JPH0743757A - Semiconductor quantum well optical element - Google Patents

Semiconductor quantum well optical element

Info

Publication number
JPH0743757A
JPH0743757A JP18806393A JP18806393A JPH0743757A JP H0743757 A JPH0743757 A JP H0743757A JP 18806393 A JP18806393 A JP 18806393A JP 18806393 A JP18806393 A JP 18806393A JP H0743757 A JPH0743757 A JP H0743757A
Authority
JP
Japan
Prior art keywords
quantum well
quantum
gaas
electric field
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18806393A
Other languages
Japanese (ja)
Inventor
Takeshi Cho
雄 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP18806393A priority Critical patent/JPH0743757A/en
Publication of JPH0743757A publication Critical patent/JPH0743757A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor quantum well optical element of such a strain quantum well structure having the highest possible optical nonlinear effect while maintaining a light absorption characteristic of a blue shift. CONSTITUTION:This semiconductor quantum well optical element is formed by utilizing quantum wells or superlattice structures consisting of compd. semiconductors and is constituted by alternately laminating InGaAs compressive strain layers 11 having the lattice constant larger than the lattice constant of a GaAs substrate 10 and the quantum well structures 12 consisting of two kinds of the compd. semiconductors AlGaAs/GaAs having the lattice constant equal to the lattice constant of the GaAs substrate 10 on the GaAs substrate 10 having a (111) face at its main face.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光又は電気信号で光を
制御する光情報処理システムを構築するために不可欠な
非線形光学素子に係わり、特に化合物半導体からなる量
子井戸又は超格子構造を利用した半導体量子井戸光学素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear optical element which is indispensable for constructing an optical information processing system for controlling light by an optical signal or an electric signal, and particularly utilizes a quantum well or a superlattice structure made of a compound semiconductor. Semiconductor quantum well optical element.

【0002】[0002]

【従来の技術】近年、高効率,超高速の非線形光学素子
を実現するために、半導体量子井戸又は超格子構造を利
用した半導体量子井戸光学素子が研究開発されている。
半導体量子井戸又は超格子構造は、他の非線形材料(例
えば有機物非線形材料)と比べて、大きな非線形定数に
加えるに良好な電気性質を有するため、電気的な手段を
導入し更に一層光非線形性を増強したり、電子素子と非
線形光学素子を共存させることができる。
2. Description of the Related Art Recently, a semiconductor quantum well optical element utilizing a semiconductor quantum well or a superlattice structure has been researched and developed in order to realize a highly efficient and ultrafast nonlinear optical element.
Semiconductor quantum wells or superlattice structures have good electrical properties in addition to large nonlinear constants compared to other nonlinear materials (eg, organic nonlinear materials), so electrical means are introduced to further improve optical nonlinearity. It can be enhanced, or the electronic element and the non-linear optical element can coexist.

【0003】最近、通常の[100]方向に作成した量
子井戸非線形素子と異なり、図13に示すように、[1
00]基板上に量子井戸構造(真性領域iと呼ばれる)
とn型及びp型ドープ層を積み重ねた、いわゆるn−i
−p−i構造が提案されている(D.S.McCallum et al,
J.Appl.Phys 70, 6891(1991))。
Recently, unlike a normal quantum well nonlinear device formed in the [100] direction, as shown in FIG.
[00] Quantum well structure on substrate (called intrinsic region i)
And n-type and p-type doped layers are stacked, so-called ni
A p-i structure has been proposed (DSMcCallum et al,
J. Appl. Phys 70, 6891 (1991)).

【0004】この構造では、n及びp層中の不純物の一
部がイオン化されるため、空間電荷が形成される。その
結果、量子井戸領域iに対して、層に垂直な方向に内部
電界が印加される。この内部電界の印加により、エネル
ギーバンド構造は、熱平衡状態では、図14(a)に示
すように大きく曲げられる。そのため、量子井戸におけ
る励起子吸収のピークは、無電界の場合と比較して長波
長側へレッドシフトする。
In this structure, space charges are formed because some of the impurities in the n and p layers are ionized. As a result, an internal electric field is applied to the quantum well region i in the direction perpendicular to the layer. By applying this internal electric field, the energy band structure is largely bent in the thermal equilibrium state as shown in FIG. Therefore, the peak of exciton absorption in the quantum well is red-shifted to the longer wavelength side as compared with the case of no electric field.

【0005】この状態で光を照射すると、量子井戸内で
励起された電子及び正孔は、内部電界により、それぞれ
n型ドープ層及びp型ドープ層へ分離される。これらの
光によって励起されたキャリアは、イオン化した不純物
を電気的に中性化するため、図14(b)に示すように
量子井戸中の電界強度は低下すると同時に、エネルギー
バンド構造はかなり平らになる。従って、量子井戸にお
ける励起子吸収のピークは、光を照射しない場合に比べ
て短波長側へブルーシフトする。
When light is irradiated in this state, the electrons and holes excited in the quantum well are separated into an n-type doped layer and a p-type doped layer by the internal electric field. Since the carriers excited by these lights electrically neutralize the ionized impurities, the electric field strength in the quantum well is lowered as shown in FIG. Become. Therefore, the exciton absorption peak in the quantum well is blue-shifted to the shorter wavelength side as compared with the case where light is not irradiated.

【0006】そして、この吸収ピークのシフトにより、
吸収係数及び屈折率において変化が起きるわけである。
これを利用して、光変調器,光スイッチ,光メモリなど
のような光学素子への応用が考えられる。
Then, due to the shift of the absorption peak,
Changes occur in the absorption coefficient and refractive index.
Utilizing this, application to optical elements such as optical modulators, optical switches, and optical memories can be considered.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
n−i−p−i構造においては、内部電界の大きさがイ
オン化した空間電荷の密度、即ちn層とp層におけるド
ーピング濃度によって完全に決定される。周知のよう
に、半導体材料にドーピングできる不純物濃度には制限
があり(通常1016〜1019cm-3)、半導体によって
は全くドーピングできない(例えばGaN)、つまり
p,n層を形成できないこともあり得る。さらに、内部
電界が弱い(〜104 V/cm)ため、励起子吸収ピー
クのシフト量が小さく、あまり大きな非線形効果は期待
できない。
However, in the above n-i-p-i structure, the magnitude of the internal electric field is completely determined by the density of ionized space charges, that is, the doping concentration in the n-layer and the p-layer. To be done. As is well known, the impurity concentration that can be doped into a semiconductor material is limited (usually 10 16 to 10 19 cm −3 ), and some semiconductors cannot be doped at all (for example, GaN), that is, p and n layers cannot be formed. possible. Furthermore, since the internal electric field is weak (-10 4 V / cm), the shift amount of the exciton absorption peak is small, and a very large nonlinear effect cannot be expected.

【0008】以上の原因から、例えば代表的な非線形光
学素子である光スイッチに応用した場合、外部印加電界
による内部電界に対して制御できる範囲はかなり狭いた
め、屈折率の変化量が小さく、光がオン・オフする状態
での強度比は小さくなる。また、内部電界が弱いため、
外部印加電界が不安定な場合にその影響を受けやすく、
素子の安定性に欠けるだけではなく、制御できる光の波
長もかなり狭い範囲に限られてしまう。
From the above reasons, when applied to an optical switch which is a typical non-linear optical element, the controllable range with respect to the internal electric field due to the externally applied electric field is quite narrow, so that the change amount of the refractive index is small and The intensity ratio becomes smaller when the switch turns on and off. Also, since the internal electric field is weak,
When the externally applied electric field is unstable, it is easily affected,
Not only is the device lacking in stability, but the wavelength of light that can be controlled is also limited to a fairly narrow range.

