JPH0743280A - Method and equipment of tankless pressure expansion test for pressure gas container - Google Patents

Method and equipment of tankless pressure expansion test for pressure gas container

Info

Publication number
JPH0743280A
JPH0743280A JP20732593A JP20732593A JPH0743280A JP H0743280 A JPH0743280 A JP H0743280A JP 20732593 A JP20732593 A JP 20732593A JP 20732593 A JP20732593 A JP 20732593A JP H0743280 A JPH0743280 A JP H0743280A
Authority
JP
Japan
Prior art keywords
water
gas container
pressure
water tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20732593A
Other languages
Japanese (ja)
Other versions
JPH07122609B2 (en
Inventor
Masayuki Machida
昌之 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACHIDA GIKEN KOGYO KK
Original Assignee
MACHIDA GIKEN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MACHIDA GIKEN KOGYO KK filed Critical MACHIDA GIKEN KOGYO KK
Priority to JP20732593A priority Critical patent/JPH07122609B2/en
Publication of JPH0743280A publication Critical patent/JPH0743280A/en
Publication of JPH07122609B2 publication Critical patent/JPH07122609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow highly accurate, highly reliable, quick measurement by eliminating the influence of residual air sumps in a gas container. CONSTITUTION:Upon finish of water supply into a gas container 2, a valve V8 is opened and a vacuum pump 26 functions to lower the pressure in the gas container 2 down to a predetermined level thus evacuating the line A2 again and injecting water therein to remove the residual air thoroughly. Subsequently, a pressure pump 3 functions to pressure feed water into the gas container 2 thus expanding the gas container 2. After sustaining that state for a predetermined time, pressurized water is returned through a return line LR back to a fixed quantity water tank 8. The weight reduction of water in the tank 8 corresponding to the volume of pressurized water is weighed by means of an electronic balance 9. A computer 92 operates a permanent increasing rate based on the total and permanent increasing volumes of pressurized water thus determining the pressure expansion performance of the gas container 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高圧ガス容器の耐圧膨張
試験方法及び装置に関し、特には非水槽式耐圧膨張試験
において、検査対象である高圧ガス容器内及びスピンド
ル部に残留する空気を完全に除去して、正確な測定を行
う非水槽式耐圧膨張試験の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-expansion test method and apparatus for a high-pressure gas container, and in particular, in a non-aqueous tank pressure-expansion test, the air remaining in the high-pressure gas container to be inspected and in the spindle portion is completely removed. The present invention relates to an improvement of the non-aqueous tank pressure proof expansion test which removes and makes an accurate measurement.

【0002】[0002]

【従来の技術】一般に液化石油ガスなどに用いられる高
圧ガス容器は、加圧状態における安全性を検査するため
に、製造時並びに所定の期間が経過するごとに耐圧膨張
試験を行なう必要がある。この耐圧膨張試験は次式
(1)によって求まる恒久増加率によって判定され、こ
の恒久増加率が法律によって規定される一定の値以下で
あれば合格とされる。これは、恒久増加率の小さい容器
ほどその復元力が大きく、耐圧性に優れているからであ
る。
2. Description of the Related Art Generally, a high-pressure gas container used for liquefied petroleum gas or the like needs to be subjected to a pressure expansion test at the time of manufacture and every time a predetermined period elapses in order to inspect the safety in a pressurized state. This pressure-resistant expansion test is judged by the permanent increase rate obtained by the following formula (1), and if the permanent increase rate is equal to or less than a certain value stipulated by law, it is considered to pass. This is because a container having a smaller permanent increase rate has a larger restoring force and is excellent in pressure resistance.

【0003】 [0003]

【0004】ここで全増加量(ΔV)は、加圧前のガス
容器の容量をV1、加圧後の容量をV2とすると、V2
1で表わされるガス容器の膨張による容量増加分であ
り、恒久増加量(Δv)は、ガス容器に対する加圧を解
除したときのガス容器の容量をV3としたときに、V3
1で表わされる、ガス容器の復元が不完全なことによ
る容量増加分である。
Here, the total increase amount (ΔV) is V 2 −, where V 1 is the capacity of the gas container before pressurization and V 2 is the capacity after pressurization.
V 1 is a capacity increase due to expansion of the gas container, and the permanent increase amount (Δv) is V 3 − when the capacity of the gas container when the pressure on the gas container is released is V 3.
The increase in capacity, which is represented by V 1 , due to incomplete restoration of the gas container.

【0005】かかる全増加量(ΔV)並びに恒久増加量
(Δv)を測定する試験装置としては、水槽式と非水槽
式とがある。このうち水槽式耐圧膨張試験装置は、検査
すべき高圧ガス容器を閉じられた水槽の水中に設置し、
当該高圧ガス容器内に外部から高圧水などを圧入して所
定の高圧とし、このときに生ずる高圧ガス容器の膨張に
よって水槽から排出される水の量を、水槽に連通して設
けたビュレットにおける水位を検出することによって測
定するものである。
As a test device for measuring the total increase amount (ΔV) and the permanent increase amount (Δv), there are a water tank type and a non-water tank type. Of these, the water tank pressure-resistant expansion tester is installed in the water of a water tank in which the high-pressure gas container to be inspected is closed,
The high-pressure water container is pressed into the high-pressure gas container from the outside to a predetermined high pressure, and the amount of water discharged from the water tank due to the expansion of the high-pressure gas container at this time is determined by the water level in the burette provided in communication with the water tank. Is measured by detecting.

【0006】しかしながら、このような水槽式耐圧膨張
試験装置は、原理的に水槽内に充満させておくべき水の
量に対して高圧ガス容器に生ずる膨張によって排出され
る水の量が相当に少なく、従って全体に対する信号の割
合が小さくて測定精度が低い欠点がある。更に水槽式耐
圧膨張試験装置では使用する水の量が多いため、環境温
度によって生ずる水の膨張・収縮による変動量が大き
い。この変動量は検出すべき高圧ガス容器の膨張によっ
て排出される水の量に対する誤差となるが、この誤差の
大きさが信号量、即ち検出すべき水の量を超えることも
稀ではない。特に水槽が大きい場合にこの欠点が著し
い。
However, in such a water tank type pressure-resistant expansion tester, the amount of water discharged due to expansion generated in the high-pressure gas container is considerably smaller than the amount of water to be filled in the water tank in principle. Therefore, there is a drawback that the ratio of the signal to the whole is small and the measurement accuracy is low. Further, since a large amount of water is used in the water tank pressure-resistant expansion tester, the amount of fluctuation due to expansion and contraction of water caused by environmental temperature is large. This fluctuation amount causes an error with respect to the amount of water discharged due to the expansion of the high-pressure gas container to be detected, but it is not rare that the magnitude of this error exceeds the signal amount, that is, the amount of water to be detected. This drawback is remarkable especially when the water tank is large.

