JPH074400A - Fluid transfer pressure generating method by phase change area movement - Google Patents

Fluid transfer pressure generating method by phase change area movement

Info

Publication number
JPH074400A
JPH074400A JP20721192A JP20721192A JPH074400A JP H074400 A JPH074400 A JP H074400A JP 20721192 A JP20721192 A JP 20721192A JP 20721192 A JP20721192 A JP 20721192A JP H074400 A JPH074400 A JP H074400A
Authority
JP
Japan
Prior art keywords
fluid
pressure side
pressure
high pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20721192A
Other languages
Japanese (ja)
Other versions
JPH0765599B2 (en
Inventor
Koichi Ozaki
崎 浩 一 尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4207211A priority Critical patent/JPH0765599B2/en
Publication of JPH074400A publication Critical patent/JPH074400A/en
Publication of JPH0765599B2 publication Critical patent/JPH0765599B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To provide a fluid transfer pressure generating method effectively used for the pumping, sealing, or the like of a fluid through the easy control of pressure at the time of generating the pressure for the flow of the fluid from a low pressure side container to a high pressure side container making use of phase change (evaporation-condensation) by the heating-cooling of the fluid. CONSTITUTION:A low pressure side container 1 stored with a fluid to be transferred, and a high pressure side container 2 to which the fluid is transferred are communicated through a narrow clearance passage 3. A heating part 4 for evaporating the fluid in the passage 3 from the low pressure side to the high pressure side is moved in relation to the passage 3, along the flow direction of the fluid, and the required pressure toward a high pressure side fluid storage area from a low pressure side fluid storage area is generated to the fluid in the passage 3 by controlling the moving speed of the heating part 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体の周期的な相変化
(蒸発・凝縮)を利用し、特に、その相変化領域の移動
により流体のポンピングあるいはシールのための制御さ
れた圧力を発生できるようにした流体移送圧力発生方法
に関するものである。
BACKGROUND OF THE INVENTION The present invention utilizes periodic phase change (evaporation / condensation) of a fluid, and in particular, movement of the phase change region produces a controlled pressure for pumping or sealing the fluid. The present invention relates to a fluid transfer pressure generating method that is made possible.

【0002】[0002]

【従来の技術】流体の飽和蒸気圧の温度依存性、気液相
変化に伴う比容積と動粘度の変化及び流体の流動に伴う
圧力損失などを効果的に組み合わせて利用すると、低圧
側と高圧側との間の流路中の小室において、低圧側から
高圧側に流体を圧送するための圧力を発生させることが
可能である。本発明者らは、先に、上述した流体の圧力
を発生させるための原理的な方法を、特願平3−329
553号において提案している。この既提案の方法は、
容積式の往復動型ポンプを模擬した熱機関として動作す
るものと言うことができる。
2. Description of the Related Art When the temperature dependency of saturated vapor pressure of fluid, the change of specific volume and kinematic viscosity due to gas-liquid phase change, and the pressure loss due to fluid flow are effectively combined and used, low pressure side and high pressure side It is possible to generate a pressure for pumping the fluid from the low pressure side to the high pressure side in the small chamber in the flow path between the side and the side. The present inventors previously described the principle method for generating the pressure of the fluid described above in Japanese Patent Application No. 3-329.
Proposed in No. 553. This proposed method is
It can be said to operate as a heat engine simulating a positive displacement reciprocating pump.

【0003】一般に、流体の移送を行う場合、機械的な
運動部分により低圧側の流体圧を昇圧して高圧側に移送
するのが通例であるが、機械的運動を得ることが困難で
あったり、機械的運動の存在が望ましくない環境におい
て流体移送を行う場合などには、上述した気液相変化を
利用して流体に圧力を発生させる方法が有利に利用でき
る。しかも、上記原理的な方法を更に発展させ、発生圧
力の制御を可能にすることにより、流体のポンピングあ
るいは流体のシールのための圧力を発生させるなど、各
種の用途での利用に対応させることが可能になる。
Generally, when transferring a fluid, it is customary to increase the fluid pressure on the low pressure side by a mechanical movement part to transfer it to the high pressure side, but it is difficult to obtain mechanical movement. In the case where fluid transfer is performed in an environment where the presence of mechanical movement is not desirable, the above-described method of generating pressure in the fluid by utilizing the gas-liquid phase change can be advantageously used. Moreover, by further developing the above-mentioned principle method and enabling control of the generated pressure, it is possible to support use in various applications such as generating pressure for pumping fluid or sealing fluid. It will be possible.

【0004】[0004]

【発明が解決しようとする課題】本発明の技術的課題
は、流体の加熱・冷却による相変化(蒸発・凝縮)を有
効に利用し、低圧側の流体収容域から高圧側の流体収容
域への流体の流れのための圧力を発生させるに際し、そ
の圧力を簡易に制御して、流体のポンピングあるいは流
体のシール等のために有効に利用できるようにした流体
移送圧力発生方法を提供することにある。
SUMMARY OF THE INVENTION The technical problem of the present invention is to effectively utilize the phase change (evaporation / condensation) due to heating / cooling of a fluid to shift from the low pressure side fluid storage area to the high pressure side fluid storage area. To provide a fluid transfer pressure generation method that can be effectively used for fluid pumping, fluid sealing, etc. when the pressure for fluid flow is generated. is there.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明の流体移送圧力発生方法は、移送すべき流体が
存在する低圧側の流体収容域と、その流体が移送される
高圧側の流体収容域とを、狭い間隙の流路を通して連通
させ、その流路における流体の流れの方向に沿って、低
圧側から高圧側へその流路内の流体を蒸発させるための
加熱部を移動させ、その移動速度の制御により、上記流
路における流体に低圧側の流体収容域から高圧側の流体
収容域の方に向かう所要の圧力を発生させることを特徴
とするものである。
The fluid transfer pressure generating method of the present invention for solving the above-mentioned problems includes a low-pressure side fluid storage area in which a fluid to be transferred exists and a high-pressure side in which the fluid is transferred. The fluid storage area is communicated with a passage having a narrow gap, and a heating unit for evaporating the fluid in the passage is moved from the low pressure side to the high pressure side along the flow direction of the fluid in the passage. By controlling the moving speed, a required pressure is generated in the fluid in the flow path from the low pressure side fluid storage area toward the high pressure side fluid storage area.

【0006】[0006]

【作用】低圧側と高圧側の流体収容域である容器間にお
いて、流路の一部を加熱する加熱部を流路に沿って低圧
側から高圧側へ移動させると、加熱部での蒸発と非加熱
部での凝縮により、流路を流れる蒸気量が増大し、蒸発
部における圧力降下が大きくなる。その結果、流路の両
端部では、低圧側から流路内に流体を吸入し、高圧側へ
吐出する状態になり、流路全体としてはポンプ作用を示
すことになる。また、上記加熱部の移動速度等によっ
て、ポンプ作用の圧力と高圧側の圧力がバランスする状
態があり、その状態では流路に対してシール効果を発揮
させることができる。
When a heating part for heating a part of the flow path is moved from the low pressure side to the high pressure side along the flow path between the containers, which are the fluid storage areas on the low pressure side and the high pressure side, evaporation in the heating part is caused. The amount of vapor flowing through the flow path increases due to the condensation in the non-heating section, and the pressure drop in the evaporation section increases. As a result, at both ends of the flow path, the fluid is sucked into the flow path from the low pressure side and discharged to the high pressure side, and the flow path as a whole exhibits a pumping action. In addition, there is a state in which the pressure of the pump action and the pressure on the high pressure side are balanced depending on the moving speed of the heating unit and the like.

【0007】[0007]

【実施例】図1は、本発明に基づいて低圧側の流体収容
域である容器1から高圧側の流体収容域である容器2の
側へ流体の流れのための圧力を発生させ、且つその圧力
を制御するための原理を説明するためのものである。ま
ず、同図に示すように、圧力差のある容器1,2間(圧
力P2 >P1 )を結ぶ内径が一様な流路3内の流体の流
れを考え、流路内の圧力分布を考察する。この場合、流
体は通常環境で液体であり、加熱することによって蒸発
させることができるものであり、例えば、水、フロン、
アンモニア等の常温に近い温度で相変化する流体が望ま
しい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a system for generating a pressure for a fluid flow from a container 1 which is a low-pressure side fluid containing area to a container 2 which is a high-pressure side fluid containing area according to the present invention. It is for explaining the principle for controlling the pressure. First, as shown in the same figure, considering the flow of the fluid in the flow passage 3 having a uniform inner diameter connecting the containers 1 and 2 (pressure P 2 > P 1 ) having a pressure difference, the pressure distribution in the flow passage is considered. Consider. In this case, the fluid is a liquid in a normal environment and can be evaporated by heating, such as water, chlorofluorocarbon,
A fluid that changes phase at a temperature close to room temperature, such as ammonia, is desirable.

【0008】同図中のは、流路3内の流体を蒸発させ
るための加熱部を設けず、流路3の全体において流れる
流体が液体の場合であり(重量流量:G1 >0)、流路
3内の圧力は流れに沿って直線的に降下する。
In the figure, a heating part for evaporating the fluid in the channel 3 is not provided, and the fluid flowing in the entire channel 3 is a liquid (weight flow rate: G 1 > 0). The pressure in the flow path 3 drops linearly along the flow.

【0009】また、図中のは、流路3の一部(B−C
間)を加熱部により加熱して、その間の流体を蒸気に変
える場合である。そのため、容器2側のA部から流路3
中のB部に流入する流体がそこで蒸発し、B−C部間を
気体で流れ、C部で凝縮してD部に到達する。この場
合、気体と液体という相が異なる状態で同一質量流量
(G2 )が高圧側から低圧側に流れるために、両相間の
動粘度の違いからB−C部間における圧力降下勾配が、
A−B部間あるいはC−D部間に比して極めて大きくな
る。その結果、A−B部間の圧力降下勾配は前記の場
合に比して小さくなり、流量は減少する(G1 >G2
0)。しかしながら、流路3中の流体の流れの方向は、
の場合と同様に高圧側から低圧側の方向である。即
ち、の場合には、流れの一部で流体を蒸気にすること
により、不完全ながらシール効果を示している。
Further, in the figure, is a part of the flow path 3 (BC
This is a case where the space) is heated by the heating unit and the fluid in the space is changed to steam. Therefore, from the portion A on the container 2 side to the flow path 3
The fluid flowing into the B section therein is vaporized there, flows between the B and C sections as a gas, is condensed in the C section, and reaches the D section. In this case, since the same mass flow rate (G 2 ) flows from the high pressure side to the low pressure side in a state in which the phases of gas and liquid are different, the pressure drop gradient between the B and C parts due to the difference in kinematic viscosity between the two phases,
It becomes extremely large as compared with the portion between A and B or the portion between C and D. As a result, the pressure drop gradient between the A and B parts becomes smaller than that in the above case, and the flow rate decreases (G 1 > G 2 >).
0). However, the flow direction of the fluid in the channel 3 is
Similar to the case, the direction is from the high pressure side to the low pressure side. That is, in the case of (1), the sealing effect is shown though it is incomplete by making the fluid into vapor in a part of the flow.

【0010】さらに、図中のは、上記の場合に比し
て、流路3の一部を加熱する加熱部を流路に沿って低圧
側から高圧側へある速度で移動する場合を示している。
この場合、の場合に比べて、B部での蒸発量とC部で
の凝縮量が付加的に増大して、B−C部間を流れる蒸気
量が増大し、B−C部間の圧力降下が大きくなる。その
結果、それに見合うべく、A−B部間及びC−D部間に
おいて上記及びと逆の勾配をもつ圧力分布になる。
これは、低圧側から流路3内に流体を吸入し、高圧側へ
吐出する状態であり、流路全体としてはポンプ作用を示
すことになる(質量流量G3 <0)。また、上記加熱部
の移動速度等によって、ポンプ作用の圧力と高圧側の圧
力がバランスする状態があり、その状態では流路3に対
してシール効果を発揮させることができる。
Further, in the figure, as compared with the above case, the case where the heating portion for heating a part of the flow path 3 is moved along the flow path from the low pressure side to the high pressure side at a certain speed is shown. There is.
In this case, the evaporation amount in the B portion and the condensation amount in the C portion are additionally increased as compared with the case, so that the amount of vapor flowing between the B and C portions is increased and the pressure between the B and C portions is increased. Greater descent. As a result, in order to be commensurate with it, the pressure distribution has a gradient opposite to the above gradient between the AB portion and the CD portion.
This is a state in which the fluid is sucked into the flow path 3 from the low pressure side and discharged to the high pressure side, and the flow path as a whole exhibits a pumping action (mass flow rate G 3 <0). In addition, there is a state in which the pressure of the pump action and the pressure on the high pressure side are balanced depending on the moving speed of the heating unit and the like, and in that state, the sealing effect can be exerted on the flow path 3.

【0011】本発明の流体移送圧力発生方法は、上述し
た原理に基づいて、流路3中の流体に低圧側の流体収容
域である容器1から高圧側の流体収容域である容器2の
側へ向かう圧力を発生させるものであり、基本的には、
図2に模式的に示すように、移送すべき流体を収容した
低圧側の流体収容域を形成する容器1と、その流体が移
送される高圧側の流体収容域を形成する容器2とを、狭
い間隙の流路3を通して連通させ、その流路3に加熱部
4が設けられる。この加熱部4は、それを流路3におけ
る流体の流れの方向に沿って低圧側から高圧側へ移動さ
せ、その流路3内の流体を部分的に蒸発させるためのも
のである。
The fluid transfer pressure generating method of the present invention is based on the above-mentioned principle, and the fluid in the flow path 3 is accommodated in the fluid containing area on the low pressure side from the vessel 1 to the fluid containing area on the high pressure side of the vessel 2. It creates a pressure toward, basically,
As schematically shown in FIG. 2, a container 1 that forms a low-pressure side fluid storage region that contains a fluid to be transferred and a container 2 that forms a high-pressure side fluid storage region into which the fluid is transferred are A heating unit 4 is provided in the channel 3 which is communicated with the channel 3 having a narrow gap. The heating unit 4 is for moving it from the low pressure side to the high pressure side along the flow direction of the fluid in the flow path 3 to partially evaporate the fluid in the flow path 3.

【0012】上記加熱部4を流路3に沿って低圧側から
高圧側へ移動させ、それによって流路3内にポンプ作用
が生じるのは、図1によって前述した通りである。加熱
により蒸発した流体を凝縮させるのは、自然空冷による
のが望ましいが、必要に応じて適宜強制冷却装置を設け
ることができる。さらに、その加熱部4の移動速度の制
御により、上記流路3における流体に低圧側の流体収容
域から高圧側の流体収容域の方に向かう所要の圧力を発
生させ、ポンプ作用あるいはシール作用を発揮させ得る
ことも、既に説明した通りである。
As described above with reference to FIG. 1, the heating unit 4 is moved along the flow path 3 from the low pressure side to the high pressure side, thereby causing a pumping action in the flow path 3. It is desirable to condense the fluid evaporated by heating by natural air cooling, but a forced cooling device can be appropriately provided if necessary. Further, by controlling the moving speed of the heating part 4, a desired pressure is generated in the fluid in the flow path 3 from the low-pressure side fluid storage area toward the high-pressure side fluid storage area, and a pumping action or a sealing action is performed. What can be demonstrated is as already explained.

【0013】図2の流路3における流体の連続的な移送
のためには、必要数の加熱部4をサイクリックに移動さ
せる必要があるが、図3に示すように、流路3に沿って
多数の加熱要素10を列設することにより加熱部4を構
成し、それらの加熱要素10を図中に付記したタイムチ
ャートに示すように、サイクリックに動作させることも
できる。この加熱要素10は、図示しない制御装置によ
り制御されて開閉するスイッチにより発熱体に通電して
加熱を行うものである。また、その動作速度の調整によ
り、流路3内に容易に所要の圧力を発生させることが可
能となり、ポンプ作用あるいはシール作用を発揮させる
ことができる。なお、このように構成した場合には、機
械的な可動部を全くなくすことができる。
In order to continuously transfer the fluid in the flow path 3 in FIG. 2, it is necessary to cyclically move the required number of heating units 4, but as shown in FIG. It is also possible to configure the heating unit 4 by arranging a large number of heating elements 10 in a row and to cyclically operate the heating elements 10 as shown in the time chart additionally shown in the drawing. The heating element 10 is heated by energizing a heating element with a switch that is opened and closed under the control of a control device (not shown). Further, by adjusting the operation speed, it becomes possible to easily generate a required pressure in the flow path 3, and it is possible to exert a pumping action or a sealing action. In addition, in the case of such a configuration, it is possible to eliminate the mechanical movable portion at all.

【0014】また、上記加熱部4による加熱部分の移動
は、図4に示すような加熱のためのレーザスキャンによ
っても実現することができる。同図における流路3は、
金属などのレーザ光の吸収体からなる下板11とレーザ
光の非吸収体からなるガラス等の上板12との間に形成
し、この流路3に、レーザ光源13からのレーザを回転
ミラー14で掃引照射することにより、流路3に沿う加
熱部の移動を行うようにしている。
The movement of the heating portion by the heating portion 4 can also be realized by a laser scan for heating as shown in FIG. The flow path 3 in the figure is
It is formed between a lower plate 11 made of a laser light absorber such as a metal and an upper plate 12 made of glass made of a non-laser light absorber, and a laser from a laser light source 13 is provided in this flow path 3 with a rotating mirror. By sweeping and irradiating at 14, the heating unit is moved along the flow path 3.

【0015】このように構成すると、レーザ光の吸収体
である下板11におけるレーザの吸収によりその表面が
加熱されて流路3中の流体が蒸発せしめられ、レーザ光
が移動してしまうとバルク体及び外部への熱伝導により
冷却され、蒸発した流体が凝縮せしめられる。なお、こ
のような構成は、特にマイクロポンプ用として適したも
のである。
According to this structure, the surface of the lower plate 11 which is a laser light absorber is absorbed by the laser to heat the surface of the lower plate 11 to evaporate the fluid in the flow path 3 and the bulk of the laser light to move. It is cooled by heat conduction to the body and the outside, and the evaporated fluid is condensed. In addition, such a structure is particularly suitable for a micropump.

【0016】本発明者らが既に提案している前述の方法
は、容積式の往復動型ポンプを模擬した熱機関として動
作する旨を先に説明している。その容積式ポンプの一つ
に、図5に示すように、流路のぜん動運動を利用したも
のがある。即ち、弾性管21の一部をローラ22等で押
しつぶし、その押しつぶし個所を管軸方向(矢印)に移
動させることにより、管内流体を圧送するものである。
上述した本発明の方法は、既提案の往復動型ポンプに対
し、上記ぜん動運動型のポンプを模擬した動作を行うも
のと言うことができる。なお、以下に説明するシール作
用を行うものについても、本質的には同様である。
It has been described above that the above-mentioned method already proposed by the present inventors operates as a heat engine simulating a positive displacement type reciprocating pump. As one of the positive displacement pumps, there is one that utilizes the peristaltic motion of the flow path as shown in FIG. That is, a part of the elastic tube 21 is crushed by the roller 22 or the like, and the crushed portion is moved in the tube axis direction (arrow), so that the fluid in the tube is pumped.
It can be said that the above-described method of the present invention performs an operation simulating the above-mentioned peristaltic pump with respect to the already proposed reciprocating pump. It should be noted that the same applies to those that perform the sealing action described below.

【0017】図6ないし図8の構成例は、回転軸31が
貫通する固定壁32の両面側を低圧側及び高圧側の流体
収容域である容器1,2とし、回転軸31と固定壁32
との間のすき間33によって形成される流体の流路を、
加熱部4の実質的な移動によりシールするものである。
この回転軸シール機構における加熱部4は、図7に示す
固定壁32における回転軸孔の内面の展開図から明らか
なように、固定壁32の内面に螺旋状に少なくとも1周
以上の高温部32aを配設している。この高温部32a
は、適宜手段により加熱されるもので、その両側に設け
た断熱材32cによって固定壁32の内面の低温部32
bから区画して配設されている。そして、高温部32a
に接触するすき間33内の流体は加熱されて蒸気化し、
低温部32bに接触する流体はそれによる冷却で凝縮す
るように、それらの温度が設定されている。
In the configuration examples of FIGS. 6 to 8, both sides of the fixed wall 32 through which the rotary shaft 31 penetrates are the containers 1 and 2 which are the fluid storage regions on the low pressure side and the high pressure side, and the rotary shaft 31 and the fixed wall 32 are provided.
The fluid flow path formed by the gap 33 between
Sealing is performed by substantially moving the heating unit 4.
As is apparent from the development view of the inner surface of the rotary shaft hole in the fixed wall 32 shown in FIG. 7, the heating unit 4 in this rotary shaft sealing mechanism has a high temperature portion 32a spirally formed on the inner surface of the fixed wall 32 for at least one revolution. Are installed. This high temperature part 32a
Is heated by appropriate means, and the low temperature part 32 on the inner surface of the fixed wall 32 is provided by the heat insulating materials 32c provided on both sides thereof.
It is arranged to be separated from b. And the high temperature part 32a
Fluid in the gap 33 that contacts the
The temperature of the fluid that comes into contact with the low temperature portion 32b is set so that it condenses upon cooling.

【0018】このように構成すると、回転軸31の回転
に伴い、流体が周方向に引きずられて回転するため、回
転軸31の表面の一部を基準としてみれば、高温部32
aに接触している蒸気領域を軸方向に移動させることが
でき、それによって前記ポンプ作用を発生させることが
できる。従って、固定壁32の両側に圧力差がある場
合、それに対向するようなポンプ作用が生じるようにら
線状温度分布と回転軸の回転速度の組合せを設定してお
くことにより、すき間33からの流体の漏出を抑制し、
実質的にシール効果を生じさせることができる。
According to this structure, as the rotary shaft 31 rotates, the fluid is dragged in the circumferential direction to rotate. Therefore, when a part of the surface of the rotary shaft 31 is used as a reference, the high temperature part 32 is used.
The vapor region in contact with a can be displaced in the axial direction, whereby the pumping action can be generated. Therefore, when there is a pressure difference on both sides of the fixed wall 32, the combination of the linear temperature distribution and the rotation speed of the rotating shaft is set so that a pumping action that opposes the fixed wall 32 is set, so that the gap 33 Controls fluid leakage,
Substantially a sealing effect can be produced.

【0019】また、上記図6ないし図8の構成例におけ
る回転軸31の固定壁32内面に対面する外表面に、図
9に示すような多数の軸方向のみぞ31aを設けること
により、周方向の流れが減少するようなすき間33を形
成すると、ポンプ効果及びシール効果を一層顕著にする
ことができる。
Further, by providing a large number of axial grooves 31a as shown in FIG. 9 on the outer surface of the rotary shaft 31 facing the inner surface of the fixed wall 32 in the constitutional examples of FIGS. If the gap 33 is formed so that the flow of the air is reduced, the pump effect and the sealing effect can be made more remarkable.

【0020】さらに、上記図6ないし図8の構成例にお
いて、低温部32bが環境温度の場合には、図10に示
すように、固定壁32の内面にら線上のみぞを設けて、
その中にすき間33と接する面以外を断熱材35で囲ま
れた発熱体36を埋め込むことにより加熱部4を構成す
ることができる。この場合、発熱体36としては、ニク
ロム線などによる通電加熱体、あるいは内部に高温流体
を流すようにしたチャンネルなどを使用することができ
る。
Further, in the configuration example of FIG. 6 to FIG. 8, when the low temperature portion 32b is at the ambient temperature, as shown in FIG.
The heating unit 4 can be configured by embedding a heating element 36 surrounded by the heat insulating material 35 in the area other than the surface in contact with the gap 33. In this case, as the heating element 36, an electric heating element such as a nichrome wire or a channel in which a high temperature fluid is made to flow can be used.

【0021】このような気液相変化を利用した流体移送
圧力発生方法によれば、構造が極めて単純で、機械的な
可動部分を皆無とすることが容易に可能であり、また、
原理的にはマイクロポンプのような小型化に適し、比較
的低流量、高揚程の場合、あるいは流体のシールに有効
な手段を得ることができる。
According to the fluid transfer pressure generating method utilizing such a gas-liquid phase change, the structure is extremely simple, and it is possible to easily eliminate mechanical moving parts.
In principle, it is suitable for miniaturization such as a micropump, and it is possible to obtain an effective means for relatively low flow rate, high head, or fluid sealing.

【0022】[0022]

【発明の効果】以上に詳述した本発明の方法によれば、
流体の加熱・冷却による相変化を有効に利用し、低圧側
の流体収容域から高圧側の流体収容域への流体の流れの
ための圧力を発生させるに際し、その圧力を簡易に制御
して、流体のポンピングあるいは流体のシール等のため
に有効に利用できるようにした流体移送圧力発生方法を
えることができる。
According to the method of the present invention detailed above,
By effectively utilizing the phase change due to heating / cooling of the fluid, when generating the pressure for the flow of the fluid from the low pressure side fluid storage area to the high pressure side fluid storage area, the pressure is simply controlled, It is possible to obtain a fluid transfer pressure generating method that can be effectively used for fluid pumping or fluid sealing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の動作原理を説明するための説明
図である。
FIG. 1 is an explanatory diagram for explaining the operating principle of the method of the present invention.

【図2】本発明の方法を実施する基本的構成を模式的に
示す構成図である。
FIG. 2 is a configuration diagram schematically showing a basic configuration for carrying out the method of the present invention.

【図3】上記方法を実施する装置の具体化例を示す断面
図である。
FIG. 3 is a cross-sectional view showing a specific example of an apparatus for performing the above method.

【図4】上記方法を実施する装置の他の具体化例を示す
断面図である。
FIG. 4 is a cross-sectional view showing another specific example of the apparatus for performing the above method.

【図5】本発明の方法が模擬しているポンプの構成につ
いての説明図である。
FIG. 5 is an explanatory diagram of a pump configuration simulated by the method of the present invention.

【図6】本発明の方法を実施する装置の他の構成例を示
す断面図である。
FIG. 6 is a cross-sectional view showing another structural example of the apparatus for carrying out the method of the present invention.

【図7】図6に示す装置の回転軸孔の内面の展開図であ
る。
7 is a development view of an inner surface of a rotary shaft hole of the apparatus shown in FIG.

【図8】図6の装置の軸方向断面図である。8 is an axial cross-sectional view of the device of FIG.

【図9】図6の装置における回転軸の他の構造例を示す
軸方向断面図である。
9 is an axial sectional view showing another structural example of the rotary shaft in the apparatus of FIG.

【図10】図6の装置における加熱部の他の構成例を示
す断面図である。
FIG. 10 is a cross-sectional view showing another configuration example of the heating unit in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 低圧側容器、2 高圧側容器、3 流路、4
加熱部。
1 low-pressure side container, 2 high-pressure side container, 3 flow paths, 4
Heating section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】移送すべき流体が存在する低圧側の流体収
容域と、その流体が移送される高圧側の流体収容域と
を、狭い間隙の流路を通して連通させ、 その流路における流体の流れの方向に沿って、低圧側か
ら高圧側へその流路内の流体を蒸発させるための加熱部
を移動させ、 その移動速度の制御により、上記流路における流体に低
圧側の流体収容域から高圧側の流体収容域の方に向かう
所要の圧力を発生させる、ことを特徴とする相変化領域
の移動による流体移送圧力発生方法。
1. A low-pressure-side fluid storage area in which a fluid to be transferred is present and a high-pressure-side fluid storage area in which the fluid is transferred are communicated through a flow path having a narrow gap, and A heating unit for evaporating the fluid in the flow passage is moved from the low pressure side to the high pressure side along the flow direction, and the fluid in the flow passage is controlled from the low pressure side fluid storage area by controlling the moving speed. A method for generating a fluid transfer pressure by moving a phase change region, which is characterized in that a required pressure is generated toward a fluid containing area on a high pressure side.
JP4207211A 1992-07-10 1992-07-10 Fluid transfer pressure generation method by movement of phase change region Expired - Lifetime JPH0765599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207211A JPH0765599B2 (en) 1992-07-10 1992-07-10 Fluid transfer pressure generation method by movement of phase change region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207211A JPH0765599B2 (en) 1992-07-10 1992-07-10 Fluid transfer pressure generation method by movement of phase change region

Publications (2)

Publication Number Publication Date
JPH074400A true JPH074400A (en) 1995-01-10
JPH0765599B2 JPH0765599B2 (en) 1995-07-19

Family

ID=16536083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207211A Expired - Lifetime JPH0765599B2 (en) 1992-07-10 1992-07-10 Fluid transfer pressure generation method by movement of phase change region

Country Status (1)

Country Link
JP (1) JPH0765599B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266505B1 (en) 1997-06-19 2001-07-24 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6968139B2 (en) 1997-06-19 2005-11-22 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266505B1 (en) 1997-06-19 2001-07-24 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6591078B2 (en) 1997-06-19 2003-07-08 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6594458B2 (en) 1997-06-19 2003-07-15 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6792228B2 (en) 1997-06-19 2004-09-14 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6853828B2 (en) 1997-06-19 2005-02-08 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6968139B2 (en) 1997-06-19 2005-11-22 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus
US6978101B2 (en) 1997-06-19 2005-12-20 Canon Kabushiki Kaisha Toner supply container detachably mounted to an image forming apparatus including a coupling projection
US7386250B2 (en) 1997-06-19 2008-06-10 Canon Kabushiki Kaisha Toner supply container and electrophotographic image forming apparatus

Also Published As

Publication number Publication date
JPH0765599B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
JP2693092B2 (en) Liquid discharge and vaporization system
US3621906A (en) Control system for heat pipes
US6976360B1 (en) Steam engine
US4165614A (en) Self-contained vapor-power plant requiring a single moving-part
US3502138A (en) Means for regulating thermal energy transfer through a heat pipe
US20230137699A1 (en) Method for the stabilisation and/or open-loop and/or closed-loop control of a working temperature, heat exchanger unit, device for transporting energy, refrigerating machine and heat pump
US3924674A (en) Heat valve device
JP2005511941A (en) Rotary compressor
JPH074400A (en) Fluid transfer pressure generating method by phase change area movement
KR20020026170A (en) Converting thermal energy to mechanical motion
US3693370A (en) Thermodynamic cycles
US4656839A (en) Heat pumps
US4451210A (en) Diaphragm vapor pump
KR100793484B1 (en) Valve
RU2656037C1 (en) Pressure capillary pump
NO161087B (en) COMPRESSION HEAT PUMP.
JPH0988503A (en) Binary power generating device
GB2241774A (en) A rotary absorption cycle heat machine
JP2673977B2 (en) Fluid transfer pressure generation method by phase change
US3474641A (en) Heat-actuated regenerative compressor system
Bardaweel et al. Characterization of the thermodynamic cycle of a MEMS-based external combustion resonant engine
US3892074A (en) Rotary engine operating on refrigeration cycle
JP3343825B2 (en) Induction heating roller device
KR101714657B1 (en) Organic rankine cycle power plant with advanced stirling engine
CN113499600A (en) Intelligent control device used in production process of petroleum mixed xylene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term