【0009】本発明は、上記の事情に鑑みてなされたも
ので、その目的とするところは、ブルーシフトの光吸収
特性を保ちながら、できるだけ大きな光非線形効果を有
するような歪み量子井戸構造の半導体量子井戸光学素子
を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor having a strained quantum well structure having a large optical nonlinear effect while maintaining the blue-shift optical absorption characteristics. It is to provide a quantum well optical element.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、化合物半導体からなる量子井戸又は超格子構造を
利用した半導体量子井戸光学素子において、主面が(1
11)面の化合物半導体基板上に、基板とは格子定数の
異なる化合物半導体と、基板の格子定数と等しい二種類
の化合物半導体A,Bからなる量子井戸又は超格子構造
とを、交互に積層してなることを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention provides a semiconductor quantum well optical element utilizing a quantum well or superlattice structure made of a compound semiconductor, in which the main surface is (1
On a compound semiconductor substrate of the 11) plane, a compound semiconductor having a lattice constant different from that of the substrate and a quantum well or a superlattice structure composed of two kinds of compound semiconductors A and B having the same lattice constant of the substrate are alternately laminated. It is characterized by

【0011】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 主面が(111)面の化合物半導体基板上に、基板
より格子定数の大きな化合物半導体(圧縮歪み層)1
と、基板の格子定数と整合する二種類の化合物半導体
A,Bからなる量子井戸又は超格子構造2とを交互に積
層したこと。 (2) 主面が(111)面の化合物半導体基板上に、基板
より格子定数の小さな化合物半導体(引張り歪み層)3
と、量子井戸又は超格子構造2とを交互に積層したこ
と。 (3) 主面が(111)面の化合物半導体基板上に、半導
体1,量子井戸又は超格子構造2,半導体1,半導体
3,量子井戸又は超格子構造2,半導体3を順次交互に
積層した構造(圧縮歪み層と引張り歪み層の両方を含
む)を単独で又は何度も繰り返した周期構造を用いたこ
と。
Here, the following are preferred embodiments of the present invention. (1) On a compound semiconductor substrate whose main surface is a (111) plane, a compound semiconductor (compressive strain layer) having a larger lattice constant than the substrate 1
And a quantum well or a superlattice structure 2 composed of two kinds of compound semiconductors A and B matching the lattice constant of the substrate are alternately laminated. (2) On the compound semiconductor substrate whose main surface is the (111) plane, a compound semiconductor (tensile strain layer) with a lattice constant smaller than that of the substrate 3
And the quantum well or the superlattice structure 2 are alternately laminated. (3) A semiconductor 1, a quantum well or a superlattice structure 2, a semiconductor 1, a semiconductor 3, a quantum well or a superlattice structure 2, and a semiconductor 3 are sequentially and alternately laminated on a compound semiconductor substrate having a (111) main surface. The periodic structure in which the structure (including both the compressive strain layer and the tensile strain layer) is used alone or repeatedly is used.

【0012】[0012]

【作用】本発明によれば、主面が(111)面の化合物
半導体基板上に、基板の格子定数と異なる半導体材料を
積層した場合に、格子の不整合から生じた歪みによる圧
電効果により、歪み層内に大きな内部電界が発生する。
この内部電界の方向は、歪みの性格(圧縮歪みか引張り
歪みか)によって決定される。
According to the present invention, when a semiconductor material having a lattice constant of a substrate is laminated on a compound semiconductor substrate having a (111) plane as a main surface, a piezoelectric effect due to strain caused by lattice mismatching causes A large internal electric field is generated in the strained layer.
The direction of this internal electric field is determined by the nature of the strain (compressive strain or tensile strain).

【0013】例えば、主面が(111)B面の化合物半
導体基板上に、基板より格子定数の大きな半導体を積層
した場合、基板表面と平行な方向に圧縮歪みが生じるた
め、基板から結晶表面に向かう内部電界が歪み層に発生
する。一方、(111)B面の基板上に、基板より格子
定数の小さな半導体を積層した場合は、基板表面と平行
な方向に引張り歪みが生じるため、内部電界の方向は逆
になる。
For example, when a semiconductor having a lattice constant larger than that of a substrate is stacked on a compound semiconductor substrate having a (111) B plane as a main surface, a compressive strain is generated in a direction parallel to the substrate surface, so that the crystal surface is moved from the substrate to the crystal surface. An internal electric field is generated in the strained layer. On the other hand, when a semiconductor having a lattice constant smaller than that of the substrate is stacked on the (111) B-plane substrate, tensile strain is generated in a direction parallel to the substrate surface, so that the directions of the internal electric fields are reversed.

【0014】また、内部電界の大きさは、歪みの大き
さ、即ち積層された半導体材料と基板との間における格
子不整合の大きさによって決定される。例えば、(11
1)B面のGaAs基板上にGaAs1-xx を積層し
た場合に、僅か1%の歪みが存在するとしても、圧電効
果によって生じた内部電界の大きさは約2×105 V/
cmと極めて大きい。言うまでもなく、GaAs1-x
x 中のP組成xを変えることによって、内部電界の大き
さを必要に応じて自由自在に制御することができる。
The magnitude of the internal electric field is determined by the magnitude of strain, that is, the magnitude of lattice mismatch between the laminated semiconductor material and the substrate. For example, (11
1) When GaAs 1-x P x is laminated on the B-plane GaAs substrate, the magnitude of the internal electric field generated by the piezoelectric effect is about 2 × 10 5 V /
cm is extremely large. Needless to say, GaAs 1-x P
By varying the P content x in the x, it can be freely controlled according to need the size of the internal electric field.

【0015】また、n−i−p−i構造のように、量子
井戸構造に予め内部電界を持たせるのに不可欠なドーピ
ングプロセスが一切不要になったことも大きなメリット
である。これによって、例えば青色発光ダイオード材料
と期待されながら実用に至っていないGaNのようなp
型ドーピングが不可能な半導体材料でも、本発明によれ
ば使用可能となるわけである。
Further, it is also a great merit that a doping process, which is indispensable for previously giving an internal electric field to a quantum well structure, like the nip structure, is not necessary at all. As a result, for example, p-type materials such as GaN, which is expected to be a blue light emitting diode material but has not yet been put to practical use
Even semiconductor materials that cannot be type-doped can be used according to the present invention.

【0016】本発明の量子構造を例えば、代表的な非線
形光学素子である光スイッチに応用した場合、内部電界
が強いため、入射光又は外部印加電界による励起子吸収
ピークのブルーシフト量が大きく、屈折率における変化
量はかなり大きいと考えられる。従って、オン・オフ状
態における透過光強度比は、従来のn−i−p−i素子
と比べて極めて大きい。
When the quantum structure of the present invention is applied to, for example, an optical switch, which is a typical nonlinear optical element, the internal electric field is strong, so that the blue shift amount of the exciton absorption peak due to incident light or an externally applied electric field is large, The amount of change in the refractive index is considered to be quite large. Therefore, the transmitted light intensity ratio in the on / off state is extremely large as compared with the conventional n-i-p-i element.

【0017】また、内部電界が強いため、外部印加電界
の不安定による影響を受けにくく、素子の安定性に優れ
るだけではなく、制御できる光の波長範囲がかなり広が
ると言うような利点もある。なお、格子整合系の量子井
戸又は超格子構造がそのまま活用できるため、素子作製
上にも大変有利である。
Further, since the internal electric field is strong, it is not easily affected by the instability of the externally applied electric field, and not only the element stability is excellent, but also the controllable wavelength range of light is considerably widened. Since the quantum well of the lattice matching system or the superlattice structure can be used as it is, it is very advantageous in manufacturing the device.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (実施例1)図1は、本発明の第1の実施例に係わる半
導体量子井戸光学素子を説明するためのもので、[11
1]方向の圧縮歪み層を含む量子構造を示している。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is for explaining a semiconductor quantum well optical element according to a first embodiment of the present invention.
1] shows a quantum structure including a compression strained layer in the [1] direction.

【0019】面方位が(111)BのGaAs基板10
の上に、格子定数がGaAs基板10より大きいInG
aAs(圧縮歪み層)11と、格子定数がGaAs基板
10と整合するAlGaAs及びGaAsからなるAl
GaAs/GaAs量子井戸又は超格子構造12とを、
順次交互に積層させる。このとき、InGaAs11は
基板表面と平行な方向に圧縮歪みを受け、圧縮(compre
ssion )領域cを形成する。
GaAs substrate 10 having a plane orientation of (111) B
InG having a lattice constant larger than that of the GaAs substrate 10
aAs (compressive strain layer) 11 and Al composed of AlGaAs and GaAs whose lattice constant matches the GaAs substrate 10.
GaAs / GaAs quantum well or superlattice structure 12,
The layers are stacked alternately. At this time, InGaAs11 is subjected to compressive strain in a direction parallel to the substrate surface, and
ssion) Region c is formed.

【0020】一方、AlGaAs/GaAs量子井戸又
は超格子構造12は、歪みを受けずに真性(intrinsic
)領域iを形成する。ここで、InGaAs11の層
厚をその臨界膜厚より充分薄く選んであるため、歪みの
緩和によるミスフィット転位が発生せず、InGaAs
11が弾性的に一様に歪んだ歪み層となっている。
On the other hand, the AlGaAs / GaAs quantum well or superlattice structure 12 does not undergo strain and is intrinsic (intrinsic).
) Forming region i. Here, since the layer thickness of InGaAs11 is selected to be sufficiently smaller than its critical thickness, misfit dislocations due to strain relaxation do not occur, and
11 is a strained layer that is elastically and uniformly strained.

【0021】本実施例は、上記のc−i構造を単独で又
は何度も繰り返したc−i−c−i周期構造を用いるこ
とを特徴とする。図2は、図1の量子構造に対応するエ
ネルギーバンド図である。前記[作用]の項で詳しく説
明したように、層に平行な方向に圧縮歪みが生じるた
め、圧電効果により、GaAs(111)B基板10か
ら結晶表面に向かう内部電界が、AlGaAs/GaA
s量子井戸又は超格子構造12に印加されることにな
る。この内部電界の存在により、エネルギーバンド構造
は、熱平衡(光照射なし)状態では図2(a)に示すよ
うに大きく傾く。量子閉じ込めシュタルク効果(Quantu
m Confined Stark Effect )により、量子井戸又は超格
子構造12における励起子吸収ピークは、内部電界の無
い場合に比べて長波長側へレッドシフトする。
The present embodiment is characterized in that a c-i-c-i periodic structure in which the above-mentioned c-i structure is used alone or repeatedly is used. FIG. 2 is an energy band diagram corresponding to the quantum structure of FIG. As described in detail in the above [Action] section, since compressive strain is generated in the direction parallel to the layers, the internal electric field from the GaAs (111) B substrate 10 to the crystal surface is changed by the piezoelectric effect.
s quantum well or superlattice structure 12 will be applied. Due to the presence of this internal electric field, the energy band structure is greatly tilted as shown in FIG. 2A in the thermal equilibrium state (without light irradiation). Quantum confined Stark effect (Quantu
Due to the m Confined Stark Effect), the exciton absorption peak in the quantum well or superlattice structure 12 is red-shifted to the longer wavelength side as compared with the case where there is no internal electric field.

【0022】ところが、上記のc−i又はc−i−c−
iのような周期を持つ量子構造に光を照射すると、量子
井戸又は超格子構造12より励起された電子及び正孔は
内部電界によって分離され、InGaAs11に蓄積さ
れてゆく。これは内部電界を低下させることになり、従
ってエネルギーバンド構造の傾きは、図2(b)に示す
ように小さくなる。その結果、量子井戸又は超格子構造
12における励起子吸収ピークは、光を照射しない場合
に比べて短波長側へブルーシフトする。このブルーシフ
トにより、吸収係数そして屈折率に大きな変化を引き起
こす。
However, the above-mentioned c-i or c-i-c-
When a quantum structure having a period like i is irradiated with light, electrons and holes excited by the quantum well or superlattice structure 12 are separated by the internal electric field and accumulated in the InGaAs 11. This lowers the internal electric field, and therefore the inclination of the energy band structure becomes small as shown in FIG. 2 (b). As a result, the exciton absorption peak in the quantum well or superlattice structure 12 is blue-shifted to the short wavelength side as compared with the case where light is not irradiated. This blue shift causes a large change in the absorption coefficient and the refractive index.

【0023】このような特性を利用して本実施例のc−
i又はc−i−c−i構造を、例えば光スイッチに応用
した場合、外部電界の印加による屈折率の変化が大きい
ため、オン・オフ状態における透過光の強度比は、従来
のn−i−p−i構造に比較して遥かに高い。しかも、
内部電界が強いため、素子が外部印加電界の不安定によ
る影響を受けにくく、安定性に優れるだけではなく、制
御できる光の波長範囲もかなり広くなるわけである。
Utilizing such characteristics, c- of this embodiment is used.
When the i or c-i-c-i structure is applied to, for example, an optical switch, since the change in the refractive index due to the application of an external electric field is large, the intensity ratio of transmitted light in the on / off state is the same as that of the conventional n-i. It is much higher than the p-i structure. Moreover,
Since the internal electric field is strong, the element is less likely to be affected by the instability of the externally applied electric field and not only has excellent stability, but also the controllable wavelength range of light is considerably wide.

【0024】また、ドーピングプロセスが不要になった
ため、技術的に成熟しているAlGaAs/GaAsの
ような格子整合系量子井戸又は超格子構造及びp型ドー
ピングのできないGaNのような半導体材料をフル活用
することができる。さらに、InGaAs11中のIn
組成を変えることにより、歪みそして内部電界の大きさ
を必要に応じて自由自在に調整できることは言うまでも
ない大きなメリットである。 (実施例2)図3は、本発明の第2の実施例に係わる
[111]方向の圧縮歪み層を含む量子構造を示す模式
図である。面方位が(111)BのGaAs基板20の
上に、格子定数がGaAsと整合するAlGaAs及び
GaAsからなるAlGaAs/GaAs量子井戸又は
超格子構造21と、格子定数がGaAsより大きいIn
GaAs(圧縮歪み層)22とを順次交互に積層させ
る。このとき、AlGaAs/GaAs量子井戸又は超
格子構造21は、歪みを受けずに真性領域iを形成す
る。
Further, since the doping process is not necessary, the lattice-matched quantum well or the superlattice structure such as AlGaAs / GaAs, which is technically mature, and the semiconductor material such as GaN which cannot be p-type doped are fully utilized. can do. Furthermore, In in InGaAs11
It goes without saying that the strain and the magnitude of the internal electric field can be freely adjusted as needed by changing the composition. (Embodiment 2) FIG. 3 is a schematic view showing a quantum structure including a [111] direction compression strained layer according to a second embodiment of the present invention. On a GaAs substrate 20 having a plane orientation of (111) B, an AlGaAs / GaAs quantum well or superlattice structure 21 made of AlGaAs and GaAs having a lattice constant matching GaAs, and In having a lattice constant larger than GaAs.
GaAs (compressive strain layers) 22 are alternately laminated in sequence. At this time, the AlGaAs / GaAs quantum well or the superlattice structure 21 forms the intrinsic region i without being subjected to strain.

【0025】一方、InGaAs22は、基板表面と平
行な方向に圧縮歪みを受け、圧縮領域cを形成する。こ
こで、InGaAs22の層厚をその臨界膜厚より充分
薄く選んであるため、歪みの緩和によるミスフィット転
位が発生せず、InGaAs22が弾性的に一様に歪ん
だ歪み層となっている。
On the other hand, the InGaAs 22 is subjected to compressive strain in the direction parallel to the surface of the substrate and forms the compressed region c. Here, since the layer thickness of InGaAs22 is selected to be sufficiently smaller than the critical film thickness, misfit dislocations due to strain relaxation do not occur, and InGaAs22 is a strained layer that is elastically uniformly strained.

【0026】本実施例は上記のようなi−c構造を単独
で、又は何度も繰り返したi−c−i−c周期構造を用
いることを特徴とする。図3のi−c−i−c量子構造
に対応するエネルギーバンド図は、第の1実施例のc−
i−c−i量子構造におけるエネルギーバンド図(図
2)とよく似ていることが、前記[作用]の項で述べた
原理から明らかである。従って、本実施例のi−c−i
−c量子構造は、第1の実施例のc−i−c−i量子構
造における全てのデバイスに応用することができるわけ
であり、動作の原理も全く同様である。 (実施例3)図4は、本発明の第3の実施例に係わる
[111]方向の引張り歪み層を含む量子構造を示す模
式図である。面方位が(111)BのGaAs基板30
の上に、格子定数がGaAsより小さいGaAsP(引
張り歪み層)31と、格子定数がGaAsと整合するA
lGaAs及びGaAsからなるAlGaAs/GaA
s量子井戸又は超格子構造32とを順次交互に積層させ
る。このとき、GaAsP31は基板表面と平行な方向
に引張り歪みを受け、引張り(tension )領域tを形成
する。
The present embodiment is characterized by using the above-mentioned i-c structure alone or using an i-c-i-c periodic structure which is repeated many times. The energy band diagram corresponding to the ic-ic quantum structure of FIG. 3 is c- of the first embodiment.
It is clear from the principle described in the above [Action] that the energy band diagram in the ic quantum structure (FIG. 2) is very similar. Therefore, i-c-i of the present embodiment
The -c quantum structure can be applied to all devices in the c-i-c-i quantum structure of the first embodiment, and the principle of operation is exactly the same. (Embodiment 3) FIG. 4 is a schematic view showing a quantum structure including a [111] direction tensile strained layer according to a third embodiment of the present invention. GaAs substrate 30 having plane orientation (111) B
GaAsP (tensile strain layer) 31 having a lattice constant smaller than GaAs and A having a lattice constant matching GaAs
AlGaAs / GaA consisting of 1GaAs and GaAs
s quantum wells or superlattice structures 32 are sequentially stacked alternately. At this time, the GaAsP 31 is subjected to tensile strain in a direction parallel to the substrate surface and forms a tensile region t.

【0027】一方、AlGaAs/GaAs量子井戸又
は超格子構造32は、歪みを受けずに真性領域iを形成
する。ここで、GaAsP31の層厚をその臨界膜厚よ
り充分薄く選んであるため、歪みの緩和によるミスフィ
ット転位が発生せず、GaAsP31が弾性的に一様に
歪んだ歪み層となっている。
On the other hand, the AlGaAs / GaAs quantum well or superlattice structure 32 forms the intrinsic region i without being strained. Here, since the layer thickness of GaAsP31 is selected to be sufficiently thinner than its critical thickness, misfit dislocations due to strain relaxation do not occur, and GaAsP31 is a strained layer that is elastically uniformly strained.

【0028】本実施例は、上記のt−i構造を単独で又
は何度も繰り返したt−i−t−i周期構造を用いるこ
とを特徴とする。図5は、図4の量子構造に対応するエ
ネルギーバンド図である。前記[作用]の項で詳しく説
明したように、層に平行な方向に引張り歪みが生じるた
め、圧電効果により、結晶表面から基板に向かう内部電
界が、AlGaAs/GaAs量子井戸又は超格子構造
32に印加されることになる。この内部電界の印加によ
り、エネルギーバンド構造は、熱平衡(光照射なし)状
態では図5(a)に示すように大きく傾く。量子閉じ込
めシュタルク効果により、量子井戸又は超格子構造32
における励起子吸収ピークは、内部電界の無い場合に比
べて長波長側へレッドシフトする。
The present embodiment is characterized by using a t-i-t-i periodic structure obtained by repeating the above-mentioned t-i structure alone or repeatedly. FIG. 5 is an energy band diagram corresponding to the quantum structure of FIG. As described in detail in the above [Action], tensile strain is generated in the direction parallel to the layers, so that an internal electric field from the crystal surface to the substrate is generated in the AlGaAs / GaAs quantum well or superlattice structure 32 by the piezoelectric effect. Will be applied. By the application of this internal electric field, the energy band structure is greatly inclined in the thermal equilibrium state (without light irradiation) as shown in FIG. Due to the quantum confined Stark effect, a quantum well or superlattice structure 32
The exciton absorption peak at 1 is red-shifted to the longer wavelength side as compared with the case where there is no internal electric field.

【0029】ところが、上記のt−i又はt−i−t−
iのような周期を持つ量子構造に光を照射すると、量子
井戸又は超格子構造32より励起された電子及び正孔
は、内部電界によって分離されGaAsP31に蓄積さ
れてゆく。これは内部電界を低下させることになり、従
ってエネルギーバンド構造の傾きは、図5(b)に示す
ように小さくなる。その結果、量子井戸又は超格子構造
32における励起子吸収ピークは、光を照射しない場合
に比べて短波長側へブルーシフトする。このブルーシフ
トにより、吸収係数そして屈折率に大きな変化をもたら
す。
However, the above t-i or t-i-t-
When a quantum structure having a period like i is irradiated with light, the electrons and holes excited by the quantum well or superlattice structure 32 are separated by the internal electric field and accumulated in GaAsP 31. This lowers the internal electric field, and therefore the inclination of the energy band structure becomes small as shown in FIG. 5 (b). As a result, the exciton absorption peak in the quantum well or superlattice structure 32 is blue-shifted to the short wavelength side as compared with the case where light is not irradiated. This blue shift causes a large change in the absorption coefficient and the refractive index.

【0030】本実施例のt−i−t−i量子構造は、第
1の実施例のc−i−c−i又は第2の実施例のi−c
−i−c量子構造と比較して、内部電界の方向及びエネ
ルギーバンド構造の傾きが正反対する以外、機能上はよ
く似ていることが明らかである。従って、t−i−t−
i量子構造は、c−i−c−i又はi−c−i−c量子
構造と同様に、例えば光スイッチに応用した場合に、外
部電界の印加による屈折率の変化が大きいため、オン・
オフ状態における透過光の強度比は、従来のn−i−p
−i構造に比べて遥かに高い。特に内部電界を形成する
のに、ドーピングプロセスが不要であるため、p型ドー
ピングのできないGaNのようなワイドバンドギャップ
を有する半導体材料でも、本実施例のt−i−t−i量
子構造に応用することができる。 (実施例4)図6は、本発明の第4の実施例に係わる
[111]方向の引張り歪み層を含む量子構造を示す模
式図である。面方位が(111)BのGaAs基板40
の上に、格子定数がGaAsと整合するAlGaAs及
びGaAsからなるAlGaAs/GaAs量子井戸又
は超格子構造41と、格子定数がGaAsより小さいG
aAsP(引張り歪み層)42とを順次交互に積層させ
る。このとき、AlGaAs/GaAs量子井戸又は超
格子構造41は、歪みを受けずに真性領域iを形成す
る。
The t-i-t-i quantum structure of the present embodiment is the c-i-c-i of the first embodiment or the i-c of the second embodiment.
It is clear that they are functionally similar to the -ic quantum structure, except that the direction of the internal electric field and the slope of the energy band structure are opposite. Therefore, t-i-t-
Like the c-i-c-i or i-c-i-c quantum structure, the i-quantum structure has a large change in the refractive index due to the application of an external electric field when applied to an optical switch.
The intensity ratio of transmitted light in the off state is
-Much higher than the i structure. In particular, since a doping process is not required to form an internal electric field, even a semiconductor material having a wide bandgap such as GaN, which cannot be p-type doped, is applied to the t-i-t-i quantum structure of this embodiment. can do. (Embodiment 4) FIG. 6 is a schematic view showing a quantum structure including a [111] direction tensile strained layer according to a fourth embodiment of the present invention. GaAs substrate 40 having a plane orientation of (111) B
On top of it, an AlGaAs / GaAs quantum well or superlattice structure 41 made of AlGaAs and GaAs having a lattice constant matching GaAs, and a lattice constant smaller than G
and aAsP (tensile strain layer) 42 are alternately laminated in sequence. At this time, the AlGaAs / GaAs quantum well or the superlattice structure 41 forms the intrinsic region i without being strained.

【0031】一方、GaAsP42は、基板表面と平行
な方向に引張り歪みを受け、引張り領域tを形成する。
ここで、GaAsP42の層厚をその臨界膜厚より充分
薄く選んであるため、歪みの緩和によるミスフィット転
位が発生せず、GaAsP42が弾性的に一様に歪んだ
歪み層となっている。
On the other hand, GaAsP 42 is subjected to tensile strain in a direction parallel to the surface of the substrate and forms a tensile region t.
Here, since the layer thickness of GaAsP42 is selected to be sufficiently smaller than its critical thickness, misfit dislocations due to strain relaxation do not occur, and GaAsP42 is a strained layer that is elastically and uniformly strained.

【0032】本実施例は、上記のようなt−i構造を単
独で、又は何度も繰り返したi−t−i−t周期構造を
用いることを特徴とする。図6のi−t−i−t量子構
造に対応するエネルギーバンド図は、第3の実施例のt
−i−t−i量子構造におけるエネルギーバンド図(図
5)とよく似ていることが、前記[作用]の項で述べた
原理から明らかである。従って、本実施例のi−t−i
−t量子構造は、第1,2,3実施例のc−i−c−
i,i−c−i−c又はt−i−t−i量子構造におけ
る全てのデバイスに応用することができるわけであり、
動作の原理も第3の実施例のt−i−t−i量子構造と
全く同じである。 (実施例5)図7は、本発明の第5の実施例に係わる
[111]方向の圧縮歪み層と引張り歪み層両方を含む
量子構造を示す模式図である。面方位が(111)Bの
GaAs基板50の上に、格子定数がGaAsより大き
いInGaAs(圧縮歪み層)51、格子定数がGaA
s基板と整合するAlGaAs及びGaAsからなるA
lGaAs/GaAs量子井戸又は超格子構造52、I
nGaAs51、格子定数がGaAsより小さいGaA
sP(引張り歪み層)53、量子井戸又は超格子構造5
2、GaAsP53を順次交互に積層させる。このと
き、基板表面と平行な方向に、InGaAs51は圧縮
歪みを受けて圧縮領域cを形成し、GaAsP53は引
張り歪みを受けて引張り領域tを形成する。
The present embodiment is characterized in that the above-mentioned ti structure is used alone or an it-it periodic structure in which the ti structure is repeated many times is used. The energy band diagram corresponding to the it-it quantum structure of FIG. 6 is t of the third embodiment.
It is apparent from the principle described in the above [Action] that the energy band diagram in the -it-i quantum structure (Fig. 5) is very similar. Therefore, it-i of the present embodiment
The -t quantum structure is c-i-c-of the first, second, and third embodiments.
It can be applied to all devices in an i, ic-ic or t-i-t-i quantum structure,
The principle of operation is exactly the same as the t-i-t-i quantum structure of the third embodiment. (Embodiment 5) FIG. 7 is a schematic view showing a quantum structure including both a [111] direction compressive strain layer and a tensile strain layer according to a fifth embodiment of the present invention. On a GaAs substrate 50 having a plane orientation of (111) B, InGaAs (compressive strain layer) 51 having a lattice constant larger than GaAs, and a lattice constant GaA.
A consisting of AlGaAs and GaAs matching the s substrate
lGaAs / GaAs quantum well or superlattice structure 52, I
nGaAs51, GaA having a lattice constant smaller than GaAs
sP (tensile strain layer) 53, quantum well or superlattice structure 5
2 and GaAsP53 are sequentially laminated alternately. At this time, in the direction parallel to the substrate surface, the InGaAs 51 receives a compressive strain to form a compressed region c, and the GaAsP 53 receives a tensile strain to form a tensile region t.

【0033】一方、AlGaAs/GaAs量子井戸又
は超格子構造52は、歪みを受けずに真性領域iを形成
する。ここで、InGaAs51及びGaAsP53の
層厚は、それぞれの臨界膜厚より充分薄く選んであるた
め、歪みの緩和によるミスフィット転位が発生せず、I
nGaAs51及びGaAsP53が弾性的に一様に歪
んだ歪み層となっている。
On the other hand, the AlGaAs / GaAs quantum well or superlattice structure 52 forms the intrinsic region i without being strained. Here, since the layer thicknesses of InGaAs51 and GaAsP53 are selected to be sufficiently smaller than their critical thicknesses, misfit dislocations due to strain relaxation do not occur, and I
The nGaAs 51 and GaAsP 53 are strained layers that are elastically uniformly strained.

【0034】本実施例は、上記のようなc−i−c−t
−i−t量子構造を単独で又は何度も繰り返した周期構
造を用いることを特徴とする。図8は、図7のc−i−
c−t−i−t量子構造に対応するエネルギーバンド図
である。前記[作用]の項で説明したように、主面が
(111)BのGaAs基板50上にGaAsより格子
定数の大きいInGaAs51を積層した場合、層に平
行な方向に圧縮歪みが生じるため圧電効果により、Ga
As基板50から結晶表面に向かう内部電界がInGa
As51に挟まれるAlGaAs/GaAs量子井戸又
は超格子構造52に印加されることになる。同じよう
に、逆方向の内部電界が引張り歪みを有するGaAsP
53に挟まれるAlGaAs/GaAs量子井戸又は超
格子構造52に印加されることになる。
In this embodiment, the above c-i-c-t is used.
It is characterized by using a periodic structure in which the -it quantum structure is used alone or repeatedly. FIG. 8 is a diagram of FIG.
It is an energy band diagram corresponding to a c-t-it quantum structure. As described in the above [Operation], when InGaAs 51 having a lattice constant larger than that of GaAs is stacked on the GaAs substrate 50 having a (111) B main surface, a compressive strain is generated in a direction parallel to the layer, so that the piezoelectric effect is produced. By Ga
The internal electric field from the As substrate 50 toward the crystal surface is InGa
It is applied to the AlGaAs / GaAs quantum well or superlattice structure 52 sandwiched by As51. Similarly, GaAsP in which the opposite internal electric field has tensile strain
It will be applied to the AlGaAs / GaAs quantum well or superlattice structure 52 sandwiched between 53.

【0035】これら内部電界の印加によりエネルギーバ
ンド構造は、熱平衡(光照射なし)状態では図8(a)
に示すように大きく曲がってしまう。量子閉じ込めシュ
タルク効果により、量子井戸又は超格子構造における励
起子吸収ピークは、内部電界のない場合に比べて長波長
側へレッドシフトする。
The energy band structure due to the application of these internal electric fields is shown in FIG. 8 (a) in the thermal equilibrium state (without light irradiation).
It bends greatly as shown in. Due to the quantum confined Stark effect, the exciton absorption peak in the quantum well or superlattice structure is red-shifted to the longer wavelength side compared to the case without an internal electric field.

【0036】ところが、上記c−i−c−t−i−t量
子構造に光を照射すると、量子井戸又は超格子構造52
における励起された電子及び正孔は、内部電界によって
分離され、歪み層となるInGaAs51及びGaAs
P53に蓄積されてゆく。これはかえって、内部電界を
低下させてしまう。従って、エネルギーバンド構造は図
8(b)に示すように比較的に平らになる。その結果、
量子井戸又は超格子構造52における励起子吸収ピーク
は、光を照射しない場合に比べて短波長側へブルーシフ
トする。このブルーシフトにより、吸収係数そして屈折
率に大きな変化をもたらす。
However, when the above-mentioned c-ict-it quantum structure is irradiated with light, the quantum well or superlattice structure 52 is obtained.
The excited electrons and holes in are separated by the internal electric field and become strained layers of InGaAs51 and GaAs.
It accumulates in P53. On the contrary, this lowers the internal electric field. Therefore, the energy band structure becomes relatively flat as shown in FIG. as a result,
The exciton absorption peak in the quantum well or superlattice structure 52 is blue-shifted to the short wavelength side as compared with the case where light is not irradiated. This blue shift causes a large change in the absorption coefficient and the refractive index.

【0037】これを利用して本実施例では、第1〜4実
施例の量子構造と同様に、新規な非線形光学素子、例え
ば光スイッチや光変調器,光メモリ等を作製することが
できる。
Utilizing this, in this embodiment, similar to the quantum structures of the first to fourth embodiments, novel nonlinear optical elements such as optical switches, optical modulators and optical memories can be manufactured.

【0038】図7,8を図13,14と比べて本実施例
のc−i−c−t−i−t量子構造は、構成上はもとよ
り、動作機構(内部電界の形成機構)上も、従来のn−
i−p−i構造と全く異なることが明らかである。唯一
共通しているところは、真性領域となる量子井戸又は超
格子構造に内部電界が印加されていると言うことであ
る。
7 and 8 are compared with FIGS. 13 and 14, the c-i-c-t-i-t quantum structure of the present embodiment has not only the structure but also the operating mechanism (mechanism for forming an internal electric field). , Conventional n-
It is clear that it is quite different from the ipi structure. The only thing that they have in common is that an internal electric field is applied to the quantum well or superlattice structure that is the intrinsic region.

【0039】前記[問題点]項で説明したように、従来
のn−i−p−i構造では、ドーピングプロセス上の制
限により、内部電界の大きさが小さく、実用レベルまで
に到達することが極めて困難である。特に、GaNのよ
うな非常に重要な青色発光材料は、p型ドーピングがで
きないため、n−i−p−i構造を形成することが不可
能である。
As described in the above [Problem] section, in the conventional n-i-p-i structure, the magnitude of the internal electric field is small and can reach a practical level due to the limitation of the doping process. It's extremely difficult. In particular, a very important blue light-emitting material such as GaN cannot be p-type doped, so that it is impossible to form an n-i-p-i structure.

【0040】これに対して、本実施例のc−i−c−t
−i−t量子構造においては、内部電界を形成するの
に、ドーピングプロセスは全く不要になったため、ドー
ピングに伴う全ての制限が存在しない。しかも、内部電
界の大きさ及び方向は、格子の不整合による歪みの大き
さ及び方向を変えることにより、必要に応じて自由自在
に制御することができる。
On the other hand, the c-i-c-t of this embodiment is used.
In the -it quantum structure, the doping process is completely eliminated in order to create the internal electric field, so there are no restrictions associated with doping. Moreover, the magnitude and direction of the internal electric field can be freely controlled as needed by changing the magnitude and direction of strain due to lattice mismatch.

【0041】例えばGaAs−(111)B基板上に、
GaAsPを積層した場合に、僅か1%の格子不整合
(歪み)であっても、内部電界の大きさは約2×105
V/cmと、従来のn−i−p−i構造より10倍以上
も大きい。特に、GaNのような半導体材料は本発明の
c−i−c−t−i−t量子構造に応用できることが言
うまでもない。さらに、技術的に成熟している格子整合
系のAlGaAs/GaAs量子井戸又は超格子構造を
フル活用できるため、デバイスの作製は比較的に容易に
行えることが期待できる。
For example, on a GaAs- (111) B substrate,
When GaAsP is laminated, the magnitude of the internal electric field is about 2 × 10 5 even if the lattice mismatch (strain) is only 1%.
V / cm, which is more than 10 times larger than that of the conventional nip-i structure. In particular, it goes without saying that semiconductor materials such as GaN can be applied to the c-ict-it quantum structure of the present invention. Furthermore, since it is possible to make full use of the technically matured lattice-matched AlGaAs / GaAs quantum well or superlattice structure, it can be expected that the device can be manufactured relatively easily.

【0042】また、本実施例のc−i−c−t−i−t
量子構造には方向が正反対の2種類の内部電界が存在す
るため、第1〜4の実施例(内部電界の方向は1つしか
ない)の量子構造で考えられない新規な非線形光学素子
(詳細は第7実施例を参照)を実現することが可能とな
る。 (実施例6)図9は、本発明の第6の実施例に係わる
[111]方向の圧縮歪み層と引張り歪み層両方を含む
量子構造を示す模式図である。面方位が(111)Bの
GaAs基板60の上に、格子定数がGaAsより小さ
いGaAsP(引張り歪み層)61、格子定数がGaA
s基板と整合するAlGaAs及びGaAsからなるA
lGaAs/GaAs量子井戸又は超格子構造62、G
aAsP61、格子定数がGaAsより大きいInGa
As(圧縮歪み層)63、量子井戸又は超格子構造6
2、InGaAs63を順次交互に積層させる。このと
き、基板表面と平行な方向に、GaAsP61は引張り
歪みを受けて引張り領域tを形成し、InGaAs63
は圧縮歪みを受けて圧縮領域cを形成する。
Further, c-i-c-t-i-t of the present embodiment.
Since there are two kinds of internal electric fields whose directions are opposite to each other in the quantum structure, a novel nonlinear optical element which cannot be considered in the quantum structures of the first to fourth examples (the internal electric field has only one direction) (details) Can refer to the seventh embodiment). (Embodiment 6) FIG. 9 is a schematic view showing a quantum structure including both a [111] direction compressive strain layer and a tensile strain layer according to a sixth embodiment of the present invention. On a GaAs substrate 60 having a plane orientation of (111) B, a GaAsP (tensile strain layer) 61 having a lattice constant smaller than GaAs, and a lattice constant GaA.
A consisting of AlGaAs and GaAs matching the s substrate
lGaAs / GaAs quantum well or superlattice structure 62, G
aAsP61, InGa having a lattice constant larger than GaAs
As (compressive strained layer) 63, quantum well or superlattice structure 6
2. InGaAs 63 are sequentially stacked alternately. At this time, in the direction parallel to the substrate surface, GaAsP61 receives tensile strain to form a tensile region t, and InGaAs63
Undergoes compressive strain to form a compressed region c.

【0043】一方、AlGaAs/GaAs量子井戸又
は超格子構造62は、歪みを受けずに真性(intrinsic
)領域iを形成する。ここで、GaAsP61及びI
nGaAs63の層厚は、それぞれの臨界膜厚より充分
薄く選んであるため、歪みの緩和によるミスフィット転
位が発生せず、GaAsP61及びInGaAs63が
弾性的に一様に歪んだ歪み層となっている。
On the other hand, the AlGaAs / GaAs quantum well or superlattice structure 62 does not undergo strain and is intrinsic (intrinsic).
) Forming region i. Where GaAsP61 and I
Since the layer thickness of nGaAs 63 is selected to be sufficiently smaller than the critical film thickness, misfit dislocations due to strain relaxation do not occur, and GaAsP 61 and InGaAs 63 are strained layers elastically and uniformly strained.

【0044】本実施例は、上記のt−i−t−c−i−
c量子構造を単独で又は何度も繰り返した周期構造を用
いることを特徴とする。図9のt−i−t−c−i−c
量子構造に対応するエネルギーバンド図は、第5の実施
例のc−i−c−t−i−t量子構造におけるエネルギ
ーバンド図(図8)とよく似ていることが、前記[作
用]の項で述べた原理から明らかである。従って、本実
施例のt−i−t−c−i−c量子構造は、第1〜5実
施例の各量子構造における全てのデバイスに応用するこ
とができるわけであり、動作の原理も第5の実施例のc
−i−c−t−i−t量子構造と全く同じである。 (実施例7)図10は、第5,6の実施例の歪み量子構
造のいずれかを含む本発明の第7の実施例に係わる光ス
イッチの構成を示す図である。n型GaAs(111)
基板の上にnグリッド層(n領域)72を成長し、その
上に第5,6の実施例の量子構造のいずれか(量子構造
71)を成長し、さらにその上にpグリッド層(p領
域)73を成長した構造である。そして、n領域72、
p領域73間に外部矩形電界が印加されるものとなって
いる。
In this embodiment, the above-mentioned t-i-t-c-i- is used.
It is characterized by using a c-quantum structure alone or a periodic structure in which it is repeated many times. T-i-t-c-i-c in FIG.
The energy band diagram corresponding to the quantum structure is very similar to the energy band diagram (FIG. 8) in the c-ict-i-t quantum structure of the fifth embodiment. It is clear from the principle described in Section. Therefore, the t-i-t-c-i-c quantum structure of this embodiment can be applied to all devices in each quantum structure of the first to fifth embodiments, and the principle of operation is also the first. C of Example 5
It is exactly the same as the -ict-i-t quantum structure. (Embodiment 7) FIG. 10 is a diagram showing a configuration of an optical switch according to a seventh embodiment of the present invention including any of the strained quantum structures of the fifth and sixth embodiments. n-type GaAs (111)
An n grid layer (n region) 72 is grown on the substrate, one of the quantum structures of the fifth and sixth embodiments (quantum structure 71) is grown on it, and a p grid layer (p is formed on it). The region 73 has a grown structure. Then, the n region 72,
An external rectangular electric field is applied between the p regions 73.

【0045】第5,6実施例で述べたように、c−i−
c−t−i−t又はt−i−t−c−i−c歪み量子構
造を用いる場合、格子不整合による圧電効果によって方
向の正反対の2種類の内部電界が、i領域となるAlG
aAs/GaAs量子井戸又は超格子構造に印加される
ことになる。仮に、図10の量子構造に入射される光の
波長が、外部電界E=0の時の励起子遷移における吸収
ピークと一致するとする。
As described in the fifth and sixth embodiments, c-i-
In the case of using the c-t-i-t or t-i-t-t-c-i-c strained quantum structure, two kinds of internal electric fields in opposite directions due to the piezoelectric effect due to the lattice mismatch are iG regions.
It will be applied to an aAs / GaAs quantum well or superlattice structure. It is assumed that the wavelength of light incident on the quantum structure of FIG. 10 coincides with the absorption peak in exciton transition when the external electric field E = 0.

【0046】量子構造にE≠0の外部電界を印加する
と、量子井戸にある外部電界と同方向の内部電界がさら
に増強されるため、それが印加される量子井戸における
励起子吸収ピークは、図11中のAに示すように長波長
側へレッドシフトする。一方、量子井戸にある外部電界
と逆方向の内部電界が若干低下されるため、それが印加
される量子井戸における励起子吸収ピークは、図11中
のBに示すように短波長側へブルーシフトする。
When an external electric field with E ≠ 0 is applied to the quantum structure, the internal electric field in the same direction as the external electric field in the quantum well is further enhanced. Therefore, the exciton absorption peak in the quantum well to which it is applied is As indicated by A in 11, red shifts to the long wavelength side. On the other hand, since the internal electric field in the opposite direction to the external electric field in the quantum well is slightly reduced, the exciton absorption peak in the quantum well to which it is applied is blue-shifted to the short wavelength side as shown by B in FIG. To do.

【0047】その結果、E=0の時に殆ど吸収された
(量子構造に透過せず)入射光は、E≠0の外部電界の
印加により、(吸収係数が低下されるため)ほぼ吸収無
しの状態で、量子構造を透過できるようになる。
As a result, the incident light almost absorbed when E = 0 (not transmitted through the quantum structure) is almost not absorbed (because the absorption coefficient is lowered) by the application of the external electric field of E ≠ 0. In the state, the quantum structure can be transmitted.

【0048】図12は、(+)の矩形外部電界が、量子
構造に印加される場合((−)の矩形外部電界でも同
様)の光スイッチング特性を示す。(a)は入力パワー
Pin、(b)は出力パワーPout 、(c)は矩形外部印
加電界Eを示している。この図より明らかなように、波
長がλ、入力パワーがPin(一定)の入射光に対して、
出力パワーPout が矩形外部印加電界Eによって、高い
消光比を有する矩形状に変調されてゆく。つまり、本実
施例の光スイッチにおける効率が極めて高いわけであ
る。
FIG. 12 shows the optical switching characteristics when the (+) rectangular external electric field is applied to the quantum structure (the same applies to the (-) rectangular external electric field). (A) shows the input power Pin, (b) shows the output power Pout, and (c) shows the rectangular externally applied electric field E. As is clear from this figure, for incident light with wavelength λ and input power Pin (constant),
The output power Pout is modulated by the rectangular externally applied electric field E into a rectangular shape having a high extinction ratio. That is, the efficiency of the optical switch of this embodiment is extremely high.

【0049】なお、本発明は上述した各実施例に限定さ
れるものではない。実施例では、主にGaAs(11
1)B基板,InGaAs,GaAsP及びAlGaA
s/GaAs量子井戸の場合について具体的に述べた
が、材料系としてはこれらに限られることはなく、Zinc
-blendタイプの全てのIII −V族半導体(111)面上
に形成される圧縮歪み層,引張り歪み層又はその組み合
わせ及び基板と格子整合する量子井戸又は超格子構造を
含む全ての半導体量子井戸光学素子に、本発明を適用す
ることができる。
The present invention is not limited to the above embodiments. In the embodiment, mainly GaAs (11
1) B substrate, InGaAs, GaAsP and AlGaA
Although the case of the s / GaAs quantum well is specifically described, the material system is not limited to these, and Zinc
-blend type All semiconductor quantum well optics including compressive strain layer, tensile strain layer or combination thereof formed on III-V semiconductor (111) surface and quantum well or superlattice structure lattice-matched with substrate The present invention can be applied to an element.

【0050】また、真性領域iに、基板と格子整合する
量子井戸又は超格子構造ではなく、本発明者らの2つの
特許(特願平4−225770号。特願平4−3281
55号)に述べるような基板と格子非整合する、つまり
歪み量子井戸構造を取り入れることもできる。さらに、
GaAs(111)B基板に代えて、GaAs(11
1)A基板を用いてもよい。この場合、発生する内部電
場の向きが逆になるが、GaAs(111)B基板と同
様の効果を生じることは明らかである。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
Further, in the intrinsic region i, not the quantum well or the superlattice structure lattice-matched with the substrate but two patents of the present inventors (Japanese Patent Application No. 4-225770 and Japanese Patent Application No. 4-3281).
55), which is lattice-mismatched to the substrate, that is, a strained quantum well structure can be incorporated. further,
Instead of GaAs (111) B substrate, GaAs (11
1) A substrate may be used. In this case, the direction of the generated internal electric field is reversed, but it is clear that the same effect as that of the GaAs (111) B substrate is produced. In addition, various modifications can be made without departing from the scope of the present invention.

【0051】[0051]

【発明の効果】以上詳述したように本発明によれば、基
板とは格子定数の異なる化合物半導体と、基板の格子定
数と等しい二種類の化合物半導体からなる量子井戸又は
超格子構造とを交互に積層することにより、自由に制御
できる強い内部電界を有する半導体量子井戸構造を実現
することができるため、ブルーシフトの光吸収特性を保
ちながら、できるだけ大きな光非線形効果を有するよう
な歪み量子井戸構造の半導体量子井戸光学素子を実現す
ることが可能となる。
As described in detail above, according to the present invention, a compound semiconductor having a lattice constant different from that of the substrate and a quantum well or a superlattice structure made of two kinds of compound semiconductors having the lattice constant of the substrate are alternately arranged. Since it is possible to realize a semiconductor quantum well structure having a strong internal electric field that can be freely controlled, the strained quantum well structure that has as large an optical nonlinear effect as possible while maintaining the blue-shift optical absorption characteristics. The semiconductor quantum well optical element can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例に係わる[111]方向の圧縮歪
み層を含む量子構造を示す模式図。
FIG. 1 is a schematic diagram showing a quantum structure including a [111] -direction compressive strained layer according to a first embodiment.

【図2】図1のc−i−c−i量子構造に対応するエネ
ルギーバンド図。
FIG. 2 is an energy band diagram corresponding to the c-i-c-i quantum structure of FIG.

【図3】第2の実施例に係わる[111]方向の圧縮歪
み層を含む量子構造を示す模式図。
FIG. 3 is a schematic diagram showing a quantum structure including a [111] -direction compressive strain layer according to a second embodiment.

【図4】第3の実施例に係わる[111]方向の圧縮歪
み層を含む量子構造を示す模式図。
FIG. 4 is a schematic diagram showing a quantum structure including a [111] -direction compressive strained layer according to a third embodiment.

【図5】図4のt−i−t−i量子構造に対応するエネ
ルギーバンド図。
5 is an energy band diagram corresponding to the t-i-t-i quantum structure of FIG.

【図6】第4の実施例に係わる[111]方向の引張り
歪み層を含む量子構造を示す模式図。
FIG. 6 is a schematic view showing a quantum structure including a [111] direction tensile strained layer according to a fourth example.

【図7】第5の実施例に係わる[111]方向の圧縮歪
み層と引張り歪み層の両方を含む量子構造を示す模式
図。
FIG. 7 is a schematic diagram showing a quantum structure including both a [111] direction compressive strain layer and a tensile strain layer according to a fifth example.

【図8】図7のc−i−c−t−i−t量子構造に対応
するエネルギーバンド図。
8 is an energy band diagram corresponding to the c-ict-i-t quantum structure of FIG. 7.

【図9】第6の実施例に係わる[111]方向の圧縮歪
み層と引張り歪み層の両方を含む量子構造を示す模式
図。
FIG. 9 is a schematic diagram showing a quantum structure including both a [111] -direction compressive strain layer and a tensile strain layer according to a sixth example.

【図10】歪み量子構造を含む第7の実施例に係わる光
スイッチの構成を示す模式図。
FIG. 10 is a schematic diagram showing a configuration of an optical switch according to a seventh embodiment including a strained quantum structure.

【図11】図10の光スイッチの動作原理図。FIG. 11 is a diagram illustrating the operating principle of the optical switch of FIG.

【図12】図10の光スイッチにおけるスイッチング特
性図。
12 is a switching characteristic diagram of the optical switch of FIG.

【図13】従来の半導体量子井戸光学素子の構造を示す
模式図。
FIG. 13 is a schematic diagram showing the structure of a conventional semiconductor quantum well optical element.

【図14】図13のn−i−p−i構造に対応するエネ
ルギーバンド図。
14 is an energy band diagram corresponding to the n-i-p-i structure of FIG.

【符号の説明】[Explanation of symbols]

10,20,30,40,50,60…GaAs(11
1)B基板 11,22,51,63…InGaAs圧縮歪み層 12,21,32,41,52,62…AlGaAs/
GaAs量子井戸構造 31,42,53,61…GaAsP引張り歪み層 71…歪み量子構造部 72…n型化合物半導体領域 73…p型化合物半導体領域
10, 20, 30, 40, 50, 60 ... GaAs (11
1) B substrate 11, 22, 51, 63 ... InGaAs compression strain layer 12, 21, 32, 41, 52, 62 ... AlGaAs /
GaAs quantum well structure 31, 42, 53, 61 ... GaAsP tensile strain layer 71 ... Strain quantum structure portion 72 ... N-type compound semiconductor region 73 ... P-type compound semiconductor region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体量子井戸又は超格子構造を利用した
半導体量子井戸光学素子において、 主面が(111)面の化合物半導体基板上に、基板とは
格子定数の異なる化合物半導体と、基板の格子定数と等
しい二種類の化合物半導体からなる量子井戸又は超格子
構造とを、交互に積層してなることを特徴とする半導体
量子井戸光学素子。
1. A semiconductor quantum well optical device using a semiconductor quantum well or a superlattice structure, a compound semiconductor substrate having a (111) plane as a main surface, a compound semiconductor having a lattice constant different from that of the substrate, and a lattice of the substrate. A semiconductor quantum well optical element, characterized in that quantum wells or superlattice structures made of two kinds of compound semiconductors having a constant value are alternately laminated.
JP18806393A 1993-07-29 1993-07-29 Semiconductor quantum well optical element Withdrawn JPH0743757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18806393A JPH0743757A (en) 1993-07-29 1993-07-29 Semiconductor quantum well optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18806393A JPH0743757A (en) 1993-07-29 1993-07-29 Semiconductor quantum well optical element

Publications (1)

Publication Number Publication Date
JPH0743757A true JPH0743757A (en) 1995-02-14

Family

ID=16217055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18806393A Withdrawn JPH0743757A (en) 1993-07-29 1993-07-29 Semiconductor quantum well optical element

Country Status (1)

Country Link
JP (1) JPH0743757A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292640A (en) * 1996-04-24 1997-11-11 Atr Kodenpa Tsushin Kenkyusho:Kk Fully optical type semiconductor image memory device and its image memory and erasure method as well as fully optical type semiconductor logical operation unit and its logical operation method
JP2013502604A (en) * 2009-08-05 2013-01-24 デンマークス テクニスク ユニヴェルジテイト Optical signal encoding using wireless radio frequency signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09292640A (en) * 1996-04-24 1997-11-11 Atr Kodenpa Tsushin Kenkyusho:Kk Fully optical type semiconductor image memory device and its image memory and erasure method as well as fully optical type semiconductor logical operation unit and its logical operation method
JP2013502604A (en) * 2009-08-05 2013-01-24 デンマークス テクニスク ユニヴェルジテイト Optical signal encoding using wireless radio frequency signals

Similar Documents

Publication Publication Date Title
US6403975B1 (en) Semiconductor components, in particular photodetectors, light emitting diodes, optical modulators and waveguides with multilayer structures grown on silicon substrates
KR102333773B1 (en) An optoelectronic device
KR100944505B1 (en) Group iii nitride led with undoped cladding layer
JPH0656899B2 (en) Optical element and semiconductor element
US5136602A (en) Optical semiconductor device
US11862750B2 (en) Optoelectronic device
CN107819058A (en) Light emitting diode
JPH0328831A (en) Nonlinear optical thin film
JP2634825B2 (en) Optical semiconductor device
JPH04250428A (en) Semiconductor optical function element
US5521397A (en) Optical device having quantum well structure and barrier layers
JPH0743757A (en) Semiconductor quantum well optical element
Qasaimeh et al. Electroabsorption and electrooptic effect in SiGe-Si quantum wells: Realization of low-voltage optical modulators
JPH0687107B2 (en) Semiconductors for nonlinear optical elements
JPH0794822A (en) Semiconductor light emitting element
JPH07183614A (en) Distorted multiple quantum well optical device
JPH0862554A (en) Semiconductor optical modulator
Zhang et al. Optical property of a novel (111)-oriented quantum structure
JP2976614B2 (en) Semiconductor laser device
Yokogawa Nonlinear optical properties and blue-light-emitting diode of ZnSe/ZnS and ZnTe/ZnS strained-layer superlattices
JPH0231417A (en) Semiconductor laminated structure
JP2737821B2 (en) Semiconductor optical function device
JPH0677606A (en) Optical semiconductor device
Colak Devices and applications of II-VI compounds
Straub et al. Strain relaxation induced red shift of photoluminescence of CdZnSe/ZnSe quantum wires

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003