【0007】以上の事情から、大型の高圧ガス容器につ
いては非水槽式の耐圧膨張試験装置が一般的である。し
かし従来の非水槽式耐圧膨張試験装置は、環境温度と水
の温度との差異によって水の体積が刻々と変化し、しか
もその体積の変動割合が大きいため、客観的に信頼性の
高い測定を行うことは困難であるという難点がある。
From the above circumstances, a non-water tank type pressure-expansion test device is generally used for a large high-pressure gas container. However, in the conventional non-aqueous tank pressure-resistant expansion tester, the volume of water changes momentarily due to the difference between the environmental temperature and the temperature of water, and the rate of change in the volume is large. The drawback is that it is difficult to do.

【0008】そこで本出願人は先に特願昭58−858
00号(特公昭63−52692号公報)により、図3
に示す非水槽式の耐圧膨張試験装置を提案した。この装
置は内部に所定量の水7を貯蔵する定量水タンク8と、
この定量水タンク8と検査すべきガス容器2とを加圧ポ
ンプ3を介して接続して成り、定量水タンク8内の水7
をガス容器2内へ加圧して供給する加圧ラインLpと、
この加圧ラインLpに形成され、加圧ポンプ3を迂回し
て短絡するバイパス6を介する他は加圧ラインLpを兼
用して、定量水タンク8とガス容器2とを接続する戻し
ラインLRと、定量水タンク8を載置し、定量水タンク
8内の水7の重量を測定する電子天秤9とを主要な構成
要素としている。
Therefore, the present applicant has previously filed Japanese Patent Application No. 58-858.
No. 00 (Japanese Patent Publication No. 63-52692), FIG.
We proposed a non-water tank type pressure-resistant expansion tester as shown in. This device has a fixed quantity water tank 8 for storing a predetermined amount of water 7 therein,
This quantitative water tank 8 and the gas container 2 to be inspected are connected via a pressurizing pump 3, and the water 7 in the quantitative water tank 8 is connected.
A pressurizing line Lp for pressurizing and supplying the gas into the gas container 2,
A return line LR which is formed in the pressurization line Lp and which also serves as the pressurization line Lp except for via the bypass 6 which bypasses the pressurization pump 3 and short-circuits, and which connects the fixed quantity water tank 8 and the gas container 2. The electronic balance 9 for mounting the quantitative water tank 8 and measuring the weight of the water 7 in the quantitative water tank 8 is a main component.

【0009】定量水タンク8には、その内部に貯蔵され
た水7の温度を測定するための温度計5及び一定水位を
保持するためのオーバーフローパイプ11が設けられ、
更に給水ラインLs1が配設されている。
The fixed quantity water tank 8 is provided with a thermometer 5 for measuring the temperature of the water 7 stored therein and an overflow pipe 11 for maintaining a constant water level.
Further, a water supply line Ls 1 is provided.

【0010】被検査ガス容器2は、その口金21に螺合
された取付具22にスピンドル23が固定され、取付具
22を介して加圧ラインLp(戻しラインLR)、空気
抜きラインLAおよび給水ラインLs2と接続されてい
る。4は圧力計、VRはバイパス6に設けた戻しバル
ブ、Vpは加圧ライン(戻しラインLR)に設けたバル
ブ、Vsは給水ラインLs2に設けた給水バルブであ
り、VAは空気抜きラインLAに設けた空気抜きバルブ
である。
In the gas container 2 to be inspected, a spindle 23 is fixed to an attachment tool 22 screwed to a base 21 thereof, and a pressurization line Lp (return line LR), an air vent line LA and a water supply line are attached via the attachment tool 22. It is connected to Ls 2 . 4 is a pressure gauge, VR is a return valve provided in the bypass 6, Vp is a valve provided in the pressurization line (return line LR), Vs is a water supply valve provided in the water supply line Ls 2 , and VA is an air vent line LA. It is an air vent valve provided.

【0011】電子天秤9は、マイクロコンピュータ91
を内蔵したデジタル表示型の天秤であり、コンピュータ
92と接続されている。また、加圧ラインLp(戻しラ
インLR)とガス容器2に取付けた取付具22との接続
位置は、加圧ラインLp(戻しラインLR)と定量水タ
ンク8との接続位置より若干低位置とされている。
The electronic balance 9 is a microcomputer 91.
It is a digital display type balance having a built-in, and is connected to a computer 92. The connection position between the pressurization line Lp (return line LR) and the fixture 22 attached to the gas container 2 is slightly lower than the connection position between the pressurization line Lp (return line LR) and the fixed quantity water tank 8. Has been done.

