車両30は「図2」に破線で
示したような作業箇所の全域を走査するように走行路R
1を予めプログラミングしておくことで、作業箇所の全
体的形状等が測量でき、また計測車両30には図示しな
い適宜マーキング装置を設けておき、所望の場所に測量
結果のマーキングを付すことができる。
Therefore, if the measurement vehicle 30 is moved to a proper place, the coordinates of the ground surface at that place can be measured, and conversely, the measurement vehicle 30 can be moved to a proper place with reference to the measurement place. For example, the measurement vehicle 30 scans the entire working area as indicated by the broken line in FIG.
By programming 1 in advance, it is possible to measure the overall shape and the like of the work site, and the measurement vehicle 30 can be provided with an appropriate marking device (not shown) to mark the measurement result at the desired location. .

【0038】測量結果のマーキングは通常、杭や鋲を打
ち込んだりペイントが使用され、本発明もマーキングが
必要な場合はこれらを使用すればよいが、危険地帯は人
が目視するためのマーキングはあまり必要で無いので、
後に、作業箇所P1で土木工事を無人で行う作業車両に
設けた自動識別装置で識別し易い柱体等を搬入設置する
ようになすとよい。
The marking of the survey result is usually made by driving in a pile or a tack, or paint is used. In the present invention, if marking is required, these may be used. I don't need it,
Later, it is advisable to carry in and install a pillar or the like that can be easily identified by an automatic identification device provided in a work vehicle for unmanned civil engineering work at the work location P1.

【0039】[0039]

【発明の効果】本発明は上記のごときであるので、危険
地域の作業箇所P1に作業者は入り込むことなく、リア
ルタイムに測量が行える危険区域の遠隔測量方法を提供
できるものである。
As described above, the present invention can provide a remote surveying method for a dangerous area in which a worker can perform real-time surveying without entering the work site P1 in the dangerous area.

【0040】特に本発明は、自動追尾式トータルステー
ション22による測量を行っているので精度の高い連続
測量が可能な危険区域の遠隔測量方法を提供できるもの
である。
In particular, the present invention can provide a remote surveying method for a dangerous area which enables highly accurate continuous surveying because the automatic tracking type total station 22 is used for surveying.

【0041】また、本発明は中継車両20を使用するこ
とで、直接視準できない場所の測量も可能で、この中継
車両20には自動追尾式トータルステーション22を搭
載したので、必ずしも作業者が乗り込む必要がなくこの
中継車両20も無人化でき、作業箇所より遠く離れた場
所までしか人が入り込めない場所でも正確で綿密な測量
ができる危険区域の遠隔測量方法を提供できるものであ
る。
Further, according to the present invention, by using the relay vehicle 20, it is possible to measure a place which cannot be directly collimated. Since the relay vehicle 20 is equipped with the automatic tracking type total station 22, it is not always necessary for an operator to get in the vehicle. Therefore, the relay vehicle 20 can be unmanned, and a remote surveying method for a dangerous area can be provided which enables accurate and detailed surveying even in a place where a person can enter only a place far away from the work place.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明危険区域の遠隔測量方法を実施中の概略
正面図である。
FIG. 1 is a schematic front view of a dangerous area remote surveying method according to the present invention in execution.

【図2】本発明危険区域の遠隔測量方法を実施中の概略
平面図である。
FIG. 2 is a schematic plan view in which a remote survey method for a dangerous area of the present invention is being performed.

【符号の説明】[Explanation of symbols]

10 有人固定局 11 固定GPS 12 データ送受信装置 13 計測用コンピュータ 20 中継車両 21 移動GPS 22 自動追尾式トータルステーション 23 傾斜計 24 方位計 25 データ送受信装置 30 計測車両 31 全周プリズム 33 傾斜計 34 方位計 35 データ送受信装置 10 manned fixed stations 11 fixed GPS 12 Data transceiver 13 Measuring computer 20 relay vehicle 21 Mobile GPS 22 Automatic tracking type total station 23 Inclinometer 24 compass 25 data transceiver 30 measurement vehicles 31 All-round prism 33 inclinometer 34 compass 35 data transceiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 保 東京都港区虎ノ門一丁目20番10号 西松 建設株式会社内 (72)発明者 橘▲高▼ 耕治 大阪府大阪市東淀川区西淡路1丁目1番 36号 株式会社橘▲高▼工学研究所内 (56)参考文献 特開 平6−28031(JP,A) 特開 平4−296683(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01C 15/00 G01S 5/00 - 5/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tamotsu Konishi 1-20-10 Toranomon, Minato-ku, Tokyo Nishimatsu Construction Co., Ltd. No. 1-36, Tachibana ▲ Taka Engineering Laboratory (56) References JP-A-6-28031 (JP, A) JP-A-4-296683 (JP, A) (58) Fields investigated (Int.Cl . 7 , DB name) G01C 15/00 G01S 5/00-5/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有人固定局(10)に固定GPS(1
1)とデータ送受信装置(12)と計測用コンピュータ
(13)とを設置し、 中継車両(20)に移動GPS(21)と自動追尾式ト
ータルステーション(22)と方位計(24)とデータ
送受信装置(25)とを搭載し、遠隔運転される計測車
両(30)には全周プリズム(31)と傾斜計(33)
と方位計(34)とデータ送受信装置(35)とを搭載
し、 上記中継車両(20)を作業箇所近傍に移動停車させ、
位置が既知の固定GPS(11)と固定された移動GP
S(21)とでGPS2局固定スタティック相対測量で
中継車両(20)の位置測量を行い、 次いで、中継車両(20)の位置をその方位計(24)
のデータで自動追尾式トータルステーション(22)の
位置に換算し、 次に、自動追尾式トータルステーション(22)で計測
車両(30)の全周プリズム(31)を追尾してプリズ
ム位置を算出し、このプリズム位置を計測車両(30)
の傾斜計(33)と方位計(34)とのデータで該計測
車両(30)の下方の計測座標に換算して測量する危険
区域の遠隔測量方法。
1. A fixed GPS (1) is attached to a manned fixed station (10).
1), a data transmission / reception device (12) and a measurement computer (13) are installed, and a mobile GPS (21), an automatic tracking type total station (22), an azimuth meter (24) and a data transmission / reception device are installed in a relay vehicle (20). (25) is mounted on a measurement vehicle (30) which is remotely driven, and an omnidirectional prism (31) and an inclinometer (33) are installed.
And an azimuth meter (34) and a data transmission / reception device (35) are mounted, and the relay vehicle (20) is moved and stopped near the work site.
Fixed GPS (11) with known position and fixed mobile GP
Position measurement of the relay vehicle (20) is carried out by S2 (21) by static relative survey of GPS2 stations, and then the position of the relay vehicle (20) is determined by its compass (24).
Data is converted into the position of the automatic tracking total station (22), and then the automatic tracking total station (22) tracks the omnidirectional prism (31) of the measurement vehicle (30) to calculate the prism position. Vehicle for measuring prism position (30)
A remote surveying method for a dangerous area in which the data of the inclinometer (33) and the compass (34) are converted into the measurement coordinates below the measurement vehicle (30) to measure.
【請求項2】 上記中継車両(20)と計測車両(3
0)との双方を、有人固定局(10)で共に遠隔操作す
る「請求項1」記載の危険区域の遠隔測量方法。
2. The relay vehicle (20) and the measurement vehicle (3)
0) The remote surveying method for a dangerous area according to claim 1, wherein both of them are remotely controlled by the manned fixed station (10).
JP33259994A 1994-12-13 1994-12-13 Hazardous area remote surveying method Expired - Fee Related JP3474658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33259994A JP3474658B2 (en) 1994-12-13 1994-12-13 Hazardous area remote surveying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33259994A JP3474658B2 (en) 1994-12-13 1994-12-13 Hazardous area remote surveying method

Publications (2)

Publication Number Publication Date
JPH08166240A JPH08166240A (en) 1996-06-25
JP3474658B2 true JP3474658B2 (en) 2003-12-08

Family

ID=18256752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33259994A Expired - Fee Related JP3474658B2 (en) 1994-12-13 1994-12-13 Hazardous area remote surveying method

Country Status (1)

Country Link
JP (1) JP3474658B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003284438A (en) * 2002-03-29 2003-10-07 Fujita Corp Remote control planting method
AU2007204543B2 (en) 2006-01-13 2011-05-26 Leica Geosystems Ag Tracking method and measuring system comprising a laser tracker
JP4933852B2 (en) * 2006-07-07 2012-05-16 清水建設株式会社 Surveying system using GPS
JP5044596B2 (en) * 2009-03-24 2012-10-10 新菱冷熱工業株式会社 3D position measurement system
CN110241696B (en) * 2019-04-01 2024-07-30 中建三局集团有限公司 Mobile high-precision measuring robot system and measuring method thereof

Also Published As

Publication number Publication date
JPH08166240A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
EP1774257B1 (en) Combination laser system and global navigation satellite system
US6480148B1 (en) Method and apparatus for navigation guidance
US8705022B2 (en) Navigation system using both GPS and laser reference
US5233357A (en) Surveying system including an electro-optic total station and a portable receiving apparatus comprising a satellite position-measuring system
US6067046A (en) Handheld surveying device and method
US6052083A (en) Method and apparatus for position identification
US7742176B2 (en) Method and system for determining the spatial position of a hand-held measuring appliance
US20090024325A1 (en) AINS enhanced survey instrument
US5379045A (en) SATPS mapping with angle orientation calibrator
EP2054555B1 (en) Excavator 3d integrated laser and radio positioning guidance system
US6304210B1 (en) Location and generation of high accuracy survey control marks using satellites
US8271194B2 (en) Method and system using GNSS phase measurements for relative positioning
US7764365B2 (en) Combination laser detector and global navigation satellite receiver system
JP2866289B2 (en) Display method of position and attitude of construction machinery
WO2007078832A9 (en) Managed traverse system and method to acquire accurate survey data in absence of precise gps data
JPH10311735A (en) Method for monitoring of integrality of gps and inu integrated system
US4727374A (en) Aerial surveying system
US6266628B1 (en) Surveying system with an inertial measuring device
Kennedy et al. Performance of a deeply coupled commercial grade GPS/INS system from KVH and NovAtel Inc.
JP3474658B2 (en) Hazardous area remote surveying method
CN1309774A (en) Method and apparatus for angle measurement or to define angular location of object
JPH08178652A (en) Surveying device
JP2911363B2 (en) High-accuracy high-speed surveying method and device using satellite
US4203665A (en) Aerial surveying method to determine ground contours
JP2002005660A (en) Remotely operated surveying system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees