JP2673977B2 - Fluid transfer pressure generation method by phase change - Google Patents

Fluid transfer pressure generation method by phase change

Info

Publication number
JP2673977B2
JP2673977B2 JP3329553A JP32955391A JP2673977B2 JP 2673977 B2 JP2673977 B2 JP 2673977B2 JP 3329553 A JP3329553 A JP 3329553A JP 32955391 A JP32955391 A JP 32955391A JP 2673977 B2 JP2673977 B2 JP 2673977B2
Authority
JP
Japan
Prior art keywords
fluid
storage area
pressure
pressure side
fluid storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3329553A
Other languages
Japanese (ja)
Other versions
JPH05141400A (en
Inventor
崎 浩 一 尾
中 章 浩 田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP3329553A priority Critical patent/JP2673977B2/en
Publication of JPH05141400A publication Critical patent/JPH05141400A/en
Application granted granted Critical
Publication of JP2673977B2 publication Critical patent/JP2673977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流体の周期的な相変化
(蒸発・凝縮)を利用し、機械的な運動部分なしに流体
のポンピングのための圧力を発生できるようにした流体
移送圧力発生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a fluid phase change (evaporation / condensation) to generate a pressure for pumping a fluid without mechanical moving parts. It relates to the method of occurrence.

【0002】[0002]

【従来の技術】流体の移送を行う場合、機械的な運動部
分により低圧側の流体圧を昇圧して高圧側に移送するの
が通例であるが、機械的運動を得ることが困難であった
り、機械的運動の存在が望ましくない環境において流体
移送を行う場合も多く、これらの場合には、流体の移送
が困難である。
2. Description of the Related Art When a fluid is transferred, it is customary to increase the pressure of the fluid on the low pressure side to transfer it to the high pressure side by means of a mechanical movement part, but it is difficult to obtain mechanical movement. In many cases, fluid transfer is performed in an environment where the presence of mechanical movement is undesirable, and in these cases, fluid transfer is difficult.

【0003】[0003]

【発明が解決しようとする課題】本発明の技術的課題
は、流体移送の圧力発生のための機械的な運動部分をも
たず、流体の周期的な加熱・冷却による相変化(蒸発・
凝縮)に伴って生ずるところの、流体の体積変化、圧力
変化、あるいは狭い間隙を通って流れる際の圧力降下の
方向性等を有効に利用し、低圧側の流体収容域から高圧
側の流体収容域への流体の流れのための圧力を発生させ
る方法を提供することにある。
DISCLOSURE OF THE INVENTION The technical problem of the present invention is that it does not have a mechanical moving part for pressure generation of fluid transfer, and phase change (evaporation
Effectively utilizing the volume change, pressure change, or the directionality of the pressure drop when flowing through a narrow gap, which occurs with the condensation), and stores the fluid from the low-pressure side fluid storage area to the high-pressure side fluid storage area. It is to provide a method of generating pressure for the flow of fluid to an area.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
の本発明の第1の流体移送圧力発生方法は、移送すべき
流体が存在する低圧側の流体収容域と、その流体が移送
される高圧側の流体収容域と、それらの間に位置する小
室とを、それぞれ、狭い間隙の流路を通して連通させ、
上記小室において、流体に蒸発・凝縮の周期的な相変化
を与え、その相変化に同期して、上記両流路の流体を位
相差をもたせて周期的に加熱・冷却することにより、小
室の流体の蒸発時には、その小室と高圧側流体収容域と
の間の流路抵抗が、小室と低圧側流体収容域との間の流
路抵抗より小さく、小室の流体の凝縮時には、その小室
と低圧側流体収容域との間の流路抵抗が、小室と高圧側
の流体取容域との間の流路抵抗より小さくなるように
し、それによって、低圧側の 流体収容域から高圧側の流
体収容域への流体の流れのための圧力を発生させること
を特徴とするものである。
The first fluid transfer pressure generating method of the present invention for solving the above problems should be transferred.
Low-pressure side fluid storage area where fluid exists and that fluid is transferred
The high-pressure side fluid storage area and the small
The chamber and the chamber are communicated with each other through a narrow gap flow path,
Periodic phase change of evaporation / condensation of fluid in the small chamber
And the fluid in both channels above is positioned in synchronization with the phase change.
By periodically heating and cooling with a phase difference, small
When the fluid in the chamber evaporates, the small chamber and the high-pressure side fluid storage area
Between the small chamber and the low-pressure side fluid storage area.
It is smaller than the path resistance, and when the fluid in the small chamber condenses, the small chamber
The flow path resistance between the low pressure side fluid storage area and
To be smaller than the flow resistance between the fluid intake area and
The high pressure side flow from the low pressure side fluid containing area.
Generating pressure for fluid flow to the body containment area
It is characterized by the following.

【0005】また、本発明の第2の流体移送圧力発生方
法は、移送すべき流体が存在する低圧側の流体収容域
と、その流体が移送される高圧側の流体収容域とを、狭
い間隙の流路を通して連通させ、その流路における流体
の流れの方向に沿って、それぞれ独立した加熱・冷却手
段を持つ少なくとも三つの温度調節部を並設し、これら
の温度調節部において、相互に位相差を有して周期的に
温度を変化させることにより、各温度調節部ごとに流路
中を流れる流体に蒸発・凝縮の周期的な相変化を与え、
この相変化によって、高圧側の流体収容域よりも低圧側
の流体収容域から流路内へ流体を流入させる圧力状態
と、低圧側の流体収容域よりも高圧側の流体収容域の方
への流体を流すための圧力状態とを周期的に発生させる
ことを特徴とするものである。
A second fluid transfer pressure generating method according to the present invention
The method is a low-pressure side fluid storage area where the fluid to be transferred exists.
And the fluid containing area on the high-pressure side where the fluid is transferred,
Fluid through the flow path of the gap
Independent heating and cooling hands along the flow direction of
Line up at least three temperature control units with steps
In the temperature control section of the
By changing the temperature, the flow path for each temperature control unit
A periodic phase change of evaporation and condensation is given to the fluid flowing inside,
Due to this phase change, the low pressure side is higher than the high pressure side fluid storage area.
Pressure condition that causes the fluid to flow from the fluid storage area into the flow path
And the fluid containing area on the high pressure side rather than the fluid containing area on the low pressure side.
To generate a pressure state for flowing the fluid to
It is characterized by the following.

【0006】[0006]

【作用】上記低圧側の流体収容域と高圧側の流体収容域
との間に位置する小室において、流体に蒸発・凝縮の周
期的な相変化を与えると共に、その相変化に同期して小
室の両側の流路の流体を位相差をもたせて周期的に加熱
・冷却し、あるいは低圧側の流体収容域と高圧側の流体
収容域との間の流路に沿う複数の温度調節部において、
相互に位相差を与えて周期的に温度を変化させると、上
記流路における圧力降下の方向性により、低圧側の流体
収容域から高圧側の流体収容域への流体の流れのための
圧力が発生する。
In the small chamber located between the low-pressure side fluid containing area and the high-pressure side fluid containing area, the fluid undergoes a periodic phase change of evaporation / condensation and is synchronized with the phase change.
Periodically heating the fluid in the channels on both sides of the chamber with a phase difference
And cooling and, or at a plurality of temperature adjustment section along the flow path between the fluid accommodating area of the fluid accommodating area and the high-pressure side of the low pressure side,
When the temperature is cyclically changed by giving a phase difference to each other, the pressure for the fluid flow from the low pressure side fluid storage area to the high pressure side fluid storage area is increased due to the directionality of the pressure drop in the flow path. Occur.

【0007】 この方法によれば、流体移送の圧力発生の
ための機械的な運動部分をもたず、流体の周期的な加熱
・冷却による相変化に伴って生ずるところの、流体の体
積変化、圧力変化、あるいは狭い間隙を通って流れる際
の圧力降下の方向性の変化を有効に利用し、低圧側の流
体収容域から高圧側の流体収容域への流体の流れのため
の圧力を発生させることができる。
According to this method, no mechanical moving parts for the pressure generating fluid transfer, where produced in accordance with the phase change due to the periodic heating and cooling of the fluid, the volume change of the fluid, Effective use of pressure change or change in directionality of pressure drop when flowing through a narrow gap to generate pressure for fluid flow from low pressure side fluid storage area to high pressure side fluid storage area be able to.

【0008】[0008]

【実施例】図1は、本発明の第1の流体移送圧力発生方
法を説明するためのもので、この装置では、移送すべき
流体を収容した低圧側の流体収容域を形成する容器21
と、その流体が移送される高圧側の流体収容域を形成す
る容器22と、それらの間に位置する小室23とを、そ
れぞれ狭い間隙の流路24,25を通して連通させてい
る。移送する流体としては、水、フロン、アンモニア等
の、常温に近い温度で相変化する流体を用いるのが望ま
しい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is for explaining a first fluid transfer pressure generating method of the present invention. In this apparatus, a container 21 forming a low pressure side fluid containing area containing a fluid to be transferred is shown.
The container 22, which forms a high-pressure-side fluid storage area in which the fluid is transferred, and the small chamber 23 located between them are communicated with each other through channels 24 and 25 having narrow gaps. As the fluid to be transferred, it is desirable to use a fluid such as water, chlorofluorocarbon, ammonia, etc. that undergoes a phase change at a temperature close to room temperature.

【0009】 上記小室23においては、加熱装置26及
び自然空冷による冷却により、流体に蒸発・凝縮の周期
的な相変化を与えるようにしている。上記流体を凝縮さ
せるための冷却には、強制的な冷却装置を用いることも
できる。加熱装置26は、図示しない制御装置により制
御し、図2に模式的に示すように、小室23における流
体の温度Taを、その圧力における飽和温度Tsの上下
に周期的に変動させるように加熱するものであり、その
周期的な加熱の間には、小室23における流体が空冷ま
たは冷却装置により冷却される。また、小室23の両側
の流路24,25においては、小室内流体の相変化に同
期して流路内流体を加熱、冷却する加熱・冷却装置27
を設け、この加熱・冷却装置27により、小室23から
流路24,25を通じて流出入する流体の流れの圧力降
下に方向性をもたせ、流路24と流路25における圧力
降下の対称性をくずしている。
In the small chamber 23, the heating device 26 and cooling by natural air cooling are used to give a periodic phase change of evaporation / condensation to the fluid. A forced cooling device may be used for cooling for condensing the fluid. The heating device 26 is controlled by a control device (not shown) to heat the fluid temperature Ta in the small chamber 23 so as to periodically fluctuate above and below the saturation temperature Ts at that pressure, as schematically shown in FIG. The fluid in the small chamber 23 is cooled by air cooling or a cooling device during the periodic heating. Further, in the channels 24 and 25 on both sides of the small chamber 23, a heating / cooling device 27 that heats and cools the fluid in the channels in synchronization with the phase change of the fluid in the small chamber 27.
By providing this heating / cooling device 27, the pressure drop of the flow of the fluid flowing in and out from the small chamber 23 through the flow paths 24, 25 is directed, and the symmetry of the pressure drop in the flow paths 24 and 25 is broken. ing.

【0010】 したがって、小室23の流体を周期的に加
熱・冷却すると、その流体に蒸発・凝縮の周期的な相変
化を与えることができ、それに伴う小室23での流体の
流出入速度が速いため、上記流路24,25における圧
力降下の方向性の影響が顕著になる。そして、小室23
の加熱・冷却に伴う相変化に同期し、上記両流路24,
25の流体を、位相差をもたせて周期的に加熱・冷却す
ることにより、小室23の流体の蒸発時には、その小室
23と容器22との間の流路抵抗が小室23と容器21
との間の流路抵抗より小さく、また小室23の流体の凝
縮時には、その小室23と容器21との間の流路抵抗
が、小室23と容器22との間の流路抵抗より小さくな
るようにしているので、低圧側の流体収容域(容器2
1)から高圧側の流体収容域(容器22)への流体の流
れのための圧力を発生させることができる。
Accordingly, when the chamber 23 of the fluid periodically heated and cooled, the fluid can give cyclic phase change of the evaporation and condensation, since a fast inflow and outflow speed of the fluid at chamber 23 associated therewith The influence of the directionality of the pressure drop in the flow paths 24 and 25 becomes remarkable. And small room 23
In synchronization with the phase change associated with heating and cooling of the
By periodically heating and cooling the fluid of 25 with a phase difference, when the fluid of the small chamber 23 evaporates, the flow path resistance between the small chamber 23 and the container 22 becomes small.
Is smaller than the flow passage resistance between the small chamber 23 and the container 21, and is smaller than the flow passage resistance between the small chamber 23 and the container 22 when the fluid in the small chamber 23 is condensed. Therefore, the low pressure side fluid storage area (container 2
It is possible to generate a pressure for the flow of fluid from 1) to the fluid containing area (container 22) on the high pressure side.

【0011】 このようにして小室23の流体の蒸発・凝
縮及び流路24,25の流体の加熱・冷却を繰り返すこ
とにより、流路24,25における圧力降下の方向性を
有効に利用し、低圧側の流体収容域から高圧側の流体収
容域への流体の流れのための圧力を発生させることがで
き、機械的な駆動部分なしに流体を移送することができ
る。
[0011] By repeating this way heating and cooling of the fluid evaporation and condensation and the passage 24, 25 of the chamber 23 of the fluid, effectively utilizing the directionality of the pressure drop in the flow path 24, a low pressure A pressure can be generated for the flow of fluid from the side fluid containment zone to the high pressure side fluid containment zone and the fluid can be transferred without mechanical drive parts.

【0012】 図3は、本発明の第2の流体移送圧力発生
方法を説明するためのもので、この装置においては、低
圧側の流体収容域を形成する容器31と、高圧側の流体
収容域を形成する容器32とを、狭い間隙の流路33を
通して連通させ、その流路における流体の流れの方向に
沿って少なくとも三つの温度調節部34,35,36を
並設し、それぞれの温度調節部に独立した加熱・冷却手
段34a,35a,36aを設けている。この加熱・冷
却手段34a,35a,36aは、図示しない制御装置
により制御されて開閉するスイッチ34b,35b,3
6bによりヒーターに通電して加熱を行い、自然空冷に
より冷却するような構成とすることができる。
FIG . 3 is for explaining the second fluid transfer pressure generating method of the present invention. In this device, a container 31 forming a low pressure side fluid containing area and a high pressure side fluid containing area are formed. With the container 32 forming the flow path through a narrow gap flow path 33, and at least three temperature adjusting portions 34, 35, 36 are arranged in parallel along the flow direction of the fluid in the flow path, and the respective temperature adjustments are performed. Independent heating / cooling means 34a, 35a, 36a are provided in the section. The heating / cooling means 34a, 35a, 36a are opened / closed by switches 34b, 35b, 3 controlled by a controller (not shown).
It is possible to adopt a configuration in which the heater is energized to heat by 6b and cooled by natural air cooling.

【0013】 これらの温度調節部34,35,36は、
相互に位相差を有して周期的に温度を変化させることに
より、各温度調節部ごとに流路中を流れる流体に蒸発・
凝縮の周期的な相変化を与え、それによって上記流路3
3における低圧側の容器31から高圧側の容器32の方
への流体の流れのための圧力を発生させるもので、それ
らの温度調節部の加熱・冷却手段34a,35a,36
aは、例えば、図4に示すようなタイミングで動作させ
る。この加熱・冷却手段34a,35a,36aの動作
に伴う相変化は、高圧側の流体収容域よりも低圧側の流
体収容域から流路内へ流体を流入させる圧力状態と、低
圧側の流体収容域よりも高圧側の流体収容域の方への流
体を流すための圧力状態とを周期的に発生させるもので
ある。
[0013] These temperature adjusting unit 34, 35,
By periodically changing the temperature with a phase difference between each other, each temperature control unit evaporates and evaporates in the fluid flowing in the flow path.
A cyclic phase change of condensation is applied, whereby the flow path 3
3 for generating a pressure for the flow of fluid from the low pressure side container 31 to the high pressure side container 32, and heating / cooling means 34a, 35a, 36 of their temperature control units.
For example, a is operated at the timing shown in FIG. The phase change that accompanies the operation of the heating / cooling means 34a, 35a, and 36a is caused by the pressure state in which the fluid flows from the fluid storage area on the low pressure side to the fluid storage area on the high pressure side and the fluid storage on the low pressure side. The pressure state for flowing the fluid toward the fluid containing area on the high pressure side of the area is periodically generated.

【0014】 なお、このような構成を採用すると、加熱
・冷却手段34a,35a,36aの動作の位相差を変
更することにより、流体移送の方向を任意に選択するこ
とができる。また、流路33の断面積が小さいほど有利
であるため、以下に説明するシールや、マイクロマシン
における利用に好適なものである。
[0014] Incidentally, when such a structure is employed, heating and cooling means 34a, 35a, by changing the phase difference between operation of 36a, may be arbitrarily selected direction of fluid transport. Further, the smaller the cross-sectional area of the flow path 33 is, the more advantageous it is. Therefore, it is suitable for use in a seal and a micromachine described below.

【0015】 上述した各方法は、低圧側の容器から高圧
側の容器へ流体を移送するために用い得るのは勿論であ
るが、狭い流路における流体のシールにも好適に用いる
ことができる。図5は、上記第2の方法を軸の回りのシ
ールに用いる場合を例示するもので、このシール構造お
いては、低圧側の流体収容域を形成する容器41と、高
圧側の流体収容域を形成する容器42とを、軸受部43
における軸44の周りの狭い間隙の流路45を通して連
通させ、その流路45における流体の流れの方向に沿っ
て複数の温度調節部46,47,48を並設し、それぞ
れの温度調節部に独立した加熱・冷却手段を設けてい
る。なお、図中、49は断熱材を示している。
[0015] Each method described above, but the can be used to transfer fluid from a container of the low pressure side to the container of the high pressure side is, of course, it can be suitably used for sealing of the fluid in the narrow flow passage. FIG. 5 exemplifies a case where the second method is used for a seal around a shaft. In this seal structure, a container 41 forming a low pressure side fluid storage area and a high pressure side fluid storage area are formed. The container 42 forming the
Through a flow path 45 having a narrow gap around the shaft 44, and a plurality of temperature control parts 46, 47, 48 are arranged in parallel along the flow direction of the fluid in the flow path 45. Independent heating and cooling means are provided. In the figure, 49 indicates a heat insulating material.

【0016】 これらの温度調節部46,47,48は、
図3及び図4によって説明した場合と同様に、相互に位
相差を有して周期的に温度を変化させることにより、各
温度調節部ごとに流路中を流れる流体に蒸発・凝縮の周
期的な相変化を与え、それによって上記流路45におけ
る低圧側から高圧側への流体の流れのための圧力を発生
させるものである。
[0016] These temperature adjusting unit 46, 47, 48
Similar to the case described with reference to FIGS. 3 and 4, by periodically changing the temperature with a phase difference between each other, the fluid flowing in the flow path for each temperature control unit undergoes periodic evaporation / condensation. Phase change, thereby generating a pressure for the fluid flow from the low pressure side to the high pressure side in the flow path 45.

【0017】 図5のようなシール構造において、軸が回
転する場合には、図6に例示するような構造を採用する
ことができる。このシール構造は、上記図5の装置にお
いて、各温度調節部ごとに、軸44を含む平面上に板状
の斯熱材51を軸の周囲で位相をずらして配置し、その
断熱材51により温度調節部を区画し(図6)、断熱材
51の両側を加熱部52と冷却部53とにするもので、
この場合は各温度調節部46,47,48を相互に位相
差を与えて周期的に温度変化させる必要はなく、軸44
の回転に伴い、流路45内の流体が回転する軸表面に引
きずられて加熱部52と冷却部53とを周期的に通過す
るので、周期的に温度を変える場合と同様に機能させる
ことができる。
In the seal structure as shown in FIG . 5, when the shaft rotates, the structure as shown in FIG. 6 can be adopted. In this seal structure, in the device of FIG. 5, the plate-shaped heat-generating member 51 is arranged on the plane including the shaft 44 with the phase shifted around the shaft for each temperature adjusting unit, and The temperature control section is divided (FIG. 6), and both sides of the heat insulating material 51 are used as a heating section 52 and a cooling section 53.
In this case, it is not necessary to give a phase difference to each of the temperature adjusting units 46, 47 and 48 to change the temperature periodically,
The fluid in the flow path 45 is dragged by the surface of the rotating shaft and periodically passes through the heating section 52 and the cooling section 53 in accordance with the rotation of No. 5, so that the same function as in the case of periodically changing the temperature can be achieved. it can.

【0018】 また、温度調節部に適切な温度分布を得る
ためには、各温度調節部を、図7に示すように、軸44
を含む複数の平面上に位置する断熱材51により多数の
領域に区画し、それらの領域を適宜加熱部52または冷
却部53とすればよく、これにより、軸回転速度に応じ
た適切な温度分布を得ることができる。
Further, in order to obtain an appropriate temperature distribution in the temperature adjusting section, each temperature adjusting section is provided with a shaft 44 as shown in FIG.
The heat insulating material 51 located on a plurality of planes including the area may be divided into a large number of regions, and these regions may be appropriately used as the heating unit 52 or the cooling unit 53, whereby an appropriate temperature distribution according to the shaft rotation speed is obtained. Can be obtained.

【0019】[0019]

【発明の効果】以上に詳述した本発明の方法によれば、
流体移送の圧力発生のための機械的な運動部分をもた
ず、流体の周期的な加熱・冷却による相変化に伴って生
ずるところの、流体の体積変化、圧力変化、あるいは狭
い間隙を通って流れる際の圧力降下の方向性等を有効に
利用し、低圧側の流体収容域から高圧側の流体収容域へ
の流体の流れのための圧力を発生させることができる。
According to the method of the present invention described in detail above,
It does not have a mechanical moving part for pressure generation of fluid transfer, but it changes volume of fluid, pressure change, or through a narrow gap, which occurs with phase change due to periodic heating and cooling of fluid. By effectively utilizing the directionality of the pressure drop when flowing, it is possible to generate the pressure for the flow of the fluid from the low pressure side fluid storage area to the high pressure side fluid storage area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の方法の詳細を説明するための説
明図である。
FIG. 1 is an explanatory diagram for explaining details of a first method of the present invention.

【図2】図1の装置の小室における流体の温度の制御態
様を模式的に示すグラフである。
FIG. 2 is a graph schematically showing a mode of controlling the temperature of a fluid in a small chamber of the apparatus shown in FIG.

【図3】本発明の第2の方法の詳細を説明するための説
明図である。
FIG. 3 is an explanatory diagram for explaining details of a second method of the present invention.

【図4】図3の装置の流路における流体の温度の制御態
様を模式的に示すグラフである。
FIG. 4 is a graph schematically showing a control mode of a temperature of a fluid in a flow path of the apparatus of FIG.

【図5】上記本発明の第2の方法を軸のシールに適用し
た場合の構成を示す断面図である。
FIG. 5 is a cross-sectional view showing a configuration when the second method of the present invention is applied to a shaft seal.

【図6】図3の装置における温度調節部の他の構成例を
示す断面図である。
FIG. 6 is a cross-sectional view showing another configuration example of the temperature adjusting unit in the apparatus of FIG.

【図7】図3の装置における温度調節部のさらに他の構
成例を示す断面図である。
FIG. 7 is a cross-sectional view showing still another configuration example of the temperature control unit in the apparatus of FIG.

【符号の説明】[Explanation of symbols]

23 小室、24,25,33,45 流路、26
加熱装置、27 加熱・冷却装置、34,35,
36 温度調節部、34a,35a,36a 加熱
・冷却手段、46,47,48 温度調節部。
23 small chambers, 24, 25, 33, 45 channels, 26
Heating device, 27 Heating / cooling device, 34, 35,
36 temperature control part, 34a, 35a, 36a heating / cooling means, 46, 47, 48 temperature control part.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 移送すべき流体が存在する低圧側の流体収
容域と、その流体が移送される高圧側の流体収容域と、
それらの間に位置する小室とを、それぞれ、狭い間隙の
流路を通して連通させ、 上記小室において、流体に蒸発・凝縮の周期的な相変化
を与え、 その相変化に同期して、上記両流路の流体を位相差をも
たせて周期的に加熱・冷却することにより、小室の流体
の蒸発時には、その小室と高圧側流体収容域との間の流
路抵抗が、小室と低圧側流体収容域との間の流路抵抗よ
り小さく、小室の流体の凝縮時には、その小室と低圧側
流体収容域との間の流路抵抗が、小室と高圧側の流体収
容域との間の流路抵抗より小さくなるようにし、 それによって、低圧側の流体収容域から高圧側の流体収
容域への流体の流れのための圧力を発生させる、 ことを特徴とする相変化による流体移送圧力発生方法。
1. A low-pressure-side fluid storage area in which a fluid to be transferred is present, and a high-pressure-side fluid storage area in which the fluid is transferred,
The small chambers located between them are communicated with each other through narrow flow passages, and in the small chambers, a periodic phase change of evaporation / condensation is given to the fluid, and the two flows are synchronized with the phase change. By periodically heating and cooling the fluid in the passage with a phase difference, when the fluid in the small chamber evaporates, the flow path resistance between the small chamber and the high-pressure side fluid storage area is The flow path resistance between the small chamber and the low pressure side fluid storage area is smaller than the flow path resistance between the small chamber and the low pressure side fluid storage area when the fluid in the small chamber is condensed. A method for generating fluid transfer pressure by phase change, characterized in that the pressure for fluid flow from the low-pressure side fluid storage area to the high-pressure side fluid storage area is generated.
【請求項2】 移送すべき流体が存在する低圧側の流体収
容域と、その流体が移送される高圧側の流体収容域と
を、狭い間隙の流路を通して連通させ、 その流路における流体の流れの方向に沿って、それぞれ
独立した加熱・冷却手段を持つ少なくとも三つの温度調
節部を並設し、 これらの温度調節部において、相互に位相差を有して周
期的に温度を変化させることにより、各温度調節部ごと
に流路中を流れる流体に蒸発・凝縮の周期的な相変化を
与え、 この相変化によって、高圧側の流体収容域よりも低圧側
の流体収容域から流路内へ流体を流入させる圧力状態
と、低圧側の流体収容域よりも高圧側の流体収容域の方
への流体を流すための圧力状態とを周期的に発生させ
る、 ことを特徴とする相変化による流体移送圧力発生方法。
2. A low-pressure-side fluid storage area in which a fluid to be transferred is present and a high-pressure-side fluid storage area in which the fluid is transferred are communicated with each other through a flow path having a narrow gap. At least three temperature control sections having independent heating and cooling means are arranged in parallel along the flow direction, and the temperature control sections periodically change the temperature with a phase difference between them. This causes a periodic phase change of evaporation / condensation to the fluid flowing in the flow path for each temperature control unit, and this phase change causes the fluid flow inside the flow path from the fluid storage area on the low pressure side to the fluid storage area on the high pressure side. A phase change characterized by periodically generating a pressure state in which a fluid flows in and a pressure state in which a fluid flows toward a high-pressure side fluid storage area rather than a low-pressure side fluid storage area. Fluid transfer pressure generation method.
JP3329553A 1991-11-18 1991-11-18 Fluid transfer pressure generation method by phase change Expired - Lifetime JP2673977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329553A JP2673977B2 (en) 1991-11-18 1991-11-18 Fluid transfer pressure generation method by phase change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329553A JP2673977B2 (en) 1991-11-18 1991-11-18 Fluid transfer pressure generation method by phase change

Publications (2)

Publication Number Publication Date
JPH05141400A JPH05141400A (en) 1993-06-08
JP2673977B2 true JP2673977B2 (en) 1997-11-05

Family

ID=18222647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329553A Expired - Lifetime JP2673977B2 (en) 1991-11-18 1991-11-18 Fluid transfer pressure generation method by phase change

Country Status (1)

Country Link
JP (1) JP2673977B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718408B2 (en) * 1986-06-23 1995-03-06 謙治 岡安 Heat driven pump

Also Published As

Publication number Publication date
JPH05141400A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
TWI425177B (en) Process and apparatus to increase the temperature gradient in a thermal generator using magneto-calorific material
JP4908469B2 (en) Rotating magnet type magnetic refrigerator
US8769966B2 (en) Thermal generator using magnetocaloric material
FI88894B (en) PROCEDURE FOR THE PREPARATION OF THE PRESENTATION OF A PRESS RELEASE
JP2017526890A (en) Magnetic refrigeration system with unequal blow
KR20160034995A (en) Variable heat pump using magneto caloric materials
EP3102893B1 (en) An active magnetic regenerator device
KR101634832B1 (en) Magnetocaloric thermal generator
JP2010513014A (en) Split flow device
US20230137699A1 (en) Method for the stabilisation and/or open-loop and/or closed-loop control of a working temperature, heat exchanger unit, device for transporting energy, refrigerating machine and heat pump
JP5254440B2 (en) Method and apparatus for performing heat transfer between adsorbers operating alternately
RU2010101737A (en) REFRIGERATING APPARATUS AND METHOD FOR MAINTAINING CONSTANT CONSTANT TEMPERATURE IN THE REFRIGERATING CHAMBER OF THE REFRIGERATING UNIT
US9618247B2 (en) Method for increasing the valve capacity of a refrigeration unit
JP2673977B2 (en) Fluid transfer pressure generation method by phase change
KR101688244B1 (en) Magnetocaloric heat generator
AU2011288328B2 (en) Thermal generator containing magnetocaloric material
JP2006062364A (en) Improved calender gap control
JP2002168579A (en) Thin looped heat pipe and temperature control apparatus comprising it
KR20160102505A (en) Magnetocaloric thermal generator and method of cooling same
JP2024517430A (en) Temperature control device and manufacturing method thereof
CN105283288B (en) Gagger heat transfer tubes manage technology
Nazarov et al. The influence of gas coflow in a pulse aerosol on evaporation cooling process
JPWO2021214836A5 (en)
US20070018006A1 (en) Return manifold with self-regulating valve
JPH0765599B2 (en) Fluid transfer pressure generation method by movement of phase change region

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term