【0012】かかる耐圧膨張試験装置によれば、加圧ラ
インLp、バイパス6および加圧ポンプ3に給水が完了
した状態でバルブVpを閉じて空気抜きバルブVAおよ
び給水バルブVsを開き、給水ラインLs2よりガス容
器2内へ注水することによってガス容器2内の空気が空
気抜きラインLAより排出されるので、ここで給水バル
ブVsおよび空気抜きバルブVAを閉じると、定量水タ
ンク8内に所定量の水7が貯留される。次に加圧ライン
LpのバルブVpを開いて戻しバルブVRを閉じ、次い
で加圧ポンプ3を作動させてガス容器2内に水を圧入
し、この圧力によってガス容器2を膨張させ、該ガス容
器2が完全に膨張した状態において法律によって定めら
れている所定時間圧力Pを保持する。このときの圧入水
の量に相当する定量水タンク8内の水7の減少分の重量
ΔM1を電子天秤9によって秤量し、その結果をコンピ
ュータ92に入力して所定の演算式に基づいて全増加量
(ΔV)及び恒久増加量(Δv)を求めることができ
る。
According to the pressure-resistant expansion tester, the valve Vp is closed and the air vent valve VA and the water supply valve Vs are opened while the water supply to the pressurization line Lp, the bypass 6 and the pressurization pump 3 is completed, and the water supply line Ls 2 Since the air in the gas container 2 is discharged from the air bleeding line LA by injecting more water into the gas container 2, if the water supply valve Vs and the air bleeding valve VA are closed here, a predetermined amount of water 7 Is stored. Next, the valve Vp of the pressurizing line Lp is opened and the return valve VR is closed, and then the pressurizing pump 3 is operated to pressurize water into the gas container 2 and expand the gas container 2 by this pressure. The pressure P is maintained for a predetermined period of time as required by law in the state where 2 is fully expanded. The weight ΔM 1 of the reduced amount of the water 7 in the fixed quantity water tank 8 corresponding to the amount of press-fitted water at this time is weighed by the electronic balance 9, and the result is input to the computer 92 to be calculated based on a predetermined arithmetic expression. The amount of increase (ΔV) and the amount of permanent increase (Δv) can be obtained.

【0013】次に加圧ポンプ3の作動を停止して加圧状
態を解除すると共に、戻しバルブVRを開く。すると、
圧力の解除に伴ってガス容器2が復元し、圧入水が戻し
ラインLRを通って定量水タンク8内に逆流する。この
ときの定量水タンク8内の水7の増量分の重量ΔM2
電子天秤9によって秤量し、その結果をコンピュータ9
2に入力し、更に演算プログラム及び必要なデータを入
力することにより、自動的に恒久増加率を求めることが
できる。
Next, the operation of the pressurizing pump 3 is stopped to release the pressurizing state and the return valve VR is opened. Then,
The gas container 2 is restored along with the release of the pressure, and the press-fitted water flows back into the quantitative water tank 8 through the return line LR. At this time, the weight ΔM 2 of the increased amount of the water 7 in the quantitative water tank 8 is weighed by the electronic balance 9, and the result is calculated by the computer 9
The permanent increase rate can be automatically obtained by inputting the data in 2 and the calculation program and the necessary data.

【0014】[0014]

【発明が解決しようとする課題】このような高圧ガス容
器の非水槽式耐圧膨張試験装置によれば、電子天秤によ
って瞬間的に求めた定量水タンク内の水の減量分あるい
は増量分の重量と、この水の温度における密度とより水
の体積を算出しているため、時間の経過に伴って生ずる
熱膨張による水の体積変化に左右されず、しかも目視に
よる誤読あるいは測定者が異なることによる個人差など
が発生せず、客観的な試験結果を得ることができる上、
電子天秤を用いることによりデータを直接コンピュータ
に入力することができるので、データ処理の自動化が容
易に可能となるという利点がある。しかし検査を行う容
器内に環境温度等に起因する空気溜り等のエアが残留し
ていると、圧入水量の恒久増加量にばらつきが生じてし
まい、正確な測定結果が得られなくなるという新たな問
題点が生じる。
According to such a non-water tank type pressure-resistant expansion tester for a high-pressure gas container, the weight of the amount of water reduced or increased in the quantitative water tank instantaneously determined by an electronic balance and Since the volume of water is calculated from the density at the temperature of this water and the volume of water, it is not affected by the volume change of water due to thermal expansion that occurs over time, and it is not possible for individuals to make a mistaken visual reading or to have a different person making the measurement. There is no difference and you can get objective test results.
Since the data can be directly input to the computer by using the electronic balance, there is an advantage that the data processing can be easily automated. However, if air such as air pool due to environmental temperature etc. remains in the container to be inspected, there will be variations in the amount of permanent increase in the amount of water injected, which will result in inaccurate measurement results. Dots occur.

【0015】空気溜りができる場所は多々考えられる
が、例えばガス容器2のネックリングの内側溶接部分と
か、胴に対する鏡部絞り加工差込みの空間、内部洗浄が
完全でない時の油分の付着部分、ガス容器内に注水する
水に溶解している微量の空気、スピンドルとか各バルブ
内部、更には螺子切り部等が空気溜りが生じる原因とな
っている。
There are many places where air can be formed, for example, the inner welded portion of the neck ring of the gas container 2, the space for inserting the mirror portion into the barrel, the portion where oil is adhered when the internal cleaning is not complete, and the gas. A small amount of air dissolved in the water that is poured into the container, the inside of each valve such as the spindle, and the threaded portion are the causes of air accumulation.

【0016】図3に示した例でも空気抜きバルブVA及
び給水バルブVsを開いて給水ラインLs2よりガス容
器2内へ注水することにより、ガス容器2内の空気の大
部分が空気抜きラインLAより排出されるが、上記空気
溜りができる場所に生じた空気を完全に除くことは困難
であり、前記した測定誤差を招来してしまうことにな
る。
Also in the example shown in FIG. 3, most of the air in the gas container 2 is discharged from the air bleeding line LA by opening the air bleeding valve VA and the water supply valve Vs to inject water into the gas container 2 from the water supply line Ls 2. However, it is difficult to completely remove the air generated in the place where the air pool is formed, which causes the above-mentioned measurement error.

【0017】本発明は以上のような背景の下になされた
ものであって、前記特願昭58−85800号によって
提案した非水槽式の耐圧膨張試験装置を更に改良して、
環境温度等に起因する空気溜りの影響を受けずに高い精
度で信頼性の高い測定を迅速に行うことのできる高圧ガ
ス容器の非水槽式耐圧膨張試験機を提供することを目的
とするものである。
The present invention has been made under the background as described above, and further improves the non-aqueous tank type pressure-resistant expansion tester proposed by the above-mentioned Japanese Patent Application No. 58-85800.
It is an object of the present invention to provide a non-water tank type pressure-expansion tester for a high-pressure gas container that can quickly perform highly accurate and reliable measurements without being affected by air pools caused by environmental temperature. is there.

【0018】[0018]

【課題を解決するための手段】本発明は上記の目的を達
成するために、定量水タンク内の水を検査すべきガス容
器に圧入して膨張させ、この圧入水を定量水タンクに戻
した時の水の減少量からガス容器の耐圧膨張性能を検査
する非水槽式耐圧膨張試験方法において、前工程とし
て、ガス容器内への給水が完了した状態で空気抜き用の
バルブを開き、真空ポンプの作動によりガス容器内の圧
力を所定の圧力まで下げ、真空ポンプの作動を停止して
から再度空気抜き注水を行ってガス容器内に残留してい
る空気を完全に除去し、加圧ライン上の加圧ポンプを作
動させてガス容器内に水を圧入して該ガス容器を膨張さ
せ、所定時間保持後に戻しラインを介して圧入水を定量
水タンクに戻し、この時の圧入水の量に相当する定量水
タンク内の水の減少分の重量を電子天秤によって秤量
し、その結果をコンピュータに入力して、圧入水の全増
加量並びに恒久増加量から恒久増加率を演算して耐圧膨
張性能を判定するようにした高圧ガス容器の非水槽式耐
圧膨張試験方法及び装置を提供する。
In order to achieve the above-mentioned object, the present invention press-fits the water in the quantitative water tank into the gas container to be inspected and expands it, and returns the press-fitted water to the quantitative water tank. In the non-aqueous tank pressure expansion test method that inspects the pressure expansion performance of the gas container from the amount of water decrease at the time, as a previous step, open the air vent valve with the water supply in the gas container completed and open the vacuum pump. The operation lowers the pressure in the gas container to the specified pressure, stops the operation of the vacuum pump, and then performs air bleeding again to completely remove the air remaining in the gas container and apply the pressure on the pressurizing line. The pressure pump is operated to pressurize water into the gas container to expand the gas container, and after holding for a predetermined time, the press-fitted water is returned to the quantitative water tank through the return line, and corresponds to the amount of the press-fitted water at this time. Reduction of water in fixed quantity water tank The weight of the high pressure gas container is measured by an electronic balance, the result is input to a computer, and the permanent increase rate is calculated from the total increase amount of the injected water and the permanent increase amount to determine the pressure expansion performance. An aquarium pressure expansion test method and apparatus are provided.

【0019】上記ガス容器内から空気とともに吸引され
た水分は水分離器で空気と分離され、水分は該水分離器
の一端に付設された水抜きバルブから水抜きラインに放
流される。
Moisture sucked together with air from the gas container is separated from air by a water separator, and the water is discharged to a drain line from a drain valve attached to one end of the water separator.

【0020】[0020]

【作用】前工程として、一定量の水を定量水タンクに注
入し、加圧ライン及び加圧ポンプに給水が完了した状態
で、ガス容器の注水ラインから該ガス容器内へ注水し、
次にガス容器の空気抜き水抜きバルブを開いて真空ポン
プを駆動することにより、ガス容器内の圧力を所定の圧
力まで下げる。そして真空ポンプ側のバルブを閉じてか
ら真空ポンプの駆動を停止して、空気抜き注水ラインか
ら再度空気抜き注水を行うことにより、ガス容器の内部
及び各バルブ類の空気溜に残留している空気が完全に除
去される。ガス容器内から空気とともに吸引された水分
は、水分離器で空気と分離されて放流される。
[Operation] As a pre-process, a fixed amount of water is injected into the quantitative water tank, and water is injected into the gas container from the water injection line of the gas container with the pressure line and the pressure pump being completely supplied with water.
Next, the pressure inside the gas container is lowered to a predetermined pressure by opening the air draining water drain valve of the gas container and driving the vacuum pump. Then, after closing the valve on the vacuum pump side, stop driving the vacuum pump and perform air bleeding again from the air bleeding line, so that the air remaining in the gas container and the air reservoir of each valve is completely removed. Will be removed. The moisture sucked together with the air from the gas container is separated from the air by the water separator and discharged.

【0021】次に加圧ライン上の加圧ポンプを作動し
て、定量水タンク内の水をガス容器内に圧入し、この圧
力によってガス容器を膨張させて所定時間圧力を保持す
る。このときの圧入水の量に相当する定量水タンク内の
水の減少分の重量を電子天秤によって秤量し、その時の
注入温度とともにコンピュータに入力し、演算式に基づ
いて全増加量及び恒久増加量を演算し、恒久増加率を求
める。
Next, the pressurizing pump on the pressurizing line is operated to press-fit the water in the quantitative water tank into the gas container, and the pressure causes the gas container to expand to maintain the pressure for a predetermined time. The weight of the reduced amount of water in the fixed-quantity water tank corresponding to the amount of injected water at this time is weighed by an electronic balance, input to the computer together with the injection temperature at that time, and the total increase amount and permanent increase amount based on the calculation formula. Is calculated to obtain the permanent increase rate.

【0022】[0022]

【実施例】以下図面を参照して本発明にかかる高圧ガス
容器の非水槽式耐圧膨張試験方法及び装置の一実施例
を、前記従来の構成部分と同一の構成部分に同一の符号
を付して説明する。図1に示した構成において、2は検
査すべきガス容器、8は内部に所定量の水7が貯蔵され
た定量水タンクであり、この定量水タンク8とガス容器
2とが加圧ポンプ3を介して接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a non-water tank type pressure-resistant expansion test method and apparatus for a high-pressure gas container according to the present invention will be described below with reference to the drawings. Explain. In the configuration shown in FIG. 1, 2 is a gas container to be inspected, 8 is a quantitative water tank in which a predetermined amount of water 7 is stored, and the quantitative water tank 8 and the gas container 2 are the pressure pump 3 Connected through.

【0023】定量水タンク8には、給水バルブV1が付
設された給水ラインLs1が配備されている。尚、この
給水ラインLs1には空気抜き注水ラインA1が接続され
ている。9は上記定量水タンク8が載置されて該定量水
タンク8内の水7の重量を測定する電子天秤である。
The fixed quantity water tank 8 is provided with a water supply line Ls 1 provided with a water supply valve V 1 . An air bleeding water injection line A 1 is connected to the water supply line Ls 1 . Reference numeral 9 is an electronic balance on which the quantitative water tank 8 is placed and which measures the weight of the water 7 in the quantitative water tank 8.

【0024】電子天秤9はマイクロコンピュータを内蔵
したデジタル表示型の天秤であり、この電子天秤9はコ
ンピュータ92に接続されている。このコンピュータ9
2には定量水タンク8の注水温度93が入力され、更に
キーボード94から必要なデータがインプットされてお
り、後述する演算式に基づく演算結果がプリンター95
から出力される。
The electronic balance 9 is a digital display type balance having a microcomputer incorporated therein, and the electronic balance 9 is connected to a computer 92. This computer 9
The water injection temperature 93 of the quantitative water tank 8 is input to 2 and the necessary data is input from the keyboard 94, and the calculation result based on the calculation formula described later is displayed on the printer 95.
Is output from.

【0025】一方、Lpは上記定量水タンク8内の水7
をガス容器2内へ加圧して供給する加圧ラインであり、
この加圧ラインLpには、加圧ポンプ3を迂回して短絡
するバルブV10付きのバイパス6が配設されている。L
Rは定量水タンク8とガス容器2とを接続する戻しバル
ブV2が付設された戻しラインである。
On the other hand, Lp is the water 7 in the quantitative water tank 8.
Is a pressurizing line for pressurizing and supplying the gas into the gas container 2,
In the pressurization line Lp, a bypass 6 with a valve V 10 that bypasses the pressurization pump 3 and short-circuits is arranged. L
R is a return line provided with a return valve V 2 for connecting the fixed quantity water tank 8 and the gas container 2.

【0026】検査すべきガス容器2は、その口金21に
スピンドル23が螺合固定され、該スピンドル23に、
加減圧バルブV3が付設された前記加圧ラインLp(戻
しラインLR)と、圧力計バルブV4が付設された圧力
計24と、空気抜き注水バルブV5が付設された空気抜
き注水ラインA2と、空気抜き水抜きバルブV8及び空気
抜き注水圧力抜きバルブV9とが接続されている。
In the gas container 2 to be inspected, a spindle 23 is screwed and fixed to its base 21, and the spindle 23 is
The pressurization line Lp (return line LR) provided with a pressurization / depressurization valve V 3, the pressure gauge 24 provided with a pressure gauge valve V 4, and the air vent water injection line A 2 provided with an air vent water injection valve V 5. , An air vent water vent valve V 8 and an air vent water injection pressure vent valve V 9 are connected.

【0027】25は上記空気抜き水抜きバルブV8に連
結された水分離器であり、この水分離器25の一端は水
抜きバルブV6を介して水抜きラインA3に接続され、水
分離器25の他端はポンプ吸入バルブV7を介して真空
ポンプ26に連結されている。27は真空計、28は圧
力スイッチである。
Reference numeral 25 is a water separator connected to the air draining water drain valve V 8 and one end of this water separator 25 is connected to the water draining line A 3 via the water draining valve V 6 to provide a water separator. The other end of 25 is connected to a vacuum pump 26 via a pump suction valve V 7 . 27 is a vacuum gauge and 28 is a pressure switch.

【0028】かかる非水槽式耐圧膨張試験装置の作用を
以下に説明する。先ずガス容器2の全増加量(ΔV)並
びに恒久増加量(Δv)を以下の操作により求める。前
工程として、給水バルブV1を開いて、空気抜き注水ラ
インA1によって空気抜きが施された一定量の水を給水
ラインLs1から定量水タンク8に注入する。そして加
圧ラインLp、バイパス6および加圧ポンプ3に給水が
完了した状態で空気抜き注水圧力抜きバルブV9を閉じ
て空気抜き注水バルブV5を開き、空気抜き注水ライン
2よりガス容器2内へ注水する。
The operation of the non-aqueous tank pressure-resistant expansion tester will be described below. First, the total increase amount (ΔV) and the permanent increase amount (Δv) of the gas container 2 are obtained by the following operations. As pre-process wherein, by opening the water supply valve V 1, is injected into the quantitative water tank 8 a certain amount of water the air vent has been subjected by the venting injection line A 1 from the water supply line Ls 1. Then, in a state where water supply to the pressurizing line Lp, the bypass 6 and the pressurizing pump 3 is completed, the air vent water pouring pressure vent valve V 9 is closed and the air vent water pouring valve V 5 is opened to inject water into the gas container 2 from the air vent water pouring line A 2. To do.

【0029】次に加減圧バルブV3,上記バルブV5及び
水抜きバルブV6を閉じてから吸入バルブV7と空気抜き
水抜きバルブV8を開いて真空ポンプ26の駆動を開始
し、真空計27の監視下で圧力スイッチ28の作用によ
り、ガス容器2内の圧力を所定の圧力まで下げる。次に
上記バルブV8を閉じてから真空ポンプ26の駆動を停
止してバルブV5を開き、空気抜き注水ラインA2から再
度空気抜き注水を行う。このようにしてガス容器2の内
部とかスピンドル23及び各バルブ類の空気溜に残留し
ている空気を完全に除去して水で満たすことができる。
Next, after closing the pressurizing / depressurizing valve V 3 , the valve V 5 and the water draining valve V 6 , the suction valve V 7 and the air draining water draining valve V 8 are opened to start the driving of the vacuum pump 26 to start the vacuum gauge. Under the supervision of 27, the pressure switch 28 acts to reduce the pressure in the gas container 2 to a predetermined pressure. Next, the valve V 8 is closed, the driving of the vacuum pump 26 is stopped, the valve V 5 is opened, and the air bleeding water injection is performed again from the air bleeding water injection line A 2 . In this way, the air remaining in the gas container 2, the spindle 23 and the air reservoir of each valve can be completely removed and filled with water.

【0030】尚、ガス容器2内から空気とともに吸引さ
れた水分は水分離器25で空気と分離されるので、この
水分離器25の一端に付設された水抜きバルブV6を開
いて水抜きラインA3に放流する。この水分離器25の
内部は真空ポンプ26によって真空状態に保持されてい
るので、仮りにスピンドル23及びガス容器2内に50
ccの空気溜りが残存していても2〜3秒間で吸引する
ことができる。
Since the water sucked together with air from the gas container 2 is separated from the air in the water separator 25, the water drain valve V 6 attached to one end of the water separator 25 is opened to drain water. Discharge to line A 3 . Since the inside of the water separator 25 is maintained in a vacuum state by the vacuum pump 26, it is assumed that the water in the spindle 23 and the gas container 2 is 50%.
Even if the cc air pool remains, it can be sucked in 2 to 3 seconds.

【0031】次に上記バルブV5を閉じてから加減圧バ
ルブV3を開き、加圧ラインLp上の加圧ポンプ3を作
動させて定量水タンク8内の水7をガス容器2内に圧入
し、この圧力によってガス容器2を膨張させる。ガス容
器2が完全に膨張した状態において法律によって定めら
れている所定時間圧力Pを保持する。このときの圧入水
の量に相当する定量水タンク8内の水7の減少分の重量
ΔM1を電子天秤9によって秤量し、その時の注入温度
93とともにデータをコンピュータ92に入力する。
Next, after closing the valve V 5 and opening the pressurizing / depressurizing valve V 3 , the pressurizing pump 3 on the pressurizing line Lp is operated to press the water 7 in the quantitative water tank 8 into the gas container 2. Then, the gas container 2 is expanded by this pressure. The pressure P is maintained for a predetermined time specified by law in a state where the gas container 2 is completely expanded. The weight ΔM 1 of the reduced amount of the water 7 in the quantitative water tank 8 corresponding to the amount of press-fitted water at this time is weighed by the electronic balance 9, and the data is input to the computer 92 together with the injection temperature 93 at that time.

【0032】図2は定量水タンクにおける動作状態を示
す概要図であり、A′はガス容器2内に所定の圧力で圧
入した水量であって、前記(1)式における全増加量
(ΔV)に相当する。また、B′はガス容器2内に圧入
した水の内、戻しラインLRを介して戻らなかった水量
であり、前記恒久増加量(Δv)に相当する。ガス容器
2内に空気溜りが存在すると上記圧入水量A′が増加
し、かつ、加圧時の空気の溶解によって戻り量が少なく
なって上記B′の水量が増加する。
FIG. 2 is a schematic diagram showing the operating state of the quantitative water tank. A'is the amount of water injected into the gas container 2 at a predetermined pressure, which is the total increase amount (ΔV) in the above equation (1). Equivalent to. Further, B ′ is the amount of water that has not been returned through the return line LR in the water that has been press-fitted into the gas container 2, and corresponds to the permanent increase amount (Δv). The presence of an air pool in the gas container 2 increases the amount of press-fitted water A ′, and also reduces the amount of return due to the dissolution of air during pressurization, thus increasing the amount of water B ′.

【0033】一方、前記(1)式における全増加量(Δ
V)は、得られた圧入水量Aを用いて次式(2)によっ
て求められる。 V:ガス容器2の内容積(cc) P:耐圧試験における圧力(kg/cm2) A:耐圧試験圧力における圧入水量(cc) B:耐圧試験圧力Pにおける水圧ポンプから容器の入口
までの連結管に圧入された水量(容器以外への圧入水
量)(cc) βt:耐圧試験時の水の温度t度における圧縮係数 である。
On the other hand, the total increase amount (Δ
V) is calculated by the following equation (2) using the obtained amount A of injected water. V: Internal volume of gas container 2 (cc) P: Pressure in pressure resistance test (kg / cm 2 ) A: Amount of water injected at pressure resistance test pressure (cc) B: Connection from hydraulic pump at pressure resistance test pressure P to container inlet Amount of water pressed into pipe (amount of water pressed into other than container) (cc) βt: Compression coefficient at temperature t of water during pressure resistance test.

【0034】式(2)における圧入水量Aは試験温度に
おける水の密度をρとすると、次式(3)によって求め
られる。
The press-fitted water amount A in the equation (2) is obtained by the following equation (3), where ρ is the density of water at the test temperature.

【0035】恒久増加量(Δv)は試験温度における水
の密度をρとすると次式(4)によって求められる。
The permanent increase amount (Δv) is calculated by the following equation (4), where ρ is the density of water at the test temperature.

【0036】次に加圧ポンプ3の作動を停止して加圧状
態を解除することによりガス容器2が復元し、圧入水が
戻しラインLRを通って定量水タンク8内に逆流する。
このときの定量水タンク8内の水7の増量分の重量ΔM
2を電子天秤9によって秤量し、その結果をコンピュー
タ92に入力する。
Next, the operation of the pressurizing pump 3 is stopped to release the pressurizing state, whereby the gas container 2 is restored, and the press-fitted water flows back into the quantitative water tank 8 through the return line LR.
Weight ΔM of the increased amount of water 7 in the fixed quantity water tank 8 at this time
2 is weighed by the electronic balance 9, and the result is input to the computer 92.

【0037】そしてコンピュータ92に、式(1)〜式
(4)の演算プログラム及び必要なデータを入力するこ
とにより、自動的に恒久増加率を求めることができる。
Then, the permanent increase rate can be automatically obtained by inputting the arithmetic programs of equations (1) to (4) and necessary data to the computer 92.

【0038】[0038]

【発明の効果】以上詳細に説明したように、本発明にか
かる非水槽式耐圧膨張試験方法及び装置によれば、検査
すべきガス容器内へ注水してから真空ポンプの駆動によ
ってガス容器内の圧力を所定の圧力まで下げ、空気抜き
注水ラインから再度注水を行うことにより、ガス容器の
内部及び各バルブ類の空気溜に残留している空気を完全
に除去することができる。そして加圧ポンプを作動し
て、定量水タンク内の水をガス容器内に圧入し、この圧
力によってガス容器を膨張させて所定時間圧力を保持
し、このときの圧入水の量に相当する定量水タンク内の
水の減少分の重量を電子天秤によって秤量し、その時の
注入温度とともにコンピュータに入力して全増加量及び
恒久増加量を演算することによって恒久増加率を求める
ことができる。
As described in detail above, according to the non-aqueous tank pressure-resistant expansion test method and apparatus of the present invention, water is injected into the gas container to be inspected, and then the vacuum pump is driven to move the gas inside the gas container. By reducing the pressure to a predetermined pressure and re-injecting water from the air bleeding water injection line, the air remaining in the gas container and the air reservoir of each valve can be completely removed. Then, the pressurizing pump is operated to press-fit the water in the quantitative water tank into the gas container, expand the gas container by this pressure and maintain the pressure for a predetermined time, and the quantitative amount corresponding to the amount of the press-fitted water at this time. The permanent increase rate can be obtained by weighing the reduced amount of water in the water tank by an electronic balance and inputting it to the computer together with the injection temperature at that time to calculate the total increase amount and the permanent increase amount.

【0039】従って検査を行う容器内に環境温度等に起
因する空気溜りをほぼ完全に除くことができるので、圧
入水量のばらつきをなくして、高い精度で信頼性の高い
測定を迅速に行うことのできる高圧ガス容器の非水槽式
耐圧膨張試験機を提供することが出来る。
Therefore, since it is possible to almost completely eliminate the air pool due to the environmental temperature in the container to be inspected, it is possible to eliminate the variation in the amount of water to be injected and to quickly perform highly accurate and highly reliable measurement. It is possible to provide a non-aqueous tank pressure resistance expansion tester for a high-pressure gas container.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる非水槽式耐圧膨張試験装置を全
体的に示す概要図。
FIG. 1 is a schematic diagram generally showing a non-aqueous tank pressure proof expansion test apparatus according to the present invention.

【図2】本実施例における定量水タンクにおける動作状
態を示す概要図。
FIG. 2 is a schematic diagram showing an operating state of the quantitative water tank according to the present embodiment.

【図3】従来の非水槽式耐圧膨張試験装置を全体的に示
す概要図。
FIG. 3 is a schematic diagram generally showing a conventional non-aqueous tank pressure-resistant expansion test device.

【符号の説明】[Explanation of symbols]

2…ガス容器 3…加圧ポンプ 4…圧力計 6…バイパス 7…水 8…定量水タンク 9…電子天秤 21…口金 23…スピンドル 25…水分離器 26…真空ポンプ 27…真空計 28…圧力スイッチ 92…コンピュータ Lp…加圧ライン LR…戻しライン A1,A2…空気抜き注水ライン A3…水抜きライン Ls1…給水ライン V1…給水バルブ V2…戻しバルブ V3…加減圧バルブ V4…圧力計バルブ V5,V8…空気抜き注水バルブ V6…水抜きバルブ V7…ポンプ吸入バルブ V9…空気抜き注水圧力抜きバルブ2 ... Gas container 3 ... Pressure pump 4 ... Pressure gauge 6 ... Bypass 7 ... Water 8 ... Quantity water tank 9 ... Electronic balance 21 ... Base 23 ... Spindle 25 ... Water separator 26 ... Vacuum pump 27 ... Vacuum gauge 28 ... Pressure switch 92 ... computer Lp ... pressure line LR ... return line A 1, A 2 ... vent irrigation line A 3 ... drain line Ls 1 ... waterlines V 1 ... water supply valve V 2 ... return valve V 3 ... pressure reducing valve V 4 … Pressure gauge valve V 5 , V 8 … Air vent water injection valve V 6 … Water vent valve V 7 … Pump suction valve V 9 … Air vent Water injection pressure vent valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 定量水タンク内の水を検査すべきガス容
器に圧入して膨張させ、この圧入水を定量水タンクに戻
した時の水の減少量からガス容器の耐圧膨張性能を検査
する非水槽式耐圧膨張試験方法において、 前工程として、ガス容器内への給水が完了した状態で空
気抜き用のバルブを開き、真空ポンプの作動によりガス
容器内の圧力を所定の圧力まで下げ、真空ポンプの作動
を停止してから再度空気抜き注水を行ってガス容器内に
残留している空気を完全に除去し、加圧ライン上の加圧
ポンプを作動させてガス容器内に水を圧入して該ガス容
器を膨張させ、所定時間保持後に戻しラインを介して圧
入水を定量水タンクに戻し、この時の圧入水の量に相当
する定量水タンク内の水の減少分の重量を電子天秤によ
って秤量し、その結果をコンピュータに入力して、圧入
水の全増加量並びに恒久増加量から恒久増加率を演算し
て耐圧膨張性能を判定することを特徴とする高圧ガス容
器の非水槽式耐圧膨張試験方法。
1. The pressure-resistant expansion performance of the gas container is inspected from the amount of decrease in the amount of water when the water in the quantitative water tank is press-fitted into the gas container to be inspected and expanded, and the press-fitted water is returned to the quantitative water tank. In the non-water tank pressure resistance expansion test method, as a previous step, open the air vent valve when the water supply to the gas container is completed, and operate the vacuum pump to reduce the pressure in the gas container to the specified pressure. After stopping the operation of, the air remaining in the gas container is completely removed by performing air bleeding and injection again, and the pressurizing pump on the pressurizing line is operated to pressurize the water into the gas container. Inflate the gas container and return it to the quantitative water tank via the return line after holding it for a predetermined time.Weigh the amount of water decrease in the quantitative water tank corresponding to the amount of the pressurized water at this time by an electronic balance. Compiling the results Enter the over data, total increase and non-water tank-type withstand expansion test method of high-pressure gas container, characterized in that by calculating a permanent increase from permanent increment to determine the breakdown voltage expansion performance of the press water.
【請求項2】 前記ガス容器内から空気とともに吸引さ
れた水分を水分離器で空気と分離し、水分は該水分離器
の一端に付設された水抜きバルブを開いて水抜きライン
から放流するようにした請求項1記載の高圧ガス容器の
非水槽式耐圧膨張試験方法。
2. The water which is sucked together with air from the gas container is separated from the air by a water separator, and the water is discharged from a water drain line by opening a water drain valve attached to one end of the water separator. The non-water tank pressure expansion test method for a high-pressure gas container according to claim 1.
【請求項3】 定量水タンクと、この定量水タンク内の
水を検査すべき高圧ガス容器に圧入する加圧ポンプを有
する加圧ラインと、前記加圧ポンプによる圧入工程及び
これに続く静置工程の後に前記高圧ガス容器内の圧入水
を前記定量水タンク内に戻す戻しラインと、前記定量水
タンク内の水の重量を測定する電子天秤と、この電子天
秤に接続して設けた、前記高圧ガス容器の容量の増加分
を計算するコンピュータとを具えて成る非水槽式耐圧膨
張試験装置において、 上記ガス容器に付設した空気抜き用のバルブに真空ポン
プを連結して、ガス容器内への注水後に該ガス容器内に
残留している空気を完全に除去することを特徴とする高
圧ガス容器の非水槽式耐圧膨張試験装置。
3. A quantitative water tank, a pressurizing line having a pressurizing pump for pressurizing the water in the quantitative water tank into a high-pressure gas container to be inspected, a press-fitting step by the pressurizing pump, and a subsequent standing. After the step, a return line for returning the press-fitted water in the high-pressure gas container to the quantitative water tank, an electronic balance for measuring the weight of water in the quantitative water tank, and an electronic balance connected to the electronic balance are provided. In a non-aqueous tank pressure-resistant expansion tester equipped with a computer that calculates the increase in the capacity of the high-pressure gas container, connect a vacuum pump to the air vent valve attached to the gas container, and inject water into the gas container. A non-water tank type pressure-expansion test device for a high-pressure gas container, which is characterized in that air remaining in the gas container is completely removed later.
【請求項4】 前記ガス容器に付設した空気抜き用のバ
ルブと真空ポンプとの間に、空気とともに吸引された水
分を空気と分離する水分離器を配設した請求項3記載の
高圧ガス容器の非水槽式耐圧膨張試験装置。
4. The high-pressure gas container according to claim 3, further comprising a water separator disposed between the vacuum pump attached to the gas container and the vacuum pump to separate the moisture sucked together with the air from the air. Non-aqueous tank pressure expansion tester.
JP20732593A 1993-07-29 1993-07-29 Method and apparatus for non-aqueous tank pressure-resistant expansion test of high-pressure gas container Expired - Fee Related JPH07122609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20732593A JPH07122609B2 (en) 1993-07-29 1993-07-29 Method and apparatus for non-aqueous tank pressure-resistant expansion test of high-pressure gas container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20732593A JPH07122609B2 (en) 1993-07-29 1993-07-29 Method and apparatus for non-aqueous tank pressure-resistant expansion test of high-pressure gas container

Publications (2)

Publication Number Publication Date
JPH0743280A true JPH0743280A (en) 1995-02-14
JPH07122609B2 JPH07122609B2 (en) 1995-12-25

Family

ID=16537896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20732593A Expired - Fee Related JPH07122609B2 (en) 1993-07-29 1993-07-29 Method and apparatus for non-aqueous tank pressure-resistant expansion test of high-pressure gas container

Country Status (1)

Country Link
JP (1) JPH07122609B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325106A (en) * 1996-06-06 1997-12-16 Shimadzu Corp Material testing machine
US6489977B2 (en) 1998-04-07 2002-12-03 Nec Corporation Received information display method
KR100714160B1 (en) * 2006-01-10 2007-05-02 하태원 A pressure inspection system for pressure containers
CN108982231A (en) * 2018-09-04 2018-12-11 北京海德利森科技有限公司 A kind of gas cylinder permanent set measures test system and method
JP2019032217A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Expansion inspection method for high pressure vessel
JP2020030100A (en) * 2018-08-22 2020-02-27 明光産業株式会社 Pressure-resistant expansion test device of high pressure vessel, and removal method of residual air
KR102294890B1 (en) * 2021-02-16 2021-08-27 (주)대하 Internal pressure test device for hydrogen storage containers for hydrogen vehicles

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325106A (en) * 1996-06-06 1997-12-16 Shimadzu Corp Material testing machine
US6489977B2 (en) 1998-04-07 2002-12-03 Nec Corporation Received information display method
KR100714160B1 (en) * 2006-01-10 2007-05-02 하태원 A pressure inspection system for pressure containers
JP2019032217A (en) * 2017-08-07 2019-02-28 トヨタ自動車株式会社 Expansion inspection method for high pressure vessel
JP2020030100A (en) * 2018-08-22 2020-02-27 明光産業株式会社 Pressure-resistant expansion test device of high pressure vessel, and removal method of residual air
CN108982231A (en) * 2018-09-04 2018-12-11 北京海德利森科技有限公司 A kind of gas cylinder permanent set measures test system and method
CN108982231B (en) * 2018-09-04 2023-11-24 山西海德利森氢能科技有限公司 System and method for testing residual deformation of gas cylinder
KR102294890B1 (en) * 2021-02-16 2021-08-27 (주)대하 Internal pressure test device for hydrogen storage containers for hydrogen vehicles

Also Published As

Publication number Publication date
JPH07122609B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
KR100913017B1 (en) Pressure measuring method
US20070151350A1 (en) Measuring fluid volumes in a container using pressure
JPH0743280A (en) Method and equipment of tankless pressure expansion test for pressure gas container
US7954361B2 (en) Method and apparatus for detecting tank leaks
SE524994C2 (en) Method and apparatus for checking the capacity of a compressor
CN111257125A (en) System and method for testing isostatic pressure strength and volume modulus
CN108444563A (en) Fuel tank fuel quantity detection device based on pressure balance type
US4538445A (en) Liquid flow meter
JP2004012350A (en) Pressure testing device and test method of compressed-gas cylinder
JP3145888B2 (en) Non-aqueous tank type pressure expansion test method and apparatus for high-pressure gas container
US4002054A (en) Method and means for volumetric expansion testing
JPS6352692B2 (en)
JPH1183712A (en) Method and device for testing non-water bath type pressure-proof expansion for high-pressure gas vessel
KR20180010473A (en) measurment method of pressing water without pressure container for pressure inspection of non-water jacket type for pressure container
JPH0814982A (en) Method for measuring quantity of liquid
JPH0712674A (en) Method and device for testing watertightness of housing
US20180355715A1 (en) Measurement device by pressurizing the subsoil and method for carrying out an associated pressurization test
JP2004093485A (en) Non-water tank pressure expansion test method for high-pressure gas container
JP3380803B2 (en) Adapter for pressure expansion test of small high pressure gas container and pressure expansion test method
JPH0260251B2 (en)
JPH0123739B2 (en)
JPH0652210B2 (en) Method for measuring gas filling pressure of accumulator
EP3050430A1 (en) Device and method for collecting a fluid
JPH0658834A (en) Absolute pressure detection sensor and inspecting apparatus for leakage condition of container using same
JPH0652211B2 (en) Accumulator gas filling pressure measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees