JPH0743611A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH0743611A
JPH0743611A JP20708093A JP20708093A JPH0743611A JP H0743611 A JPH0743611 A JP H0743611A JP 20708093 A JP20708093 A JP 20708093A JP 20708093 A JP20708093 A JP 20708093A JP H0743611 A JPH0743611 A JP H0743611A
Authority
JP
Japan
Prior art keywords
group
lens
focus
positive
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20708093A
Other languages
Japanese (ja)
Other versions
JP3111766B2 (en
Inventor
Fumiaki Usui
文昭 臼井
Seiji Fukami
清司 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP05207080A priority Critical patent/JP3111766B2/en
Publication of JPH0743611A publication Critical patent/JPH0743611A/en
Priority to US08/854,773 priority patent/US5745300A/en
Priority to US09/007,723 priority patent/US5986820A/en
Application granted granted Critical
Publication of JP3111766B2 publication Critical patent/JP3111766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a zoom lens suitable for a video camera and a television camera, etc., using an inner focusing system having high variable power ratio and large aperture ratio. CONSTITUTION:In a zoom lens comprising a first group F having a positive refractive power, a second group V for varying power having a negative refractive power, a third group C compensating the fluctuation of an image plane due to the variable power and a fourth group R having image forming action and being fixed during varying power in order from the object side, the first group F is composed of an eleventh group F11 being fixed at the time of focusing and a twelfth group F12 moving to the object side at the time of focusing from the object at infinity to the nearest object and the lens constitution of the eleventh group F11 and the twelfth group F12, the focal distance fT and the F number FNT of the whole system at the telephoto end, the focal distance f1 and the F number FN1 of the first group F, the focal distances f11, f12 of the eleventh group F11 and the twelfth group F12 and the difference DELTAupsilonX of Abbe numbers of materials of anegative lens LN11 and a positive lens LP12, etc., are properly set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はテレビカメラ、ビデオカ
メラ、写真用カメラ等に好適なズームレンズに関し、特
に第1群中の一部のレンズ群でフォーカスを行なう、所
謂インナーフォーカス式を用い、物体距離全般にわたり
高い光学性能を有した広角端のFナンバー1.6、変倍
比14〜44倍と大口径比で高変倍比のズームレンズに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens suitable for a television camera, a video camera, a photographic camera, etc., and in particular, it uses a so-called inner focus type for focusing with a part of the first lens group, The present invention relates to a zoom lens having a wide-angle end F number of 1.6, a variable power ratio of 14 to 44 times, a large aperture ratio and a high variable power ratio, which has high optical performance over the entire object distance.

【0002】[0002]

【従来の技術】最近のTV放送用のカラーテレビカメラ
は操作性、機動性が重視され、その要求に答えて撮像デ
バイスも小型化され、例えば2/3インチや1/2イン
チの小型のCCD(固体撮像素子)の使用が主流になっ
てきている。そして、これによってカメラ装置全体の小
型軽量を図っている。
2. Description of the Related Art In recent years, color television cameras for TV broadcasting have been emphasized in operability and mobility, and in response to such demands, image pickup devices have been downsized. For example, a small CCD of 2/3 inch or 1/2 inch. The use of (solid-state image sensor) is becoming mainstream. By doing so, the overall size and weight of the camera device is reduced.

【0003】又、このことに対応して放送用カラーテレ
ビカメラに使用されるズームレンズにおいても、小型軽
量化及びそれと同時にズームレンズの高仕様化が図られ
ている。
In response to this, the zoom lens used in the color television camera for broadcasting is also downsized, and at the same time, the specifications of the zoom lens are improved.

【0004】ズームレンズのうち物体側から順に合焦用
(フォーカス用)の正の屈折力の第1群、変倍用の負の
屈折力の第2群、変倍に伴って変動する像面を補正する
ための正または負の屈折力の第3群、そして結像用の正
の屈折力の第4群の4つのレンズ群より成る所謂4群ズ
ームレンズは比較的高変倍化及び大口径比化が容易であ
るため、放送用のカラーテレビカメラ用のズームレンズ
に多く用いられている。
Of the zoom lens, in order from the object side, a first group of positive refracting power for focusing (focusing), a second group of negative refracting power for zooming, and an image plane that varies with zooming. A so-called four-group zoom lens composed of four lens groups of a third lens group having a positive or negative refractive power for correcting the above and a fourth lens group having a positive refractive power for image formation has a relatively high zoom ratio and a large zoom lens. Since it is easy to adjust the aperture ratio, it is often used in zoom lenses for color television cameras for broadcasting.

【0005】最近の放送用ズームレンズにおいてはズー
ムレンズの広角端の短焦点化、或いは望遠端の長焦点
化、そして高変倍化が強く要求されている。このことに
加えて、テレビカメラから前方、どの程度まで近距離の
物体が撮像できるかを表わす所謂MOD(Minimum Obje
ct Distance =最至近距離)を短縮することが、放送用
テレビカメラに用いられるズームレンズでは仕様上、及
び映像効果上、重要な要素の一つとなってきている。
In recent broadcast zoom lenses, there is a strong demand for the zoom lens to have a short focal length at the wide-angle end, a long focal length at the telephoto end, and a high zoom ratio. In addition to this, the so-called MOD (Minimum Obje
Shortening the ct distance is becoming an important factor in the specifications and image effects of zoom lenses used in broadcast TV cameras.

【0006】しかしながら、このMODを短縮しようと
すると、フォーカス範囲における合焦作用による諸収差
の変動が問題となる。特に球面収差、非点収差、色収差
においては変動が大きくなり光学性能を著しく低下させ
る。このフォーカスによる収差変動は焦点距離が長い
程、Fナンバーが小さくレンズ系が明るい程、そしてM
ODが短い程、顕著となる。このためズームレンズのフ
ォーカシング方式においては、種々の考案がなされてい
る。
However, if this MOD is to be shortened, the fluctuation of various aberrations due to the focusing action in the focus range becomes a problem. In particular, spherical aberration, astigmatism, and chromatic aberration have large fluctuations, which significantly deteriorates optical performance. The variation in aberration due to this focus is as the focal length becomes longer, the F number becomes smaller and the lens system becomes brighter, and M
The shorter the OD, the more remarkable. Therefore, various ideas have been made for the focusing system of the zoom lens.

【0007】フォーカシング方式のうち、物体側の第1
群以外のレンズ系内部の一部のレンズ群を移動させてフ
ォーカスを行なう、所謂インナーフォーカス式を採用し
たものが種々と提案されている。
The first of the focusing methods on the object side
Various proposals have been made to adopt a so-called inner focus method, in which a part of the lens group inside the lens system other than the group is moved for focusing.

【0008】一般にインナーフォーカス式のズームレン
ズは第1群を移動させてフォーカスを行なうズームレン
ズに比べて第1群の有効径が小さくなり、レンズ系全体
の小型化が容易となり、又近接撮影、特に極近接撮影が
容易となり、更に比較的小型軽量のレンズ群を移動させ
て行なっているので、レンズ群の駆動力が小さくてす
み、迅速な焦点合わせができる等の特長を有している。
Generally, in an inner focus type zoom lens, the effective diameter of the first lens group is smaller than that of a zoom lens in which the first lens group is moved to perform focusing, which facilitates downsizing of the entire lens system and close-up photography. In particular, extremely close-up photography is facilitated, and since the relatively small and lightweight lens group is moved to perform the operation, the driving force of the lens group is small, and quick focusing is possible.

【0009】このようなインナーフォーカス式のズーム
レンズとして、例えば特公昭52−41068号公報で
は物体側より順に正の屈折力の第1群、変倍用の負の屈
折力の第2群、変倍に伴う像面変動を補正するための負
の屈折力の第3群、そして正の屈折力の第4群の4つの
レンズ群より成る所謂4群ズームレンズにおいて、第1
群中の像面側の一部のレンズ群を移動させてフォーカス
を行なったズームレンズを開示している。
As such an inner focus type zoom lens, for example, in Japanese Patent Publication No. 52-41068, a first lens group having a positive refractive power, a second lens group having a negative refractive power for zooming, and a zooming lens are arranged in this order from the object side. In a so-called four-group zoom lens composed of four lens groups, a third lens group having a negative refractive power and a fourth lens group having a positive refractive power, for correcting the image plane variation due to the doubling,
This discloses a zoom lens in which a part of the lens group on the image plane side in the group is moved to perform focusing.

【0010】[0010]

【発明が解決しようとする課題】一般にズームレンズに
おいて、大口径比(Fナンバー1.6〜5.0)で高変
倍比(変倍比14〜44)で、しかも全変倍範囲及び全
フォーカス範囲(全物体距離)にわたり高い光学性能を
得るには各レンズ群の屈折力やレンズ構成、そして収差
分担、色消し分担等を適切に設定する必要がある。
Generally, in a zoom lens, a large aperture ratio (F number 1.6 to 5.0), a high zoom ratio (variation ratio 14 to 44), and a full zoom range and full zoom ratio are used. In order to obtain high optical performance over the focus range (total object distance), it is necessary to properly set the refractive power and lens configuration of each lens group, and the aberration sharing, the achromatic sharing, and the like.

【0011】例えば全変倍範囲及び全フォーカス範囲に
わたり収差変動が少なく高い光学性能を得るには、多く
の場合、各レンズ群のレンズ枚数を増加させて収差補正
上の自由度を増やすことが必要となってくる。このため
大口径比で高変倍比のズームレンズを達成しようとする
と、どうしてもレンズ枚数が増加し、レンズ系全体が大
型化してくるという問題点が生じてくる。
For example, in order to obtain high optical performance with little aberration variation over the entire zoom range and the entire focus range, it is often necessary to increase the number of lenses in each lens group to increase the degree of freedom in aberration correction. Will be. Therefore, if an attempt is made to achieve a zoom lens with a large aperture ratio and a high zoom ratio, the number of lenses will inevitably increase, and the size of the entire lens system will increase.

【0012】又、フォーカシング方式のうち先のインナ
ーフォーカス方式を採用すると、前述の如くレンズ系全
体が小型化され、又、迅速なるフォーカスが可能とな
り、更に近接撮影が容易となる等の特長が得られる。
If the inner focus method, which is one of the focusing methods, is adopted, the entire lens system can be downsized, quick focusing can be performed, and close-up photography can be facilitated as described above. To be

【0013】しかしながら半面フォーカスの際の収差変
動、特に望遠端における球面収差の変動が大きくなり、
無限遠物体から近距離物体に至る物体距離全般にわたり
レンズ系全体の小型化を図りつつ、高い光学性能を得る
のが大変難しくなってくるという問題点が生じてくる。
However, the variation of aberration at the time of half-focusing, especially the variation of spherical aberration at the telephoto end becomes large,
There is a problem that it becomes very difficult to obtain high optical performance while miniaturizing the entire lens system over the entire object distance from an infinite object to a short-distance object.

【0014】例えば前述の特公昭52−41068号公
報で提案されたフォーカシング方式は大口径比、高変倍
比、短いMODと高仕様が要求される放送用ズームレン
ズには必ずしも十分なレンズ構成ではなかった。特に、
第1群のフォーカス用のレンズ群と固定のレンズ群との
屈折力の分担及び各レンズの材質の分散値等が高仕様の
放送用ズームレンズとしては必ずしも十分でなかった。
For example, the focusing system proposed in Japanese Patent Publication No. 52-41068 mentioned above does not always have a sufficient lens structure for a zoom lens for broadcasting which requires a large aperture ratio, a high zoom ratio, a short MOD and high specifications. There wasn't. In particular,
The distribution of refractive power between the focusing lens group and the fixed lens group of the first group, the dispersion value of the material of each lens, and the like are not always sufficient for a broadcast zoom lens with high specifications.

【0015】一般に最近のユーザーの要望であるズーム
レンズ全体の小型軽量化を達成しつつ高仕様化を図るに
は各レンズ群の屈折力やレンズ構成を適切に設定する必
要がある。特に4群ズームレンズにおいては、レンズ全
系の大きさと重量を最も左右する第1群(前玉群)が分
担する屈折力とレンズ群の明るさは重要な要因であり、
ズームレンズ全系に対してどのようなバランスするかが
重要な要素になっている。
In general, it is necessary to appropriately set the refracting power and the lens configuration of each lens group in order to achieve high specifications while achieving downsizing and weight reduction of the entire zoom lens, which has been generally desired by users in recent years. Particularly in a four-group zoom lens, the refractive power and the brightness of the lens group, which are shared by the first group (front lens group) that most influences the size and weight of the entire lens system, are important factors.
How to balance the whole zoom lens system is an important factor.

【0016】更にはフォーカス範囲全域にて高い光学性
能を得るためには、フォーカスによる収差変動を抑制し
なければならない。このうちフォーカシングにより最も
変動が大きい球面収差と色収差の変動を極力抑制しなけ
れば良い映像を得ることができなくなる。このためフォ
ーカス用のレンズ群と固定のレンズ群とにどのような収
差分担及び色消し分担をさせるかが重要な要素になって
いる。
Furthermore, in order to obtain high optical performance over the entire focus range, it is necessary to suppress aberration fluctuation due to focus. Of these, it is impossible to obtain a good image unless the fluctuations of spherical aberration and chromatic aberration, which have the largest fluctuation due to focusing, are suppressed as much as possible. For this reason, what kind of aberration and achromatism should be shared between the focusing lens group and the fixed lens group is an important factor.

【0017】本発明は所謂4群ズームレンズにおいて、
前玉群(第1群)の屈折力やFナンバー等を適切に設定
した上で前玉群をフォーカス用のレンズ群と固定のレン
ズ群との2つのレンズ群に分割し、フォーカシングによ
る収差変動を極力抑制できるようなレンズエレメントの
配置、収差分担、色消し分担の所定の条件を満足するよ
うに規定することにより、変倍及びフォーカシングに伴
う球面収差、色収差の変動を少なくし、更に変倍に伴う
非点収差、像面弯曲等の軸外収差の変動をバランス良く
補正し、全変倍範囲、全フォーカス範囲にわたり高い光
学性能を有した広角端のFナンバー1.6程度、変倍比
14〜44程度の大口径比で高変倍比のズームレンズの
提供を目的とする。
The present invention relates to a so-called four-group zoom lens,
After properly setting the refractive power and F number of the front lens group (first group), the front lens group is divided into two lens groups, a focusing lens group and a fixed lens group, and aberration fluctuations due to focusing By stipulating the lens element layout, aberration sharing, and achromatization sharing to satisfy the specified conditions, the fluctuations of spherical aberration and chromatic aberration due to zooming and focusing can be reduced, and zooming can be further reduced. Astigmatism, off-axis aberrations such as curvature of field, etc., are corrected in a well-balanced manner, and the wide-angle end has an F number of approximately 1.6 with high optical performance over the entire zoom range and focus range. An object is to provide a zoom lens having a large aperture ratio of about 14 to 44 and a high zoom ratio.

【0018】[0018]

【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に正の屈折力の第1群、変倍用の負の
屈折力の第2群、変倍に伴う像面変動を補正する第3
群、そして変倍中固定の結像作用を有する第4群とを有
したズームレンズにおいて、該第1群は合焦時固定の第
11群と無限遠物体から至近物体への合焦時に物体側へ
移動する第12群とから成り、該第11群は少なくとも
1つの負レンズLN11と少なくとも1つの正レンズL
N12の独立した2つのレンズを有し、該第12群は少
なくとも2つの正レンズを有しており、望遠端における
全系の焦点距離とFナンバーを各々fT,FNT、該第
1群の焦点距離とFナンバーを各々f1,FN1、該第
11群と第12群の焦点距離を各々f11,f12、該
負レンズLN11と正レンズLP12の材質のアッベ数
の差をΔνXとしたとき 1.04<FN1<1.55 但しFN1=f1/(fT/FNT) ・・・・・・・・(1) 0.28<f1/fT<0.80 ・・・・・・・・・・・・・・・・(2) 55<ΔνX ・・・・・・・・・・・・・・・・・・・・・・・・・・(3) 3<|f11/f1| ・・・・・・・・・・・・・・・・・・(4) 0.77<f12/f1<1.10 ・・・・・・・・(5) なる条件を満足することを特徴としている。
A zoom lens according to the present invention includes, in order from the object side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power for zooming, and an image plane variation due to zooming. Third to correct
In a zoom lens having a group, and a fourth group having a fixed image-forming action during zooming, the first group includes an 11th group that is fixed during focusing and an object when focusing from an infinite object to a close object. And a twelfth lens unit moving to the side, the eleventh lens unit including at least one negative lens LN11 and at least one positive lens LN11.
N12 has two independent lenses, the twelfth lens group has at least two positive lenses, and the focal length and F number of the entire system at the telephoto end are fT and FNT, respectively, and the focal point of the first lens group. When the distance and the F number are f1 and FN1, the focal lengths of the 11th group and the 12th group are f11 and f12, respectively, and the Abbe number difference between the materials of the negative lens LN11 and the positive lens LP12 is ΔνX, 1.04 <FN1 <1.55 However, FN1 = f1 / (fT / FNT) ... (1) 0.28 <f1 / fT <0.80 ..... ... (2) 55 <ΔνX ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) 3 <│f11 / f1│・ ・ ・ ・ ・ ・ ・ ・ ・ (4) 0.77 <f12 / f1 <1.10 ・ ・ ・ ・ ・ ・ (5) It is characterized by satisfying the conditions.

【0019】[0019]

【実施例】図1,図2,図3,図4は各々本発明の数値
実施例1,2,3,4の広角端におけるレンズ断面図で
ある。図5〜図7は本発明の数値実施例1の収差図、図
8〜図12は本発明の数値実施例2の収差図、図13〜
図17は本発明の数値実施例3の収差図、図18〜図2
2は本発明の数値実施例4の収差図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1, 2, 3 and 4 are lens cross-sectional views at the wide-angle end of Numerical Embodiments 1, 2, 3 and 4 of the present invention, respectively. 5 to 7 are aberration diagrams of Numerical Example 1 of the present invention, FIGS. 8 to 12 are aberration diagrams of Numerical Example 2 of the present invention, and FIGS.
FIG. 17 is an aberration diagram of Numerical Example 3 of the present invention, and FIGS.
2 is an aberration diagram of Numerical example 4 of the present invention.

【0020】図1〜図4において、Fは第1群としての
正の屈折力のレンズ群(前玉レンズ群)であり、固定の
第11群F11とフォーカス用の正の屈折力の第12群
F12の2つのレンズ群より成っている。第11群F1
1は少なくとも1つの負レンズLN11と、少なくとも
1つの正レンズLP12の独立した2つのレンズを有し
ている。第12群F12は少なくとも2つの正レンズを
有している。無限遠物体から至近距離物体へのフォーカ
スは第12群F12を物体側へ移動させて行なってい
る。
In FIGS. 1 to 4, F is a lens group (front lens group) having a positive refracting power as the first group, which is a fixed eleventh group F11 and a twelfth lens having a positive refracting power for focusing. It is composed of two lens groups of the group F12. 11th group F1
1 has two independent lenses, at least one negative lens LN11 and at least one positive lens LP12. The twelfth lens unit F12 has at least two positive lenses. Focusing from an object at infinity to an object at a close range is performed by moving the twelfth lens unit F12 toward the object side.

【0021】Vは第2群としての変倍用の負の屈折力の
バリエータであり、光軸上像面側へ単調に移動させるこ
とにより、広角端(ワイド)から望遠端(テレ)への変
倍を行なっている。第2群Vは変倍の際に結像倍率が等
倍(−1倍)を含む領域内で変化させている。
V is a variator of negative refracting power for zooming as the second lens unit, which is monotonically moved to the image plane side on the optical axis to change from the wide-angle end (wide) to the telephoto end (tele). We are changing the magnification. In the second group V, the image-forming magnification is changed within a region including a unity magnification (−1 ×) when the magnification is changed.

【0022】Cは第3群としての正又は負の屈折力のコ
ンペンセータであり、変倍に伴う像面変動を補正するた
めに移動している。SPは絞り、Rは第4群としての正
の屈折力のリレー群である。Gは色分解プリズムや光学
フィルター等であり、同図ではガラスブロックとして示
している。
C is a compensator having a positive or negative refractive power as the third lens unit, and is moved to correct the image plane variation due to zooming. SP is a stop and R is a relay group having a positive refractive power as the fourth group. G is a color separation prism, an optical filter or the like, which is shown as a glass block in FIG.

【0023】一般に4群ズームレンズにおいて最も物体
側の第1群全体で焦点合わせを行なう、所謂前玉フォー
カス方式は各焦点距離において同一物体距離に対しては
第1群の繰り出し量が一定となるため、レンズ鏡筒構造
が簡単になるという特長がある。
Generally, in the so-called front lens focus system, in which focusing is performed on the entire first group closest to the object side in the four-group zoom lens, the amount of extension of the first group is constant for the same object distance at each focal length. Therefore, the lens barrel structure is simple.

【0024】しかしながら第1群が正の屈折力を有し、
広画角を含むズームレンズにおいては広角端において至
近距離物体に焦点合わせをする際、第1群が物体側へ移
動するため軸外光束を確保するために第1群の有効径が
増大し、また比較的重量の重い第1群を移動させるため
駆動トルクが増大し、迅速なる合焦が難しくなってく
る。
However, the first group has a positive refractive power,
In a zoom lens including a wide angle of view, when focusing on a close-range object at the wide-angle end, the first group moves toward the object side, so that the effective diameter of the first group increases to secure an off-axis light beam, Further, since the relatively heavy first group is moved, the driving torque increases, and quick focusing becomes difficult.

【0025】そこで本発明においては前述の構成を有
し、かつ条件式を満足するズームレンズにおいて、無限
遠物体から至近距離物体への焦点合わせを第12群F1
2を物体側へ移動させて行なうインナーフォーカス方式
を採用することによって第1群Fのレンズ有効径の増大
を防止し、レンズ系全体の小型化を図り、更に至近距離
の短縮化を図っている。
Therefore, in the present invention, in the zoom lens having the above-mentioned structure and satisfying the conditional expression, the focusing from the object at infinity to the object at the close range is performed by the twelfth lens unit F1.
By adopting an inner focus method in which 2 is moved to the object side, the effective lens diameter of the first lens unit F is prevented from increasing, the overall lens system is downsized, and the closest distance is further shortened. .

【0026】特に本発明のズームレンズは14倍から4
4倍程度のズーム比を有し、更にズーム全域にて大口径
化を実現するために、先ず前玉レンズ群(第1群)Fに
条件式(1)を満足するような明るいレンズ系を用いて
いる。そして前玉レンズ群Fの屈折力を条件式(2)を
満足するようにし、これによりコンパクト化を図ってい
る。
Particularly, the zoom lens of the present invention has a magnification of 14 to 4 times.
In order to have a zoom ratio of about 4 times and to realize a large aperture in the entire zoom range, first, a front lens group (first group) F is provided with a bright lens system that satisfies the conditional expression (1). I am using. Then, the refractive power of the front lens group F is made to satisfy the conditional expression (2), thereby making it compact.

【0027】そしてバリエータVがズーミングに際して
結像倍率が−1倍(等倍)の点を通過するようにし、こ
れにより高い変倍率を持たせるズーム方式をとってい
る。更に、コンペンセータCは正又は負の屈折力を有
し、少なくとも1つの正レンズと負レンズを配置するこ
とにより、球面収差や色収差等の収差補正を充実させて
いる。
Then, the variator V is adapted to pass a point where the image forming magnification is -1 × (equal magnification) during zooming, thereby adopting a zoom system which has a high variable magnification. Further, the compensator C has a positive or negative refractive power, and by arranging at least one positive lens and a negative lens, aberration correction such as spherical aberration and chromatic aberration is enhanced.

【0028】本発明のズームレンズを、例えば放送用の
テレビカメラに用いるときには高仕様及び高性能を要求
される。中でも望遠端の長焦点距離化と大口径化が要求
される。
When the zoom lens of the present invention is used for a television camera for broadcasting, for example, high specifications and high performance are required. Above all, a long focal length and a large aperture at the telephoto end are required.

【0029】一般に所謂4群ズームレンズにおいて、望
遠端の長焦点距離化と大口径化を図ろうとすると、前玉
レンズ群の有効口径は著しく増大する。これは軸上光線
の入射高が増加するためであり、このことによりズーミ
ングやフォーカシングによる球面収差や色収差をはじめ
とする諸収差が多く発生し、これらの諸収差の補正が困
難となってくる。
Generally, in a so-called four-group zoom lens, if an attempt is made to increase the focal length and the aperture at the telephoto end, the effective aperture of the front lens group remarkably increases. This is because the incident height of the axial ray increases, which causes various aberrations such as spherical aberration and chromatic aberration due to zooming and focusing, and it becomes difficult to correct these aberrations.

【0030】これに対しレンズ枚数を増やして設計の自
由度を増加させると、レンズ系全体が大型化し重量や製
造コストが増大してしまう。
On the other hand, if the number of lenses is increased to increase the degree of freedom in design, the entire lens system becomes large and the weight and manufacturing cost increase.

【0031】そこで本実施例においては、前玉レンズ群
(第1群)を物体側より順に、ある与えられた物点に対
して常に静止状態である第11群、所謂フォーカス固定
群F11と光軸上を相対的に移動することにより合焦を
行なう第12群、所謂フォーカス移動群F12とにより
構成している。
Therefore, in this embodiment, the front lens group (first group) is arranged in order from the object side, the eleventh group which is always stationary with respect to a given object point, a so-called focus fixed group F11, and a light beam. It is composed of a twelfth group, which is a so-called focus moving group F12, which performs focusing by relatively moving on the axis.

【0032】更にこのフォーカス固定群F11は物体側
より順に少なくとも1つの負レンズLN11と比較的小
さな空気間隔を隔てて少なくとも1つの正レンズLP1
2とにより構成している。
Further, the focus fixing group F11 is arranged in order from the object side with at least one negative lens LN11 and at least one positive lens LP1 with a relatively small air gap.
It is composed of 2 and.

【0033】このフォーカス固定群F11においては、
負レンズLN11と正レンズLP12の材質のアッベ数
の差ΔνXを条件式(3)の如く設定している。これに
よりズーミング或いはフォーカシングによる色収差の変
動を良好に補正している。
In this fixed focus group F11,
The difference ΔνX between the Abbe numbers of the materials of the negative lens LN11 and the positive lens LP12 is set as in conditional expression (3). As a result, variations in chromatic aberration due to zooming or focusing are well corrected.

【0034】加えて、負レンズLN11と正レンズLP
12を接合レンズとすることをせず、比較的小さな空気
間隔を隔てて配置している。この空気間隔を挟んだ負レ
ンズLN11の像面側のレンズ面の曲率半径と正レンズ
LP12の物体側のレンズ面の曲率半径により成る空
間、所謂空気レンズは略等しい曲率半径か物体側に凸状
の正メニスカスレンズ形状に構成している。
In addition, the negative lens LN11 and the positive lens LP
12 is not used as a cemented lens, and is arranged with a relatively small air gap. A space formed by the radius of curvature of the image-side lens surface of the negative lens LN11 and the radius of curvature of the object-side lens surface of the positive lens LP12 that sandwich the air space, that is, a so-called air lens has a substantially equal radius of curvature or a convex shape toward the object side. It is configured in a positive meniscus lens shape.

【0035】この空気レンズを構成することにより、 (イ)設計の自由度が増加することにより、収差補正の
分担が軽減される (ロ)各収差の急激な加減ができるため、特に高次収差
のコントロールが簡易となる (ハ)負レンズLN11が離れるため、前玉レンズ群の
主点を押し出すため小型化に寄与する 等の効果を引き出している。
By constructing this air lens, (a) the degree of freedom in design is increased, and the burden of aberration correction is reduced. (B) Since each aberration can be sharply adjusted, high-order aberrations in particular (C) Since the negative lens LN11 is separated, the principal point of the front lens group is pushed out, which contributes to size reduction.

【0036】又、フォーカス固定群F11の焦点距離f
11は、前玉レンズ群Fの焦点距離f1に対して条件式
(4)の如く設定している。これはフォーカス固定群F
11の焦点距離f11が近軸パワー配置的には絶対値の
符号によらず、かなり小さな屈折力となることを示す。
しかし、下限値を決定するのは絶対値が負の屈折力の場
合である。これはズームレンズ全系を広角化を図りつ
つ、小型化をする1つとして、前玉レンズ群Fのパワー
を強くして、ズーム全系の横倍率をかせぐことがある。
Further, the focal length f of the fixed focus group F11
11 is set as the conditional expression (4) with respect to the focal length f1 of the front lens group F. This is the fixed focus group F
It is shown that the focal length f11 of 11 has a considerably small refractive power regardless of the sign of the absolute value in terms of paraxial power arrangement.
However, the lower limit is determined when the absolute value of the refractive power is negative. This is one way to reduce the size of the entire zoom lens system while widening the angle. As a result, the power of the front lens group F may be increased to obtain the lateral magnification of the entire zoom lens system.

【0037】この時、前玉レンズ群のFの各レンズエレ
メントの屈折力も強くなるが、前述の空気レンズの採用
によりフォーカス固定群F11の発散性を強くし、所謂
レトロ比を多くかせいでも収差的には高位安定する。し
かし、極度の発散性を持たせると、他のレンズエレメン
トでの収差補正が困難となるため条件式(4)の範囲限
定としている。
At this time, the refractive power of each lens element F of the front lens group also becomes strong, but the divergence of the focus fixing group F11 is strengthened by adopting the above-mentioned air lens, and even if a so-called retro ratio is increased, it becomes aberrated. It stabilizes at a high level. However, if the lens has extreme divergence, it becomes difficult to correct aberrations in other lens elements, so the range of conditional expression (4) is limited.

【0038】又、焦点距離の符号の正負に制限がないの
は、フォーカス固定群F11の焦点距離が正であって
も、フォーカス固定群F11の望遠端での球面収差分担
値が負であればフォーカス固定群F11を通過後の軸上
光束は発散性を有するためである。
The sign of the focal length is not limited to positive or negative, even if the focal length of the fixed focus group F11 is positive and the spherical aberration share value at the telephoto end of the fixed focus group F11 is negative. This is because the axial light flux after passing through the focus fixing group F11 has divergence.

【0039】更にフォーカス移動群F12は少なくとも
2つの正レンズを有しており、高変倍及び短いMODに
対応して高い光学性能を得るために、球面収差、非点収
差及び歪曲収差等の諸収差の変動を補正する必要最小限
の設計自由度により構成している。又フォーカス移動群
F12の焦点距離f12は条件式(5)の如く設定して
いる。
Further, the focus movement group F12 has at least two positive lenses, and various aberrations such as spherical aberration, astigmatism and distortion are obtained in order to obtain high optical performance corresponding to high zooming and short MOD. It is configured with the minimum necessary degree of design freedom to correct variations in aberration. The focal length f12 of the focus movement group F12 is set as in conditional expression (5).

【0040】フォーカス移動群F12の焦点距離f12
が大きくなると、合焦作用による繰出し量が増大する。
このため前玉レンズ群F内のデッドスペースが増え、ズ
ームレンズの大きさや重量を左右する前玉レンズ群全体
が大型化してしまう。逆に、フォーカス移動群F12の
焦点距離f12が小さくなると、前玉レンズ群全体は小
型化が図れるものの、フォーカス移動群F12の各レン
ズエレメントの曲率半径が急激に小さくなるため、ズー
ミングやフォーカシングによる収差変動を補正すること
が困難となってくる。
The focal length f12 of the focus movement group F12
Becomes larger, the feeding amount due to the focusing action increases.
Therefore, the dead space in the front lens group F increases, and the size of the front lens group that influences the size and weight of the zoom lens increases. On the other hand, when the focal length f12 of the focus moving group F12 becomes smaller, the front lens group as a whole can be downsized, but the radius of curvature of each lens element of the focus moving group F12 becomes sharply smaller, so that aberrations due to zooming and focusing occur. It becomes difficult to correct the fluctuation.

【0041】そこで光学性能と小型化のバランスを考慮
して、フォーカス移動群F12の焦点距離f12を制限
する必要がある。放送用ズームレンズのように高い光学
性能を要求されるズームレンズにおいては、無理な小型
化を図って光学性能を低下させられないため条件式
(5)の制限範囲内に限定される。又フォーカス移動群
F12に負レンズを用いて諸収差の打消しをするように
しても良い。
Therefore, it is necessary to limit the focal length f12 of the focus moving unit F12 in consideration of the balance between optical performance and miniaturization. In a zoom lens that requires high optical performance such as a zoom lens for broadcasting, the optical performance cannot be lowered due to an unreasonable downsizing, so that the conditional expression (5) is limited. A negative lens may be used in the focus movement group F12 to cancel various aberrations.

【0042】本実施例では以上のように、前玉レンズ群
Fの光学配置及び制限条件を決定している。これらの光
学配置及び制限条件を満足することにより、所謂フロー
ティング効果を得ることができる。
In this embodiment, the optical arrangement of the front lens group F and the limiting conditions are determined as described above. By satisfying these optical arrangements and limiting conditions, a so-called floating effect can be obtained.

【0043】ここでフローティングとは、物体距離が変
化して合焦する際に移動するレンズ群内のある任意の空
気間隔を繰出しに応じて拡大、或いは縮小することによ
り、光線の通過する角度や高さを変化させて収差変動を
抑制するものである。このためフローティングに用いる
間隔は、光線の通過する角度が発散或いは収斂であるこ
とが望ましいことになる。
Here, the term "floating" means that the angle at which a light beam passes is expanded or contracted by expanding or contracting an arbitrary air interval in the lens group that moves when the object distance changes and the object is in focus. The height is changed to suppress variation in aberration. For this reason, it is desirable that the interval used for floating is such that the angle at which light rays pass is divergent or convergent.

【0044】本実施例においては、前玉レンズ群Fの最
も物体側に負の屈折力のレンズを配置し、かつ空気レン
ズの採用により、前玉レンズ群Fの全体の主点を像面側
に押し出して小型化を図るため、フォーカス固定群F1
1を通過後の軸上光線が収差補正分担値の点より発散性
としている。
In this embodiment, a lens having negative refracting power is arranged on the most object side of the front lens group F, and an air lens is adopted, so that the principal point of the whole front lens group F becomes the image side. Focus fixed group F1
The axial ray after passing 1 is divergent from the point of the aberration correction sharing value.

【0045】本発明において望遠端でのフォーカスによ
る収差変動を考えた場合、軸上光線入射高が高くなるこ
とにより変動が大きくなる球面収差と軸上色収差の補正
を良好とするためにフォーカス固定群F11とフォーカ
ス移動群F12の収差分担値において、次の条件式を満
足させるのが良い。
In the present invention, in consideration of aberration variation due to focusing at the telephoto end, a fixed focus group is provided in order to favorably correct spherical aberration and axial chromatic aberration, which are greatly varied due to an increase in axial ray incident height. It is preferable to satisfy the following conditional expression in the aberration sharing value of F11 and the focus movement group F12.

【0046】望遠端における前記第11群と第12群の
各レンズ面の球面収差の3次収差係数の総和を各々S
1,S2としたとき、開放Fナンバーでフォーカス範囲
全域において、
The sum of the third-order aberration coefficients of the spherical aberrations of the lens surfaces of the 11th and 12th lens groups at the telephoto end is S, respectively.
When S1 and S2 are set, the open F number is used over the entire focus range.

【0047】[0047]

【数2】 なる条件を満足することである。更に、前記第11群の
第i番目のレンズの焦点距離と材質のアッベ数を各々f
11i,ν11i、前記第12群の第i番目のレンズの
焦点距離と材質のアッベ数を各々f12i,ν12iと
したとき、
[Equation 2] To satisfy the condition. Further, the focal length of the i-th lens of the 11th group and the Abbe number of the material are respectively f
11i, ν11i, and the Abbe number of the material and the focal length of the i-th lens of the 12th group are f12i, ν12i,

【0048】[0048]

【数3】 なる条件を満足することである。[Equation 3] To satisfy the condition.

【0049】球面収差の3次収差係数に関する条件式
(6)においては、前述の理由にて、フォーカス固定群
F11で発散の球面収差を発生させフォーカス移動群F
12にて収斂の球面収差を発生させることを示してい
る。そして、かつ各々の発生量を補正過不足とならない
ようにコントロールし、良好な収差補正を行なってい
る。
In the conditional expression (6) relating to the third-order aberration coefficient of the spherical aberration, the divergent spherical aberration is generated in the focus fixed group F11 and the focus movement group F is generated for the reason described above.
12 shows that a convergent spherical aberration is generated. Then, the respective amounts of occurrence are controlled so as not to be over- or under-corrected, and good aberration correction is performed.

【0050】又、条件式(7)〜(8)は所謂色消し条
件である。フォーカス固定群F11及びフォーカス移動
群F12の各レンズエレメントの焦点距離f11,f1
2及びアッベ数をコントロールし、色消し条件の解であ
る EF≒EM≒0 を満足させるためのものである。又、条件式(9)はフ
ォーカス固定群F11及びフォーカス移動群F12での
分担を略均等にするためのものである。
Conditional expressions (7) to (8) are so-called achromatic conditions. The focal lengths f11 and f1 of each lens element of the focus fixed group F11 and the focus movement group F12
2 and Abbe's number are controlled so that EF≈EM≈0, which is the solution of the achromatic condition, is satisfied. Further, the conditional expression (9) is for making the sharing of the focus fixed group F11 and the focus moving group F12 substantially equal.

【0051】このように本実施例では、前玉レンズ群F
をフォーカス固定群F11とフォーカス移動群F12に
より構成し、パワー配置、レンズエレメントの材質、収
差分担を適切に設定して、ズーム全域及びフォーカス全
域での諸収差、特に球面収差と軸上色収差を良好に補正
している。
As described above, in this embodiment, the front lens group F
Is composed of a focus fixed group F11 and a focus moving group F12, and by appropriately setting the power arrangement, the material of the lens element, and the distribution of aberrations, various aberrations in the entire zoom range and the entire focus range, particularly spherical aberration and axial chromatic aberration, are excellent. Has been corrected to.

【0052】次に本発明の数値実施例を示す。数値実施
例においてRiは物体側より順に第i番目のレンズ面の
曲率半径、Diは物体側より第i番目のレンズ厚及び空
気間隔、Niとνiは各々物体側より順に第i番目のレ
ンズのガラスの屈折率とアッベ数である。数値実施例に
おいて、最終の2つ又は3つのレンズ面はフェースプレ
ートやフィルター等のガラスブロックである。
Next, numerical examples of the present invention will be shown. In the numerical examples, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air gap from the object side, and Ni and νi are respectively from the object side in the i-th lens. The refractive index of glass and the Abbe number. In the numerical examples, the last two or three lens surfaces are glass blocks such as face plates and filters.

【0053】又前述の各条件式と数値実施例における諸
数値との関係を表−1に示す。
Table 1 shows the relationship between the above-mentioned conditional expressions and various numerical values in the numerical examples.

【0054】非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
K,A2 ,A3 ,A4 ,A5 を各々非球面係数としたと
き、
The aspherical shape has an X axis in the optical axis direction, an H axis in the direction perpendicular to the optical axis, a positive traveling direction of light, and R is a paraxial radius of curvature,
When K, A 2 , A 3 , A 4 , and A 5 are aspherical coefficients,

【0055】[0055]

【数4】 なる式で表わしている。[Equation 4] It is expressed by

【0056】又、各数値実施例における望遠端での各レ
ンズ面の軸上色収差と球面収差の3次収差係数を示す。
Further, the third-order aberration coefficients of the axial chromatic aberration and spherical aberration of each lens surface at the telephoto end in each numerical example will be shown.

【0057】 (数値実施例1) F= 11.27 FNO= 1:1.6〜1.8 2ω= 52.0°〜3.7 ° R 1= 3554.41 D 1= 3.09 N 1=1.87400 ν 1= 35.3 R 2= 152.88 D 2= 1.57 R 3= 172.06 D 3=15.39 N 2=1.43875 ν 2= 95.0 R 4= -278.47 D 4=14.04 R 5= 160.87 D 5=13.76 N 3=1.49700 ν 3= 81.6 R 6= -336.03 D 6= 0.21 R 7= 86.37 D 7=11.25 N 4=1.51633 ν 4= 64.2 R 8= 225.21 D 8=可変 R 9= 70.95 D 9= 1.65 N 5=1.77250 ν 5= 49.6 R10= 29.20 D10= 6.76 R11=-2104.50 D11= 1.51 N 6=1.77250 ν 6= 49.6 R12= 59.82 D12= 8.57 R13= -32.42 D13= 1.51 N 7=1.77250 ν 7= 49.6 R14= 345.76 D14= 4.32 N 8=1.92286 ν 8= 21.3 R15= -65.28 D15=可変 R16= -535.12 D16= 6.13 N 9=1.48749 ν 9= 70.2 R17= -50.92 D17= 0.21 R18= 263.61 D18= 8.55 N10=1.64000 ν10= 60.1 R19= -47.42 D19= 1.65 N11=1.80518 ν11= 25.4 R20= -147.42 D20= 0.21 R21= 53.82 D21= 7.03 N12=1.48749 ν12= 70.2 R22= -646.25 D22=可変 R23=(絞り) D23= 4.10 R24= -34.54 D24= 0.96 N13=1.65160 ν13= 58.5 R25= 24.78 D25= 3.36 N14=1.69895 ν14= 30.1 R26= 49.32 D26= 6.58 R27= -29.97 D27= 1.03 N15=1.64000 ν15= 60.1 R28=-2416.74 D28= 6.00 N16=1.68893 ν16= 31.1 R29= -27.45 D29=23.38 R30= 101.35 D30= 8.48 N17=1.48749 ν17= 70.2 R31= -28.60 D31= 1.51 N18=1.75520 ν18= 27.5 R32= -38.07 D32= 0.14 R33= 175.76 D33= 1.31 N19=1.75520 ν19= 27.5 R34= 27.12 D34= 6.72 N20=1.51118 ν20= 51.0 R35= -276.56 D35= 0.76 R36= 43.76 D36= 3.99 N21=1.48749 ν21= 70.2 R37= 0.00 D37= 5.70 R38= 0.00 D38=47.57 N22=1.51633 ν22= 64.2 R39= 0.00Numerical Example 1 F = 11.27 FNO = 1: 1.6 to 1.8 2ω = 52.0 ° to 3.7 ° R 1 = 3554.41 D 1 = 3.09 N 1 = 1.87400 ν 1 = 35.3 R 2 = 152.88 D 2 = 1.57 R 3 = 172.06 D 3 = 15.39 N 2 = 1.43875 ν 2 = 95.0 R 4 = -278.47 D 4 = 14.04 R 5 = 160.87 D 5 = 13.76 N 3 = 1.49700 ν 3 = 81.6 R 6 = -336.03 D 6 = 0.21 R 7 = 86.37 D 7 = 11.25 N 4 = 1.51633 ν 4 = 64.2 R 8 = 225.21 D 8 = Variable R 9 = 70.95 D 9 = 1.65 N 5 = 1.77250 ν 5 = 49.6 R10 = 29.20 D10 = 6.76 R11 = -2104.50 D11 = 1.51 N 6 = 1.77250 ν 6 = 49.6 R12 = 59.82 D12 = 8.57 R13 = -32.42 D13 = 1.51 N 7 = 1.77250 ν 7 = 49.6 R14 = 345.76 D14 = 4.32 N 8 = 1.92286 ν 8 = 21.3 R15 = -65.28 D15 = Variable R16 = -535.12 D16 = 6.13 N 9 = 1.48749 ν 9 = 70.2 R17 = -50.92 D17 = 0.21 R18 = 263.61 D18 = 8.55 N10 = 1.64000 ν10 = 60.1 R19 = -47.42 D19 = 1.65 N11 = 1.80518 ν11 = 25.4 R20 = -147.42 D20 = 0.21 R21 = 53.82 D21 = 7.03 N12 = 1.48749 ν12 = 70.2 R22 = -646.25 D22 = Variable R23 = (Aperture) D23 = 4.10 R24 = -34.54 D24 = 0.96 N13 = 1.65160 ν13 = 58.5 R25 = 24.78 D25 = 3.36 N14 = 1.69895 ν14 = 30.1 R26 = 49.32 D26 = 6.58 R27 = -2 9.97 D27 = 1.03 N15 = 1.64000 ν15 = 60.1 R28 = -2416.74 D28 = 6.00 N16 = 1.68893 ν16 = 31.1 R29 = -27.45 D29 = 23.38 R30 = 101.35 D30 = 8.48 N17 = 1.48749 ν17 = 70.2 R31 = -28.60 D31 = 1.51 N18 = 1.75520 ν18 = 27.5 R32 = -38.07 D32 = 0.14 R33 = 175.76 D33 = 1.31 N19 = 1.75520 ν19 = 27.5 R34 = 27.12 D34 = 6.72 N20 = 1.51118 ν20 = 51.0 R35 = -276.56 D35 = 0.76 R36 = 43.76 D36 = 3.99 N21 = 1.48749 ν21 = 70.2 R37 = 0.00 D37 = 5.70 R38 = 0.00 D38 = 47.57 N22 = 1.51633 ν22 = 64.2 R39 = 0.00

【0058】[0058]

【表1】 望遠端での3次収差係数各面分担値(数値実施例1) 軸上色収差 球面収差 面番号 無限遠 至近 無限遠 至近 1 0.012 0.049 0.000 0.052 2 -0.519 -0.666 -58.015 -103.794 3 0.114 0.147 38.260 68.955 4 0.025 0.023 0.064 -0.073 5 0.105 0.136 10.150 20.028 6 0.087 0.095 8.782 8.915 7 0.145 0.190 3.775 9.977 8 0.051 0.049 2.430 1.926 9 -0.023 -0.023 -0.510 -0.510 10 -0.108 -0.108 -5.327 -5.327 11 -0.020 -0.020 -0.155 -0.155 12 -0.084 -0.084 -6.331 -6.331 13 -0.092 -0.092 -2.098 -2.098 14 0.258 0.258 3.172 3.172 15 0.018 0.018 -0.027 -0.027 16 0.030 0.030 2.198 2.198 17 0.045 0.045 1.530 1.530 18 0.031 0.031 0.615 0.615 19 -0.261 -0.261 -3.219 -3.219 20 0.087 0.087 0.320 0.320 21 0.054 0.054 3.945 3.945 22 0.033 0.033 2.404 2.404 23 0.000 0.000 0.000 0.000 24 -0.054 -0.054 -9.394 -9.394 25 0.081 0.081 0.515 0.515 26 -0.071 -0.071 -2.136 -2.136 27 -0.027 -0.027 -0.226 -0.226 28 0.042 0.042 0.155 0.155 29 0.109 0.109 3.278 3.278 30 0.014 0.014 0.273 0.273 31 -0.167 -0.167 -4.786 -4.786 32 0.169 0.169 11.532 11.532 33 -0.031 -0.031 -0.189 -0.189 34 -0.117 -0.117 -2.049 -2.049 35 0.022 0.022 0.552 0.552 36 0.012 0.012 -0.047 -0.047 37 0.021 0.021 2.092 2.092 38 -0.021 -0.021 -1.872 -1.872 39 0.003 0.003 0.300 0.300 合計 -0.021 -0.018 -0.037 0.502 (数値実施例2) F= 9.0 FNO= 1:1.7〜2.0 2ω= 62.9°〜5.0 ° R 1= -409.82 D 1= 2.50 N 1=1.76168 ν 1= 27.5 R 2= 131.70 D 2= 3.86 R 3= 226.86 D 3= 7.89 N 2=1.43985 ν 2= 95.0 R 4= -210.28 D 4= 0.20 R 5= 185.11 D 5= 6.65 N 3=1.43985 ν 3= 95.0 R 6= -432.14 D 6= 7.25 R 7= 97.28 D 7= 9.98 N 4=1.49845 ν 4= 81.6 R 8= -296.46 D 8= 0.20 R 9= 58.15 D 9= 5.98 N 5=1.73234 ν 5= 54.7 R10= 116.22 D10=可変 R11= 82.50 D11= 0.80 N 6=1.88814 ν 6= 40.8 R12= 16.69 D12= 4.85 R13= -60.39 D13= 0.80 N 7=1.82017 ν 7= 46.6 R14= 44.25 D14= 2.55 R15= 29.50 D15= 4.52 N 8=1.82600 ν 8= 23.7 R16= -51.57 D16= 0.94 R17= -30.92 D17= 0.80 N 9=1.77621 ν 9= 49.6 R18= 123.22 D18=可変 R19= -28.08 D19= 0.90 N10=1.76077 ν10= 47.8 R20= 44.63 D20= 2.37 N11=1.85501 ν11= 23.9 R21= -788.03 D21=可変 R22=(絞り) D22= 1.10 R23= 219.42 D23= 3.26 N12=1.70558 ν12= 41.2 R24= -59.63 D24= 0.20 R25= 126.00 D25= 2.15 N13=1.50349 ν13= 56.4 R26= 1747.85 D26= 0.20 R27= 86.13 D27= 6.25 N14=1.50349 ν14= 56.4 R28= -26.00 D28= 1.30 N15=1.80811 ν15= 46.6 R29= -71.32 D29=28.00 R30= 58.16 D30= 6.02 N16=1.48915 ν16= 70.2 R31= -41.51 D31= 0.20 R32= -85.39 D32= 1.40 N17=1.83932 ν17= 37.2 R33= 33.66 D33= 6.06 N18=1.50014 ν18= 65.0 R34= -118.13 D34= 0.20 R35= 70.99 D35= 6.52 N19=1.48915 ν19= 70.2 R36= -26.37 D36= 1.40 N20=1.83945 ν20= 42.7 R37= -72.54 D37= 0.20 R38= 46.43 D38= 4.12 N21=1.60548 ν21= 60.7 R39= -350.11 D39= 4.10 R40= ∞ D40=30.00 N22=1.60718 ν22= 38.0 R41= ∞ D41=16.20 N23=1.51825 ν23= 64.2 R42= ∞[Table 1] Third-order aberration coefficient at the telephoto end Surface-sharing value (Numerical Example 1) Axial chromatic aberration Spherical aberration Surface number Infinity Near infinity Near infinity 1 0.012 0.049 0.000 0.052 2 -0.519 -0.666 -58.015 -103.794 3 0.114 0.147 38.260 68.955 4 0.025 0.023 0.064 -0.073 5 0.105 0.136 10.150 20.028 6 0.087 0.095 8.782 8.915 7 0.145 0.190 3.775 9.977 8 0.051 0.049 2.430 1.926 9 -0.023 -0.023 -0.510 -0.510 10 -0.108 -0.108 -5.327 -5.327 11 -0.020 -0.020- 0.155 -0.155 12 -0.084 -0.084 -6.331 -6.331 13 -0.092 -0.092 -2.098 -2.098 14 0.258 0.258 3.172 3.172 15 0.018 0.018 -0.027 -0.027 16 0.030 0.030 2.198 2.198 17 0.045 0.045 1.530 1.530 18 0.031 0.031 0.615 0.615 19- 0.261 -0.261 -3.219 -3.219 20 0.087 0.087 0.320 0.320 21 0.054 0.054 3.945 3.945 22 0.033 0.033 2.404 2.404 23 0.000 0.000 0.000 0.000 24 -0.054 -0.054 -9.394 -9.394 25 0.081 0.081 0.515 0.515 26 -0.071 -0.071 -2.136 -2.136 27 -0.027 -0.027 -0.226 -0.226 28 0.042 0.042 0.155 0.155 29 0.109 0.109 3.278 3.278 30 0.014 0.014 0.273 0.273 31 -0.167 -0.167 -4.786 -4.786 32 0.169 0.169 11.532 11.532 33 -0.031 -0.031 -0.189 -0.189 34 -0.117 -0.117 -2.049 -2.049 35 0.022 0.022 0.552 0.552 36 0.012 0.012 -0.047 -0.047 37 0.021 0.021 2.092 2.092 38- 0.021 -0.021 -1.872 -1.872 39 0.003 0.003 0.300 0.300 Total -0.021 -0.018 -0.037 0.502 (Numerical example 2) F = 9.0 FNO = 1: 1.7 to 2.0 2 ω = 62.9 ° to 5.0 ° R 1 = -409.82 D 1 = 2.50 N 1 = 1.76168 ν 1 = 27.5 R 2 = 131.70 D 2 = 3.86 R 3 = 226.86 D 3 = 7.89 N 2 = 1.43985 ν 2 = 95.0 R 4 = -210.28 D 4 = 0.20 R 5 = 185.11 D 5 = 6.65 N 3 = 1.43985 ν 3 = 95.0 R 6 = -432.14 D 6 = 7.25 R 7 = 97.28 D 7 = 9.98 N 4 = 1.49845 ν 4 = 81.6 R 8 = -296.46 D 8 = 0.20 R 9 = 58.15 D 9 = 5.98 N 5 = 1.73234 ν 5 = 54.7 R10 = 116.22 D10 = Variable R11 = 82.50 D11 = 0.80 N 6 = 1.88814 ν 6 = 40.8 R12 = 16.69 D12 = 4.85 R13 = -60.39 D13 = 0.80 N 7 = 1.82017 ν 7 = 46.6 R14 = 44.25 D14 = 2.55 R15 = 29.50 D15 = 4.52 N 8 = 1.82600 ν 8 = 23.7 R16 = -51.57 D16 = 0.94 R17 = -30.92 D17 = 0.80 N 9 = 1.77621 ν 9 = 49.6 R18 = 123.22 D18 = variable R19 = -28.08 D19 = 0.90 N10 = 1.76077 ν10 = 47.8 R20 = 44.63 D20 = 2.37 N11 = 1.85501 ν11 = 23.9 R21 = -788.03 D21 = Variable R22 = (Aperture) D22 = 1.10 R23 = 219.42 D23 = 3.26 N12 = 1.70558 ν12 = 41.2 R24 = -59.63 D24 = 0.20 R25 = 126.00 D25 = 2.15 N13 = 1.50349 ν13 = 56.4 R26 = 1747.85 D26 = 0.20 R27 = 86.13 D27 = 6.25 N14 = 1.50349 ν14 = 56.4 R28 = -26.00 D28 = 1.30 N15 = 1.80811 ν15 = 46.6 R29 = -71.32 D29 = 28.00 R30 = 58.16 D30 = 6.02 N16 = 1.48915 ν16 = 70.2 R31 = -41.51 D31 = 0.20 R32 = -85.39 D32 = 1.40 N17 = 1.83932 ν17 = 37.2 R33 = 33.66 D33 = 6.06 N18 = 1.50014 ν18 = 65.0 R34 = -118.13 D34 = 0.20 R35 = 70.99 D35 = 6.52 N19 = 1.48915 ν19 = 70.2 R36 = -26.37 D36 = 1.40 N20 = 1.83945 ν20 = 42.7 R37 = -72.54 D37 = 0.20 R38 = 46.43 D38 = 4.12 N21 = 1.60548 ν21 = 60.7 R39 = -350.11 D39 = 4.10 R40 = ∞ D40 = 30.00 N22 = 1.60718 ν22 = 38.0 R41 = ∞ D41 = 16.20 N23 = 1.51825 ν23 = 64.2 R42 = ∞

【0059】[0059]

【表2】 望遠端での3次収差係数各面分担値(数値実施例2) 軸上色収差 球面収差 面番号 無限遠 至近 無限遠 至近 1 -0.072 -0.039 -0.099 0.012 2 -0.454 -0.557 -46.209 -77.776 3 0.070 0.088 21.231 37.794 4 0.009 0.003 -0.055 -0.011 5 0.054 0.071 7.519 15.386 6 0.015 0.010 0.130 0.002 7 0.081 0.106 8.099 17.434 8 0.079 0.084 16.499 16.130 9 0.143 0.191 -1.853 0.972 10 0.078 0.075 7.369 5.930 11 -0.064 -0.064 -8.835 -8.835 12 -0.083 -0.083 -3.798 -3.798 13 -0.032 -0.032 -1.019 -1.019 14 -0.056 -0.056 -6.414 -6.414 15 0.163 0.163 13.088 13.088 16 0.119 0.119 6.170 6.170 17 -0.064 -0.064 -11.356 11.356 18 -0.019 -0.019 -0.325 -0.325 19 -0.036 -0.036 -0.477 -0.477 20 0.129 0.129 1.881 1.881 21 -0.097 -0.097 -4.076 -4.076 22 0.000 0.000 0.000 0.000 23 0.062 0.062 6.340 6.340 24 0.009 0.009 -0.031 -0.031 25 0.024 0.024 1.229 1.229 26 -0.010 -0.010 -0.138 -0.138 27 0.024 0.024 1.079 1.079 28 -0.043 -0.043 -4.042 -4.042 29 0.024 0.024 0.093 0.093 30 0.022 0.022 1.076 1.076 31 0.045 0.045 13.382 13.382 32 -0.088 -0.088 -6.783 -6.783 33 -0.082 -0.082 -3.355 -3.355 34 0.012 0.012 0.188 0.188 35 0.012 0.012 0.119 0.119 36 -0.090 -0.090 -9.930 -9.930 37 0.051 0.051 1.813 1.813 38 0.018 0.018 0.011 0.011 39 0.031 0.031 3.712 3.712 40 -0.043 -0.043 -2.559 -2.559 41 0.010 0.010 0.098 0.098 42 0.004 0.004 0.519 0.519 合計 -0.036 -0.010 0.294 3.537 (数値実施例3) F= 8.50 FNO= 1:1.7〜2.1 2ω= 65.8°〜4.9 ° R 1= -243.48 D 1= 2.50 N 1=1.81265 ν 1= 25.4 R 2= 150.43 D 2= 3.13 R 3= 229.76 D 3= 7.86 N 2=1.43985 ν 2= 95.0 R 4= -215.69 D 4= 7.33 R 5= 165.25 D 5=10.30 N 3=1.43985 ν 3= 95.0 R 6= -156.97 D 6= 0.15 R 7= 91.92 D 7= 8.25 N 4=1.60520 ν 4= 65.5 R 8=-5448.23 D 8= 0.15 R 9= 53.54 D 9= 5.38 N 5=1.77621 ν 5= 49.6 R10= 88.04 D10=可変 R11= 51.26 D11= 0.90 N 6=1.88814 ν 6= 40.8 R12= 16.17 D12= 4.80 R13= -63.80 D13= 0.80 N 7=1.82017 ν 7= 46.6 R14= 27.55 D14= 4.03 R15= 27.93 D15= 4.20 N 8=1.82600 ν 8= 23.7 R16= -54.11 D16= 0.75 R17= -30.52 D17= 0.80 N 9=1.77621 ν 9= 49.6 R18= 124.76 D18=可変 R19= -26.78 D19= 0.90 N10=1.77621 ν10= 49.6 R20= 45.15 D20= 2.47 N11=1.85501 ν11= 23.9 R21= -318.46 D21=可変 R22=(絞り) D22= 1.10 R23= 177.68 D23= 3.91 N12=1.51977 ν12= 52.4 R24= -42.08 D24= 0.20 R25= 112.64 D25= 2.72 N13=1.51977 ν13= 52.4 R26= -179.30 D26= 0.20 R27= 69.16 D27= 6.04 N14=1.51977 ν14= 52.4 R28= -31.66 D28= 1.30 N15=1.82017 ν15= 46.6 R29= -206.87 D29=32.00 R30= 65.05 D30= 5.69 N16=1.48915 ν16= 70.2 R31= -41.40 D31= 0.20 R32= -82.84 D32= 1.40 N17=1.83932 ν17= 37.2 R33= 30.46 D33= 5.78 N18=1.50349 ν18= 56.4 R34= -300.07 D34= 0.20 R35= 63.06 D35= 6.80 N19=1.48915 ν19= 70.2 R36= -25.89 D36= 1.40 N20=1.83932 ν20= 37.2 R37= -57.77 D37= 0.20 R38= 36.55 D38= 4.53 N21=1.51314 ν21= 60.5 R39= -607.99 D39= 4.00 R40= ∞ D40=30.00 N22=1.60718 ν22= 38.0 R41= ∞ D41=16.20 N23=1.51825 ν23= 64.2 R42= ∞[Table 2] Third-order aberration coefficient at the telephoto end Surface-sharing value (Numerical Example 2) Axial chromatic aberration Spherical aberration Surface number Infinity close-up Infinity close-up 1 -0.072 -0.039 -0.099 0.012 2 -0.454 -0.557 -46.209 -77.776 3 0.070 0.088 21.231 37.794 4 0.009 0.003 -0.055 -0.011 5 0.054 0.071 7.519 15.386 6 0.015 0.010 0.130 0.002 7 0.081 0.106 8.099 17.434 8 0.079 0.084 16.499 16.130 9 0.143 0.191 -1.853 0.972 10 0.078 0.075 7.369 5.930 11 -0.064 -0.064 -8.835 -8.835 12 -0.083 -0.083 -3.798 -3.798 13 -0.032 -0.032 -1.019 -1.019 14 -0.056 -0.056 -6.414 -6.414 15 0.163 0.163 13.088 13.088 16 0.119 0.119 6.170 6.170 17 -0.064 -0.064 -11.356 11.356 18 -0.019 -0.019 -0.325 -0.325 19 -0.036 -0.036 -0.477 -0.477 20 0.129 0.129 1.881 1.881 21 -0.097 -0.097 -4.076 -4.076 22 0.000 0.000 0.000 0.000 23 0.062 0.062 6.340 6.340 24 0.009 0.009 -0.031 -0.031 25 0.024 0.024 1.229 1.229 26 -0.010 -0.010 -0.138 -0.138 27 0.024 0.024 1.079 1.079 28 -0.043 -0.043 -4.042 -4.042 29 0.024 0.024 0.093 0.093 30 0.022 0.022 1. 076 1.076 31 0.045 0.045 13.382 13.382 32 -0.088 -0.088 -6.783 -6.783 33 -0.082 -0.082 -3.355 -3.355 34 0.012 0.012 0.188 0.188 35 0.012 0.012 0.119 0.119 36 -0.090 -0.090 -9.930 -9.930 37 0.051 0.051 1.813 1.813 38 0.018 0.018 0.011 0.011 39 0.031 0.031 3.712 3.712 40 -0.043 -0.043 -2.559 -2.559 41 0.010 0.010 0.098 0.098 42 0.004 0.004 0.519 0.519 Total -0.036 -0.010 0.294 3.537 (Numerical Example 3) F = 8.50 FNO = 1: 1.7 ~ 2.1 2 ω = 65.8 ° ~ 4.9 ° R 1 = -243.48 D 1 = 2.50 N 1 = 1.81265 ν 1 = 25.4 R 2 = 150.43 D 2 = 3.13 R 3 = 229.76 D 3 = 7.86 N 2 = 1.43985 ν 2 = 95.0 R 4 = -215.69 D 4 = 7.33 R 5 = 165.25 D 5 = 10.30 N 3 = 1.43985 ν 3 = 95.0 R 6 = -156.97 D 6 = 0.15 R 7 = 91.92 D 7 = 8.25 N 4 = 1.60520 ν 4 = 65.5 R 8 = -5448.23 D 8 = 0.15 R 9 = 53.54 D 9 = 5.38 N 5 = 1.77621 ν 5 = 49.6 R10 = 88.04 D10 = Variable R11 = 51.26 D11 = 0.90 N 6 = 1.88814 ν 6 = 40.8 R12 = 16.17 D12 = 4.80 R13 = -63.80 D13 = 0.80 N 7 = 1.82017 ν 7 = 46.6 R14 = 27.55 D14 = 4.03 R15 = 27.93 D15 = 4.20 N 8 = 1.82600 ν 8 = 23.7 R16 = -54.11 D16 = 0.75 R17 = -30.5 2 D17 = 0.80 N 9 = 1.77621 ν 9 = 49.6 R18 = 124.76 D18 = variable R19 = -26.78 D19 = 0.90 N10 = 1.77621 ν10 = 49.6 R20 = 45.15 D20 = 2.47 N11 = 1.85501 ν11 = 23.9 R21 = -318.46 D21 = variable R22 = (Aperture) D22 = 1.10 R23 = 177.68 D23 = 3.91 N12 = 1.51977 ν12 = 52.4 R24 = -42.08 D24 = 0.20 R25 = 112.64 D25 = 2.72 N13 = 1.51977 ν13 = 52.4 R26 = -179.30 D26 = 0.20 R27 = 69.16 D27 = 6.04 N14 = 1.51977 ν14 = 52.4 R28 = -31.66 D28 = 1.30 N15 = 1.82017 ν15 = 46.6 R29 = -206.87 D29 = 32.00 R30 = 65.05 D30 = 5.69 N16 = 1.48915 ν16 = 70.2 R31 = -41.40 D31 = 0.20 R32 =- 82.84 D32 = 1.40 N17 = 1.83932 ν17 = 37.2 R33 = 30.46 D33 = 5.78 N18 = 1.50349 ν18 = 56.4 R34 = -300.07 D34 = 0.20 R35 = 63.06 D35 = 6.80 N19 = 1.48915 ν19 = 70.2 R36 = -25.89 D36 = 1.40 N20 = 1.83932 ν20 = 37.2 R37 = -57.77 D37 = 0.20 R38 = 36.55 D38 = 4.53 N21 = 1.51314 ν21 = 60.5 R39 = -607.99 D39 = 4.00 R40 = ∞ D40 = 30.00 N22 = 1.60718 ν22 = 38.0 R41 = ∞ D41 = 16.20 N23 = 1.51825 ν23 = 64.2 R42 = ∞

【0060】[0060]

【表3】 望遠端での3次収差係数各面分担値(数値実施例3) 軸上色収差 球面収差 面番号 無限遠 至近 無限遠 至近 1 -0.149 -0.124 -0.532 -0.053 2 -0.563 -0.732 -57.708 -108.482 3 0.083 0.110 30.951 60.323 4 0.002 -0.006 -0.005 -0.063 5 0.075 0.098 16.590 33.061 6 0.057 0.058 5.724 4.101 7 0.130 0.172 7.740 19.117 8 0.106 0.109 15.147 13.563 9 0.200 0.269 -4.761 -1.964 10 0.073 0.059 4.578 2.652 11 -0.066 -0.066 -8.751 -8.751 12 -0.082 -0.082 -1.137 -1.137 13 -0.044 -0.044 -3.084 -3.084 14 -0.076 -0.076 -13.151 -13.151 15 0.186 0.186 16.297 16.297 16 0.132 0.132 7.221 7.221 17 -0.073 -0.073 -14.200 -14.200 18 -0.020 -0.020 -0.318 -0.318 19 -0.042 -0.042 -0.823 -0.823 20 0.149 0.149 1.897 1.897 21 -0.100 -0.100 -4.002 -4.002 22 0.000 0.000 0.000 0.000 23 0.045 0.045 6.846 6.846 24 0.018 0.018 -0.073 -0.073 25 0.030 0.030 1.540 1.540 26 0.003 0.003 -0.001 -0.001 27 0.028 0.028 0.833 0.833 28 -0.038 -0.038 -4.097 -4.097 29 0.007 0.007 0.000 0.000 30 0.019 0.019 0.664 0.664 31 0.047 0.047 13.659 13.659 32 -0.093 -0.093 -7.109 -7.109 33 -0.084 -0.084 -4.957 -4.957 34 0.002 0.002 -0.000 -0.000 35 0.019 0.019 0.639 0.639 36 -0.121 -0.121 -9.366 -9.366 37 0.074 0.074 2.791 2.791 38 0.025 0.025 0.324 0.324 39 0.029 0.029 3.230 3.230 40 -0.045 -0.045 -2.709 -2.709 41 0.011 0.011 0.103 0.103 42 0.005 0.005 0.549 0.549 合計 -0.036 -0.039 0.541 5.072 (数値実施例4) F= 14.0 FNO=1:2.45〜4.2 2ω= 42.9°〜1.0 ° R 1= 412.92 D 1= 5.50 N 1=1.85649 ν 1= 32.3 R 2= 185.82 D 2= 0.25 R 3= 185.28 D 3=19.08 N 2=1.43985 ν 2= 95.0 R 4=-3890.59 D 4= 9.93 R 5= 210.59 D 5=14.55 N 3=1.43985 ν 3= 95.0 R 6= 4882.30 D 6= 0.20 R 7= 189.41 D 7=12.65 N 4=1.45720 ν 4= 90.3 R 8= 849.12 D 8= 0.20 R 9= 184.77 D 9= 9.56 N 5=1.49845 ν 5= 81.6 R10= 450.59 D10=可変 R11= 1978.17 D11= 2.00 N 6=1.82017 ν 6= 46.6 R12= 61.00 D12= 4.30 R13= -244.81 D13= 1.80 N 7=1.77621 ν 7= 49.6 R14= 49.97 D14= 7.53 R15= -56.56 D15= 1.80 N 8=1.82017 ν 8= 46.6 R16= 48.78 D16= 7.71 N 9=1.93306 ν 9= 21.3 R17= -227.11 D17=可変 R18= 1717.21 D18= 6.39 N10=1.49845 ν10= 81.6 R19= -106.26 D19= 0.30 R20= 200.29 D20= 2.50 N11=1.65223 ν11= 33.8 R21= 72.78 D21=12.98 N12=1.59143 ν12= 61.2 R22= -125.34 D22= 0.20 R23= 107.54 D23=13.87 N13=1.62032 ν13= 63.4 R24= -71.24 D24= 2.50 N14=1.85501 ν14= 23.9 R25= -196.04 D25= 0.20 R26= 124.29 D26= 3.50 N15=1.48915 ν15= 70.2 R27= 221.46 D27=可変 R28=(絞り) D28= 2.89 R29= -54.75 D29= 1.80 N16=1.79013 ν16= 44.2 R30= 37.11 D30= 4.93 N17=1.81265 ν17= 25.4 R31= 202.88 D31= 6.91 R32= -53.04 D32= 1.60 N18=1.73234 ν18= 54.7 R33= 34.16 D33= 7.84 N19=1.59911 ν19= 39.2 R34= -35.88 D34=20.00 R35= 365.53 D35= 4.61 N20=1.48915 ν20= 70.2 R36= -35.90 D36= 0.20 R37= -61.03 D37= 2.20 N21=1.79013 ν21= 44.2 R38= 34.15 D38= 5.94 N22=1.50349 ν22= 56.4 R39= -46.65 D39= 1.10 R40= 556.89 D40= 4.36 N23=1.55099 ν23= 45.8 R41= -46.17 D41= 2.20 N24=1.81265 ν24= 25.4 R42= -177.20 D42= 0.20 R43=-2240.85 D43= 2.70 N25=1.51977 ν25= 52.4 R44= -64.85 D44= 5.00 R45= ∞ D45=50.00 N26=1.51825 ν26= 64.2 R46= ∞[Table 3] Third-order aberration coefficient at the telephoto end Surface-sharing value (Numerical example 3) Axial chromatic aberration Spherical aberration Surface number Infinity close-up Infinity close-up 1 -0.149 -0.124 -0.532 -0.053 2 -0.563 -0.732 -57.708 -108.482 3 0.083 0.110 30.951 60.323 4 0.002 -0.006 -0.005 -0.063 5 0.075 0.098 16.590 33.061 6 0.057 0.058 5.724 4.101 7 0.130 0.172 7.740 19.117 8 0.106 0.109 15.147 13.563 9 0.200 0.269 -4.761 -1.964 10 0.073 0.059 4.578 2.652 11 -0.066 -0.066- 8.751 -8.751 12 -0.082 -0.082 -1.137 -1.137 13 -0.044 -0.044 -3.084 -3.084 14 -0.076 -0.076 -13.151 -13.151 15 0.186 0.186 16.297 16.297 16 0.132 0.132 7.221 7.221 17 -0.073 -0.073 -14.200 -14.200 18 -0.020 -0.020 -0.318 -0.318 19 -0.042 -0.042 -0.823 -0.823 20 0.149 0.149 1.897 1.897 21 -0.100 -0.100 -4.002 -4.002 22 0.000 0.000 0.000 0.000 23 0.045 0.045 6.846 6.846 24 0.018 0.018 -0.073 -0.073 25 0.030 0.030 1.540 1.540 26 0.003 0.003 -0.001 -0.001 27 0.028 0.028 0.833 0.833 28 -0.038 -0.038 -4.097 -4.097 29 0.007 0.007 0.000 0.000 30 0.019 0. 019 0.664 0.664 31 0.047 0.047 13.659 13.659 32 -0.093 -0.093 -7.109 -7.109 33 -0.084 -0.084 -4.957 -4.957 34 0.002 0.002 -0.000 -0.000 35 0.019 0.019 0.639 0.639 36 -0.121 -0.121 -9.366 -9.366 37 0.074 0.074 2.791 2.791 38 0.025 0.025 0.324 0.324 39 0.029 0.029 3.230 3.230 40 -0.045 -0.045 -2.709 -2.709 41 0.011 0.011 0.103 0.103 42 0.005 0.005 0.549 0.549 Total -0.036 -0.039 0.541 5.072 (Numerical Example 4) F = 14.0 FNO = 1 : 2.45 ~ 4.2 2 ω = 42.9 ° ~ 1.0 ° R 1 = 412.92 D 1 = 5.50 N 1 = 1.85649 ν 1 = 32.3 R 2 = 185.82 D 2 = 0.25 R 3 = 185.28 D 3 = 19.08 N 2 = 1.43985 ν 2 = 95.0 R 4 = -3890.59 D 4 = 9.93 R 5 = 210.59 D 5 = 14.55 N 3 = 1.43985 ν 3 = 95.0 R 6 = 4882.30 D 6 = 0.20 R 7 = 189.41 D 7 = 12.65 N 4 = 1.45720 ν 4 = 90.3 R 8 = 849.12 D 8 = 0.20 R 9 = 184.77 D 9 = 9.56 N 5 = 1.49845 ν 5 = 81.6 R10 = 450.59 D10 = Variable R11 = 1978.17 D11 = 2.00 N 6 = 1.82017 ν 6 = 46.6 R12 = 61.00 D12 = 4.30 R13 = -244.81 D13 = 1.80 N 7 = 1.77621 ν 7 = 49.6 R14 = 49.97 D14 = 7.53 R15 = -56.56 D15 = 1.80 N 8 = 1.82017 ν 8 = 46.6 R16 = 48.78 D16 = 7.7 1 N 9 = 1.93306 ν 9 = 21.3 R17 = -227.11 D17 = Variable R18 = 1717.21 D18 = 6.39 N10 = 1.49845 ν10 = 81.6 R19 = -106.26 D19 = 0.30 R20 = 200.29 D20 = 2.50 N11 = 1.65223 ν11 = 33.8 R21 = 72.78 D21 = 12.98 N12 = 1.59143 ν12 = 61.2 R22 = -125.34 D22 = 0.20 R23 = 107.54 D23 = 13.87 N13 = 1.62032 ν13 = 63.4 R24 = -71.24 D24 = 2.50 N14 = 1.85501 ν14 = 23.9 R25 = -196.04 D25 = 0.20 R26 = 124.29 D26 = 3.50 N15 = 1.48915 ν15 = 70.2 R27 = 221.46 D27 = Variable R28 = (Aperture) D28 = 2.89 R29 = -54.75 D29 = 1.80 N16 = 1.79013 ν16 = 44.2 R30 = 37.11 D30 = 4.93 N17 = 1.81265 ν17 = 25.4 R31 = 202.88 D31 = 6.91 R32 = -53.04 D32 = 1.60 N18 = 1.73234 ν18 = 54.7 R33 = 34.16 D33 = 7.84 N19 = 1.59911 ν19 = 39.2 R34 = -35.88 D34 = 20.00 R35 = 365.53 D35 = 4.61 N20 = 1.48915 ν20 = 70.2 R36 = -35.90 D36 = 0.20 R37 = -61.03 D37 = 2.20 N21 = 1.79013 ν21 = 44.2 R38 = 34.15 D38 = 5.94 N22 = 1.50349 ν22 = 56.4 R39 = -46.65 D39 = 1.10 R40 = 556.89 D40 = 4.36 N23 = 1.55099 ν23 = 45.8 R41 = -46.17 D41 = 2.20 N24 = 1.81265 ν24 = 25.4 R42 = -177.20 D42 = 0.20 R43 = -2240.85 D43 = 2.70 N25 = 1.51977 ν25 = 52.4 R44 = -64.85 D44 = 5.00 R45 = ∞ D45 = 50.00 N26 = 1.51825 ν26 = 64.2 R46 = ∞

【0061】[0061]

【表4】 非球面形状 参照球面 R=124.297 非球面係数 A=B=C=E=0 D=5.99704×10-14 望遠端での3次収差係数各面分担値(数値実施例4) 軸上色収差 球面収差 面番号 無限遠 至近 無限遠 至近 1 0.990 1.200 36.300 69.827 2 -3.192 -3.612 -1960.567 -2661.373 3 0.674 0.763 1544.973 2088.964 4 0.019 -0.003 0.018 -0.001 5 0.409 0.475 237.855 364.404 6 0.148 0.139 30.266 22.897 7 0.289 0.347 7.323 31.451 8 0.235 0.235 125.596 115.001 9 0.129 0.176 -15.177 -23.649 10 0.329 0.336 262.290 256.185 11 -0.321 -0.321 -241.207 -241.207 12 -0.076 -0.076 2.940 2.940 13 -0.170 -0.170 -44.639 -44.639 14 -0.300 -0.300 -160.407 -160.407 15 -0.143 -0.143 1.602 1.602 16 1.260 1.260 131.823 131.823 17 -0.368 -0.368 -26.757 -26.757 18 0.096 0.096 58.123 58.123 19 0.016 0.016 -0.451 -0.451 20 0.296 0.296 47.621 47.621 21 -0.331 -0.331 -17.547 -17.547 22 0.103 0.103 7.740 7.740 23 0.119 0.119 12.091 12.091 24 -0.831 -0.831 -65.869 -65.869 25 0.493 0.493 49.542 49.542 26 0.007 0.007 -0.083 -0.083 27 0.039 0.039 4.135 4.135 28 0.000 0.000 0.000 0.000 29 -0.130 -0.130 -45.232 -45.232 30 0.111 0.111 0.286 0.286 31 -0.002 -0.002 0.000 0.000 32 -0.050 -0.050 -4.651 -4.651 33 0.037 0.037 -8.489 -8.489 34 0.103 0.103 14.155 14.155 35 -0.002 -0.002 -0.009 -0.009 36 0.056 0.056 36.830 36.830 37 -0.095 -0.095 -21.901 -21.901 38 -0.048 -0.048 -5.136 -5.136 39 0.047 0.047 8.852 8.852 40 -0.015 -0.015 -0.279 -0.279 41 -0.115 -0.115 -4.543 -4.543 42 0.068 0.068 1.513 1.513 43 -0.015 -0.015 -0.461 -0.461 44 0.049 0.049 10.579 10.579 45 -0.019 -0.019 -2.062 -2.062 46 0.006 0.006 0.731 0.731 合計 -0.093 -0.068 7.720 2.547[Table 4] Aspherical shape Reference spherical surface R = 124.297 Aspherical surface coefficient A = B = C = E = 0 D = 5.99704 × 10 −14 Third-order aberration coefficient at telephoto end Surface sharing value (Numerical example 4) Axial chromatic aberration Spherical aberration Face number Infinity Near infinity Near infinity 1 0.990 1.200 36.300 69.827 2 -3.192 -3.612 -1960.567 -2661.373 3 0.674 0.763 1544.973 2088.964 4 0.019 -0.003 0.018 -0.001 5 0.409 0.475 237.855 364.404 6 0.148 0.139 30.266 22.897 7 0.289 8347 7.323 31.451 0.235 0.235 125.596 115.001 9 0.129 0.176 -15.177 -23.649 10 0.329 0.336 262.290 256.185 11 -0.321 -0.321 -241.207 -241.207 12 -0.076 -0.076 2.940 2.940 13 -0.170 -0.170 -44.639 -44.639 14 -0.300 -0.300 -160.407 -160.407 15 -0.143 -0.143 1.602 1.602 16 1.260 1.260 131.823 131.823 17 -0.368 -0.368 -26.757 -26.757 18 0.096 0.096 58.123 58.123 19 0.016 0.016 -0.451 -0.451 20 0.296 0.296 47.621 47.621 21 -0.331 -0.331 -17.547 -17.547 22 0.103 0.103 7.740 7.740 23 0.119 0.119 12.091 12.091 24 -0.831 -0.831 -65.869 -65.869 25 0.493 0.493 49.542 49.542 26 0.007 0.007 -0.083 -0.083 27 0.039 0.039 4.135 4.135 28 0.000 0.000 0.000 0.000 29 -0.130 -0.130 -45.232 -45.232 30 0.111 0.111 0.286 0.286 31 -0.002 -0.002 0.000 0.000 32 -0.050 -0.050 -4.651 -4.651 33 0.037 0.037 -8.489 -8.489 34 0.103 0.103 14.155 14.155 35 -0.002 -0.002 -0.009 -0.009 36 0.056 0.056 36.830 36.830 37 -0.095 -0.095 -21.901 -21.901 38 -0.048 -0.048 -5.136 -5.136 39 0.047 0.047 8.852 8.852 40 -0.015 -0.015- 0.279 -0.279 41 -0.115 -0.115 -4.543 -4.543 42 0.068 0.068 1.513 1.513 43 -0.015 -0.015 -0.461 -0.461 44 0.049 0.049 10.579 10.579 45 -0.019 -0.019 -2.062 -2.062 46 0.006 0.006 0.731 0.731 Total -0.093 -0.068 7.720 2.547

【0062】[0062]

【表5】 次に本発明の各数値実施例の特徴について説明する。[Table 5] Next, features of each numerical example of the present invention will be described.

【0063】図1に示す数値実施例1は15倍を越える
ズーム比を有し、R1〜R8は前玉レンズ群F(フォー
カス群F)である。このうちR1〜R4はズーミング、
フォーカスに際して固定であり全体で負のパワー(屈折
力)を有するフォーカス固定群F11である。R5〜R
8はフォーカス移動群F12で正のパワーを有する。R
1〜R8によりバリエータVに対する物点を結ぶ作用を
有する前玉レンズ群Fの作用をなし、前玉レンズ群F全
体で正のパワーを有する。
Numerical Embodiment 1 shown in FIG. 1 has a zoom ratio of more than 15 times, and R1 to R8 are the front lens group F (focus group F). Of these, R1-R4 are zooming,
It is a fixed focus group F11 that is fixed during focusing and has a negative power (refractive power) as a whole. R5-R
The focus moving group F12 has a positive power. R
1 to R8 function as the front lens group F having the function of connecting the object points to the variator V, and the whole front lens group F has a positive power.

【0064】R9〜R15は主に変倍に寄与し、ワイド
からテレへの変倍に際し、像面側へ単調に移動し、途中
で結像倍率−1倍(等倍)を通過するバリエータVであ
る。R16〜R22はコンペンセータCで、主に変倍に
伴う像点補正の作用を有し、かつ変倍作用をも有する。
コンペンセータCは正のパワーを有し、ワイドからテレ
への変倍に際し、広角端基準位置から物体側へ単調に移
動する。SP(R23)は絞りである。
R9 to R15 mainly contribute to zooming, and when zooming from wide to tele, the variator V monotonously moves to the image plane side and passes the imaging magnification of -1 (equal magnification) on the way. Is. R16 to R22 are compensators C, which mainly have an image point correcting action associated with zooming and also have a zooming action.
The compensator C has a positive power, and monotonously moves from the wide-angle end reference position to the object side during zooming from wide to tele. SP (R23) is a diaphragm.

【0065】R24〜R37は結像作用を有するリレー
群Rであり、R38〜R39は色分解プリズムと等価な
ガラスブロックである。
R24 to R37 are a relay group R having an image forming action, and R38 to R39 are glass blocks equivalent to color separation prisms.

【0066】大口径化の指標として前玉レンズ群のFナ
ンバーをFN1=f1(fT/FNT)と定義したと
き、本実施例ではFN1=1.416である。又、小型
化の指標として前玉レンズ群のパワー分担をf1/fT
とすれば、本実施例では0.785となる。
When the F number of the front lens group is defined as FN1 = f1 (fT / FNT) as an index for increasing the aperture, FN1 = 1.416 in this embodiment. In addition, the power distribution of the front lens group is f1 / fT as an index of downsizing.
Then, in this embodiment, it becomes 0.785.

【0067】これらの大口径、パワー分担に対し前玉レ
ンズ群では球面収差や軸上色収差の補正の為にフォーカ
ス固定群に1つの負レンズと1つの正レンズを配置し、
フォーカス移動群に2つの正レンズを用いて分担させて
補正している。
For the large aperture and power sharing, the front lens group has one negative lens and one positive lens in the fixed focus group in order to correct spherical aberration and axial chromatic aberration.
Two positive lenses are used by the focus moving group to perform correction.

【0068】一般に前玉レンズ群Fはそのレンズ構成が
できるだけシンプルでブロックの厚みが小さい方がズー
ム全系の小型や駆動系の省電力化等に好ましい。この
為、前玉レンズ群Fはできるだけレンズ枚数を少なくす
ることが望まれる。
In general, it is preferable that the lens configuration of the front lens group F be as simple as possible and that the block thickness be small in order to reduce the size of the entire zoom system and to save power in the drive system. For this reason, it is desirable to reduce the number of lenses in the front lens group F as much as possible.

【0069】これに対し、前述のように前玉レンズ群の
FナンバーFN1は非常に明るいものとなり、加えて前
玉のパワー分担も強いものとなるため、ズーミング、フ
ォーカスによる球面収差、軸上色収差等を補正すること
が難しくなってくる。
On the other hand, as described above, the F number FN1 of the front lens group becomes extremely bright, and the power distribution of the front lens is also strong, so that spherical aberration due to zooming, focusing, and axial chromatic aberration. It will be difficult to correct such problems.

【0070】そこで本実施例ではフォーカス固定群の第
11レンズを材質の屈折率が非常に高い負レンズを用
い、同時にフォーカス固定群の第12レンズを材質のア
ッベ数が非常に大きい正レンズを用いることにより、球
面収差と軸上色収差の発生を抑えている。この時フォー
カス固定群の材質のアッベ数の差はΔνX=59.7で
ある。
Therefore, in this embodiment, a negative lens having a very high refractive index is used as the eleventh lens of the focus fixed group, and a positive lens having a very high Abbe number is used as the twelfth lens of the focus fixed group. This suppresses the occurrence of spherical aberration and axial chromatic aberration. At this time, the difference between the Abbe numbers of the materials of the focus fixing group is ΔνX = 59.7.

【0071】この時のフォーカス固定群とフォーカス移
動群の分担値は望遠端球面収差(フォーカス全域にて) −0.853≦S1/S2≦−0.783 色消し分担 EF/EM=−0.979 となっている。
At this time, the assigned values of the fixed focus group and the focused movement group are the spherical aberration at the telephoto end (in the entire focus area) −0.853 ≦ S1 / S2 ≦ −0.783 Achromatic contribution EF / EM = −0. It is 979.

【0072】図2に示す数値実施例2は14倍を越える
ズーム比を有し、R1〜R10は前玉レンズ群F(フォ
ーカス群F)である。このうちR1〜R6はズーミン
グ、フォーカスに際して固定であり、全体で正のパワー
(屈折力)を有するフォーカス固定群F11であり、R
7〜R10はフォーカス移動群F12で正のパワーを有
する。R1〜R10によりバリエータVに対する物点を
結ぶ作用を有する前玉レンズ群Fの作用をなし、前玉レ
ンズ群F全体で正のパワーを有する。
Numerical embodiment 2 shown in FIG. 2 has a zoom ratio of more than 14 times, and R1 to R10 are the front lens group F (focus group F). Of these, R1 to R6 are fixed during zooming and focusing, and are a fixed focus group F11 having a positive power (refractive power) as a whole.
7 to R10 have positive power in the focus movement group F12. The front lens group F having the function of connecting the object points to the variator V by R1 to R10 functions, and the front lens group F as a whole has a positive power.

【0073】R11〜R18は主に変倍に寄与し、ワイ
ドからテレへの変倍に際し像面側へ単調に移動し、途中
で結像倍率−1倍(等倍)を通過するバリエータVであ
る。R19〜R21はコンペンセータで、主に変倍に伴
う像点補正の作用を有するコンペンセータCは負のパワ
ーを有し、ワイドからテレへの変倍に際し広角端基準位
置から物体側へ移動し、ある焦点距離より像側へ移動
し、望遠端では広角端基準位置よりも像側に存在する。
SP(R22)は絞りである。
R11 to R18 mainly contribute to zooming, and are a variator V that moves monotonically toward the image plane side when zooming from wide to tele, and passes an imaging magnification of -1 (one-time magnification) on the way. is there. R19 to R21 are compensators, and a compensator C that mainly has an image point correction action associated with zooming has negative power and moves from the wide-angle end reference position to the object side during zooming from wide to tele. It moves to the image side from the focal length, and exists on the image side of the wide-angle end reference position at the telephoto end.
SP (R22) is a diaphragm.

【0074】R23〜R39は結像作用を有するリレー
群Rであり、R40〜R42は色分解プリズムと等価な
ガラスブロックである。
R23 to R39 are a relay group R having an image forming action, and R40 to R42 are glass blocks equivalent to color separation prisms.

【0075】数値実施例1に比べてズーム比は14倍と
少ないながら、広角端の画角2ω=62.9°を達成し
ている。
Although the zoom ratio is as small as 14 times as compared with Numerical Embodiment 1, the angle of view 2ω = 62.9 ° at the wide-angle end is achieved.

【0076】この広角化を達成するためには歪曲収差や
倍率色収差等、画角に大きく影響される諸収差を良好に
補正する必要がある。又、前玉FナンバーがFN1=
1.110と非常に明るいものとなっている。
In order to achieve this wide angle, it is necessary to satisfactorily correct various aberrations such as distortion and lateral chromatic aberration that are greatly affected by the angle of view. Also, the front lens F number is FN1 =
It is extremely bright with 1.110.

【0077】そこで本実施例では、フォーカス固定群を
1つの負レンズと2つの正レンズとにより構成してい
る。しかも負レンズと正レンズ2枚の材質のアッベ数の
差ΔνXを67.5と非常に大きくすることにより、広
角にもかかわらず良好な色収差補正を行なっている。又
フォーカス移動群においても、2つの正レンズのうち像
面側の正レンズの材質の屈折率を非常に高いものとする
ことにより、球面収差や歪曲収差を良好に補正しながら
も色収差補正に寄与するような光学配置としている。
Therefore, in this embodiment, the fixed focus group is composed of one negative lens and two positive lenses. Moreover, by making the difference ΔνX between the Abbe numbers of the two negative lens materials and the positive lens material very large at 67.5, good chromatic aberration correction is achieved despite the wide angle. Also in the focus movement group, by making the refractive index of the material of the positive lens on the image side of the two positive lenses extremely high, it contributes to correction of chromatic aberration while satisfactorily correcting spherical aberration and distortion. The optical arrangement is as follows.

【0078】図3の数値実施例3は数値実施例2に比べ
て略同じレンズ構成でありながら、パワー配置の適切な
選択により、更に広角化、高変倍化を達成しており、ズ
ーム比は15倍である。
Numerical Embodiment 3 of FIG. 3 has substantially the same lens configuration as Numerical Embodiment 2 but achieves wider angle and higher zoom ratio by appropriate selection of power arrangement. Is 15 times.

【0079】しかも同時にコンパクト化を図るため、各
レンズ群のパワー分担を強くしバリエータVやコンペン
セータCの変倍の際の移動量を減らしている。
At the same time, in order to achieve compactness, the power distribution of each lens group is strengthened and the movement amount of the variator V and the compensator C during zooming is reduced.

【0080】この為、前玉Fナンバー、前玉パワー分担
はそれぞれFN1=1.054,f1/fT=0.50
2と厳しい条件になっている。加えて広角化のためにフ
ォーカス固定群のレトロ比を上げざるを得ない。この
為、フォーカス固定群とフォーカス移動群のパワー分担
はそれぞれ|f11/f1|=3.391,f12/f
1=0.875となっている。
Therefore, the front lens F number and the front lens power share are FN1 = 1.054 and f1 / fT = 0.50, respectively.
It is a severe condition of 2. In addition, the retro ratio of the fixed focus group must be increased in order to widen the angle. Therefore, the power allocations of the fixed focus group and the focused movement group are | f11 / f1 | = 3.391, f12 / f, respectively.
1 = 0.875.

【0081】そこで本実施例では、フォーカス固定群を
1つの負レンズと1つの正レンズにて構成し、フォーカ
ス移動群は3つの正レンズにて構成している。フォーカ
ス固定群は比較的屈折率が高くアッベ数が非常に小さい
負レンズとアッベ数が非常に大きい正レンズとにより構
成し、ΔνXが70にも達する。この為、球面収差や軸
上色収差はもちろんのこと広角化による歪曲収差や倍率
色収差等も良好に補正している。又フォーカス移動群を
3つの正レンズにより構成していることにより、特にフ
ォーカスによる諸収差の変動を良好に抑えている。これ
はフォーカス移動群の設計の自由度を増やしたことによ
り、 (ニ)球面収差のみならず、他の非点収差等の変動補正
にも余裕ができるので光学性能のうち特に解像力を向上
させている (ホ)レンズエレメントの材質の選択の幅が広くなるの
で、特にアッベ数の非常に大きな正レンズを採用し、フ
ォーカス移動群の色消しを向上させて、色収差の変動を
減らし、映像の色にじみを削減している 等の効果を導出している。
Therefore, in this embodiment, the focus fixed group is composed of one negative lens and one positive lens, and the focus moving group is composed of three positive lenses. The fixed focus group is composed of a negative lens having a relatively high refractive index and a very small Abbe number and a positive lens having a very large Abbe number, and ΔνX reaches 70. Therefore, not only spherical aberration and axial chromatic aberration but also distortion aberration due to widening of the angle, lateral chromatic aberration, etc. are well corrected. Further, since the focus moving group is composed of three positive lenses, fluctuations of various aberrations due to focus are particularly well suppressed. This is because by increasing the degree of freedom in the design of the focus movement group, (d) not only spherical aberration but also correction for fluctuations in other astigmatism, etc. can be afforded, so that the resolving power of optical performance is particularly improved. (E) Since the range of selection of lens element materials is widened, a positive lens with a very large Abbe number is adopted to improve the achromatism of the focus moving group to reduce the variation of chromatic aberration and reduce the color of the image. Effects such as reducing bleeding are derived.

【0082】図4に示す数値実施例4は広角端の画角は
2ω=42.9°程度であるが、ズーム比が44倍もあ
り望遠端の画角は2ω=1.0°という非常に高倍率な
ズームレンズである。
In Numerical Embodiment 4 shown in FIG. 4, the angle of view at the wide-angle end is about 2ω = 42.9 °, but the zoom ratio is 44 times and the angle of view at the telephoto end is 2ω = 1.0 °. It is a high magnification zoom lens.

【0083】本実施例は望遠端の焦点距離が非常に長い
ので、前玉レンズ群のパワー分担がf1/fT=0.3
04と非常に厳しい条件になる。このことに加えて望遠
端焦点距離が長くなると球面収差の補正、及び軸上色収
差の補正が困難となってくる。
Since the focal length at the telephoto end is very long in this embodiment, the power sharing of the front lens group is f1 / fT = 0.3.
04 is a very severe condition. In addition to this, when the telephoto end focal length becomes long, it becomes difficult to correct spherical aberration and axial chromatic aberration.

【0084】そこで本実施例では、数値実施例3のよう
な広角ズームではないにもかかわらず、先ずフォーカス
移動群を3つの正レンズにて構成し、数値実施例3と同
様の効果を導出している。次にコンペンセータCのう
ち、R26面に非球面を施しており、特に望遠側の球面
収差を補正している。そして、フォーカス固定群はもと
より、フォーカス移動群においてもアッベ数が非常に大
きい材質の正レンズエレメントを配置することにより色
消しを向上させている。これらの手法により超長焦点の
望遠端においても高い光学性能を得られるように収差補
正を行なっている。
Therefore, in the present embodiment, although the wide-angle zoom as in the numerical embodiment 3 is not used, first, the focus moving group is composed of three positive lenses, and the same effect as the numerical embodiment 3 is derived. ing. Next, in the compensator C, the R26 surface is provided with an aspherical surface, and particularly spherical aberration on the telephoto side is corrected. The achromatism is improved by arranging the positive lens element made of a material having a very large Abbe number not only in the fixed focus group but also in the fixed focus group. Aberration correction is performed by these methods so that high optical performance can be obtained even at the telephoto end of ultra-long focus.

【0085】この時のフォーカス固定群とフォーカス移
動群の球面収差分担は、 −0.656≦S1/S2≦−0.585 となっている。
At this time, the spherical aberration share of the focus fixed group and the focus moving group is −0.656 ≦ S1 / S2 ≦ −0.585.

【0086】又、色消し分担は、 EF=−5.148×10-5 EM= 6.169×10-5 と分担値が各々小さく、 EF/EM=−0.834 となっている。Further, the achromatization is EF = −5.148 × 10 −5 EM = 6.169 × 10 −5, which are small, and EF / EM = −0.834.

【0087】[0087]

【発明の効果】本発明によれば以上のように、所謂4群
ズームレンズにおいて、前玉群の屈折力やFナンバー値
等を適切に設定すると共に、前玉レンズ群をフォーカス
固定群とフォーカス移動群に分割し、レンズエレメント
の配置、屈折力分担、収差分担、色消し分担の所定の条
件を満足するような分割方式をとることにより、変倍及
びフォーカシングに伴う球面収差、色収差の変動を少な
くし、更に変倍に伴う非点収差、像面弯曲等の軸外収差
の変動をバランス良く補正し、全変倍範囲、全フォーカ
ス範囲にわたり高い光学性能を有した広角端のFナンバ
ー1.6程度、変倍比14〜44程度の大口径比で高変
倍比のズームレンズを達成することができる。
As described above, according to the present invention, in the so-called four-group zoom lens, the refractive power and F number value of the front lens group are appropriately set, and the front lens group is focused and fixed. By dividing the lens into movable groups and satisfying the prescribed conditions of lens element arrangement, refractive power sharing, aberration sharing, and achromatic sharing, fluctuations in spherical aberration and chromatic aberration due to zooming and focusing can be reduced. F-number at the wide-angle end, which has high optical performance over the entire zoom range and the entire focus range, by reducing the astigmatism and the variation of off-axis aberrations such as curvature of field due to zooming in a well-balanced manner. A zoom lens having a high zoom ratio can be achieved with a large aperture ratio of about 6 and a zoom ratio of about 14 to 44.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の数値実施例1の広角端のレンズ断面
FIG. 1 is a lens cross-sectional view at a wide-angle end according to Numerical Example 1 of the present invention.

【図2】 本発明の数値実施例2の広角端のレンズ断面
FIG. 2 is a lens cross-sectional view at a wide-angle end according to Numerical Example 2 of the present invention.

【図3】 本発明の数値実施例3の広角端のレンズ断面
FIG. 3 is a lens cross-sectional view at a wide-angle end according to Numerical Example 3 of the present invention.

【図4】 本発明の数値実施例4の広角端のレンズ断面
FIG. 4 is a lens cross-sectional view at a wide-angle end according to Numerical Example 4 of the present invention.

【図5】 本発明の数値実施例1の焦点距離f=11.
28の収差図
FIG. 5 shows a focal length f = 11.1.
28 aberration diagrams

【図6】 本発明の数値実施例1の焦点距離f=43.
77の収差図
FIG. 6 shows a focal length f = 43.
77 aberration diagram

【図7】 本発明の数値実施例1の焦点距離f=16
9.22の収差図
FIG. 7: Focal length f = 16 of Numerical Embodiment 1 of the present invention
Aberration diagram of 9.22

【図8】 本発明の数値実施例2の焦点距離f=9.0
の収差図
FIG. 8 is a focal length f of the numerical example 2 of the present invention f = 9.0.
Aberration diagram

【図9】 本発明の数値実施例2の焦点距離f=18.
0の収差図
FIG. 9 shows a focal length f = 18.
0 aberration diagram

【図10】 本発明の数値実施例2の焦点距離f=3
6.0の収差図
FIG. 10: Focal length f = 3 of Numerical Example 2 of the present invention
Aberration diagram of 6.0

【図11】 本発明の数値実施例2の焦点距離f=7
2.0の収差図
FIG. 11 is a focal length f = 7 of Numerical Embodiment 2 of the present invention.
Aberration diagram of 2.0

【図12】 本発明の数値実施例2の焦点距離f=12
6.0の収差図
FIG. 12 is a focal length f = 12 of Numerical Embodiment 2 of the present invention.
Aberration diagram of 6.0

【図13】 本発明の数値実施例3の焦点距離f=8.
5の収差図
FIG. 13 shows a focal length f = 8.
Aberration diagram of 5

【図14】 本発明の数値実施例3の焦点距離f=1
7.0の収差図
FIG. 14 is a focal length f = 1 of the numerical value example 3 according to the present invention.
Aberration diagram of 7.0

【図15】 本発明の数値実施例3の焦点距離f=3
4.0の収差図
FIG. 15 is a focal length f = 3 of Numerical Embodiment 3 of the present invention.
Aberration diagram of 4.0

【図16】 本発明の数値実施例3の焦点距離f=6
8.0の収差図
FIG. 16 is a focal length f = 6 of Numerical Embodiment 3 of the present invention.
Aberration diagram of 8.0

【図17】 本発明の数値実施例3の焦点距離f=12
7.5の収差図
FIG. 17: Focal length f = 12 of Numerical Example 3 of the present invention
Aberration diagram of 7.5

【図18】 本発明の数値実施例4の焦点距離f=1
4.0の収差図
FIG. 18 is a focal length f = 1 of the numerical value example 4 of the present invention.
Aberration diagram of 4.0

【図19】 本発明の数値実施例4の焦点距離f=2
7.29の収差図
FIG. 19 is a focal length f = 2 of Numerical Embodiment 4 of the present invention.
Aberration diagram of 7.29

【図20】 本発明の数値実施例4の焦点距離f=9
7.69の収差図
FIG. 20 shows a focal length f = 9 according to Numerical Embodiment 4 of the present invention.
Aberration diagram of 7.69

【図21】 本発明の数値実施例4の焦点距離f=35
9.24の収差図
FIG. 21 is a focal length f = 35 of Numerical Embodiment 4 of the present invention.
Aberration diagram of 9.24

【図22】 本発明の数値実施例4の焦点距離f=61
6.0の収差図
FIG. 22 shows a focal length f = 61 of Numerical Embodiment 4 of the present invention.
Aberration diagram of 6.0

【符号の説明】[Explanation of symbols]

F 第1群(フォーカス群) F11 フォーカス固定群 F12 フォーカス移動群 V 第2群(バリエータ) C 第3群(コンペンセータ) R 第4群(リレー群) G ガラスブロック SP 絞り e e線 g g線 ΔS サジタル像面 ΔM メリディオナル像面 F First group (focus group) F11 Focus fixed group F12 Focus moving group V Second group (variator) C Third group (compensator) R Fourth group (relay group) G Glass block SP Aperture ee line g g line ΔS Sagittal image plane ΔM Meridional image plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に正の屈折力の第1群、変
倍用の負の屈折力の第2群、変倍に伴う像面変動を補正
する第3群、そして変倍中固定の結像作用を有する第4
群とを有したズームレンズにおいて、該第1群は合焦時
固定の第11群と無限遠物体から至近物体への合焦時に
物体側へ移動する第12群とから成り、該第11群は少
なくとも1つの負レンズLN11と少なくとも1つの正
レンズLN12の独立した2つのレンズを有し、該第1
2群は少なくとも2つの正レンズを有しており、望遠端
における全系の焦点距離とFナンバーを各々fT,FN
T、該第1群の焦点距離とFナンバーを各々f1,FN
1、該第11群と第12群の焦点距離を各々f11,f
12、該負レンズLN11と正レンズLP12の材質の
アッベ数の差をΔνXとしたとき 1.04<FN1<1.55 但しFN1=f1/
(fT/FNT) 0.28<f1/fT<0.80 55<ΔνX 3<|f11/f1| 0.77<f12/f1<1.10 なる条件を満足することを特徴とするズームレンズ。
1. A first lens unit having a positive refracting power in order from the object side, a second lens unit having a negative refracting power for zooming, a third lens unit for correcting an image plane variation due to zooming, and a fixed lens during zooming. Having the image forming action of
In the zoom lens having a group, the first group is composed of an eleventh group that is fixed during focusing and a twelfth group that moves toward the object side when focusing on an object at infinity from a close-up object. Has two independent lenses, at least one negative lens LN11 and at least one positive lens LN12,
The second group has at least two positive lenses, and the focal length and F number of the entire system at the telephoto end are fT and FN, respectively.
T, the focal length of the first lens group and the F number are f1 and FN, respectively.
1. The focal lengths of the 11th and 12th lens units are f11 and f, respectively.
12. When the difference in Abbe number between the materials of the negative lens LN11 and the positive lens LP12 is ΔνX 1.04 <FN1 <1.55 where FN1 = f1 /
(FT / FNT) A zoom lens characterized by satisfying a condition of 0.28 <f1 / fT <0.80 55 <ΔνX 3 <| f11 / f1 | 0.77 <f12 / f1 <1.10.
【請求項2】 望遠端における前記第11群と第12群
の各レンズ面の球面収差の3次収差係数の総和を各々S
1,S2としたとき、フォーカス範囲全域において S1<0 0<S2 −0.90<S1/S2<−0.56 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
2. The sum of the third-order aberration coefficients of the spherical aberrations of the lens surfaces of the 11th and 12th lens groups at the telephoto end is S, respectively.
The zoom lens according to claim 1, wherein, when S1 and S2 are satisfied, a condition of S1 <0 <0 <S2−0.90 <S1 / S2 <−0.56 is satisfied in the entire focus range.
【請求項3】 前記第11群の第i番目のレンズの焦点
距離と材質のアッベ数を各々f11i,ν11i、前記
第12群の第i番目のレンズの焦点距離と材質のアッベ
数を各々f12i,ν12iとしたとき 【数1】 なる条件を満足することを特徴とする請求項1のズーム
レンズ。
3. The focal length and the Abbe number of the material of the i-th lens of the 11th group are f11i and ν11i, respectively, and the focal length and the Abbe number of the material of the i-th lens of the 12th group are f12i, respectively. , Ν12i [Equation 1] The zoom lens according to claim 1, wherein the following condition is satisfied.
JP05207080A 1993-02-17 1993-07-29 Zoom lens Expired - Lifetime JP3111766B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05207080A JP3111766B2 (en) 1993-07-29 1993-07-29 Zoom lens
US08/854,773 US5745300A (en) 1993-02-17 1997-05-12 Zoom lens of the inner focus type
US09/007,723 US5986820A (en) 1993-02-17 1998-01-15 Zoom lens of the inner focus type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05207080A JP3111766B2 (en) 1993-07-29 1993-07-29 Zoom lens

Publications (2)

Publication Number Publication Date
JPH0743611A true JPH0743611A (en) 1995-02-14
JP3111766B2 JP3111766B2 (en) 2000-11-27

Family

ID=16533871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05207080A Expired - Lifetime JP3111766B2 (en) 1993-02-17 1993-07-29 Zoom lens

Country Status (1)

Country Link
JP (1) JP3111766B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752605A2 (en) * 1995-06-22 1997-01-08 Canon Kabushiki Kaisha Zoom lens device with inner focusing method
US6002528A (en) * 1997-04-01 1999-12-14 Canon Kabushiki Kaisha Zoom lens
US6342974B1 (en) 1999-10-14 2002-01-29 Canon Kabushiki Kaisha Zoom lens and photographing apparatus
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2011186159A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
US8873156B2 (en) 2010-11-16 2014-10-28 Canon Kabushiki Kaisha Zoom lens and optical apparatus
US8913327B2 (en) 2010-03-08 2014-12-16 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
JP2017040769A (en) * 2015-08-19 2017-02-23 株式会社シグマ Zoom lens

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0752605A2 (en) * 1995-06-22 1997-01-08 Canon Kabushiki Kaisha Zoom lens device with inner focusing method
EP0752605A3 (en) * 1995-06-22 1998-06-17 Canon Kabushiki Kaisha Zoom lens device with inner focusing method
US6002528A (en) * 1997-04-01 1999-12-14 Canon Kabushiki Kaisha Zoom lens
US6342974B1 (en) 1999-10-14 2002-01-29 Canon Kabushiki Kaisha Zoom lens and photographing apparatus
JP2002182109A (en) * 2000-12-14 2002-06-26 Canon Inc Zoom lens and optical equipment using the same
JP2011186159A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
US8913327B2 (en) 2010-03-08 2014-12-16 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US9513471B2 (en) 2010-03-08 2016-12-06 Nikon Corporation Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US8873156B2 (en) 2010-11-16 2014-10-28 Canon Kabushiki Kaisha Zoom lens and optical apparatus
JP2017040769A (en) * 2015-08-19 2017-02-23 株式会社シグマ Zoom lens

Also Published As

Publication number Publication date
JP3111766B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
US7088522B2 (en) Zoom lens system
US5745300A (en) Zoom lens of the inner focus type
JP3376177B2 (en) Zoom lens
JP4902240B2 (en) Zoom lens and imaging apparatus having the same
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP4366932B2 (en) Zoom lens
JP4928165B2 (en) Zoom lens and imaging apparatus having the same
JPH02201310A (en) Zoom lens with internal focus lens
JPH075361A (en) Zoom lens
JPH06337354A (en) Zoom lens
JPH0850244A (en) Zoom lens having high variable power ratio
JP3495772B2 (en) Zoom lens and television camera having the same
JPH06242378A (en) Zoom lens
JP4525039B2 (en) Zoom lens
JP3111766B2 (en) Zoom lens
JP2001042217A (en) Zoom lens
JP4717399B2 (en) Zoom lens and imaging apparatus having the same
JPH1020194A (en) Zoom lens
JPH1048521A (en) Zoom lens
JP4242944B2 (en) Zoom lens and video camera using the same
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP3057921B2 (en) Zoom lens
JPH0713079A (en) Rear focus type telephoto type zoom lens
JPH06250086A (en) Zoom lens
JP2000089109A (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20070922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100922

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110922

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120922