JPH0123739B2 - - Google Patents

Info

Publication number
JPH0123739B2
JPH0123739B2 JP25566084A JP25566084A JPH0123739B2 JP H0123739 B2 JPH0123739 B2 JP H0123739B2 JP 25566084 A JP25566084 A JP 25566084A JP 25566084 A JP25566084 A JP 25566084A JP H0123739 B2 JPH0123739 B2 JP H0123739B2
Authority
JP
Japan
Prior art keywords
water
pressure
amount
aggregate
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25566084A
Other languages
Japanese (ja)
Other versions
JPS61133860A (en
Inventor
Kazuhiko Iida
Juichiro Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP25566084A priority Critical patent/JPS61133860A/en
Publication of JPS61133860A publication Critical patent/JPS61133860A/en
Publication of JPH0123739B2 publication Critical patent/JPH0123739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコンクリート用骨材等の試験装置に関
するものである。 [イ] 従来の技術 一般に、コンクリートをポンプ圧送する場合、
圧送中の骨材への吸水率はコンクリートの圧送性
やワーカビリチーに影響し、また、圧送後の骨材
からの放水量はコンクリート硬化後の強度に影響
する事は知られている。 そのため、事前に骨材の加圧吸水、除圧放水の
特性を正確に把握しておく必要がある。 この様な事情から、現在第3図に示すような試
験装置を使用して前記特性を把握するための試験
が行なわれている。 すなわち、従来の試験装置Aは、 (1) 骨材試料Eを収納する収納容器B、 (2) 収納容器Bと連絡して水位変化を測定する耐
圧シリンダC(透明な管体)、 (3) 加圧用の高圧ガスを収納するボンベD(窒素
ガス等) からなり、この試験装置Aを使用して、 (1) 採取した骨材試料Eを収納容器B内にいれ、
密封する。 (2) エアーを抜きながら収納容器Bを満水させた
後、耐圧シリンダCに注水して基準水位を設定
する。 (3) 高圧ガスの定圧調整によつて(最大20Kgf/
cm2程度)、実際のポンプ圧送時と同条件の加圧
状態を作り出し、耐圧シリンダCの水位低下量
を30秒間隔で5分間計測する。(加圧吸水量の
測定) (4) 吸水量の測定終了後、耐圧シリンダC内の圧
力を解除し、耐圧シリンダC内の水位の上昇量
を30秒間隔で4分間計測する。(除圧放水量の
測定) [ロ] 本発明が解決しようとする問題点 前述した従来の骨材の特性の試験技術には次の
ような問題点が存在する。 (1) 透明な管体である耐圧シリンダCの強度の関
係から前記の試験装置の最大加圧力は20Kgf/
cm2程度と低く、圧送ポンプの性能が著しく向上
してポンプ圧送力が60Kgf/cm2程度の装置も存
在する現在、従来の試験技術では加圧能力に制
限を受ける。 そのため、実情にあつた試験を行なう事がで
きない。 (2) 高圧に耐え得る耐圧シリンダCを製作するに
は現在の技術に限界があり、実際の製作は非常
に困難である。 (3) 耐圧シリンダCは、高圧容器としての機能と
測定容器としての機能を併有する。 そのため、水量変化を計測する際、加圧状態
の耐圧シリンダCに目を近付けて目盛を判読し
なければならず、大変危険である。 (4) 高圧ガスを使用するので、この高圧ガスの管
理に細心の注意を必要とする。 管理を誤ると大事故につながる危険がある。 本発明はこの様な問題点を解決するために成さ
れたもので、試験能力および安全性に優れた骨材
等の試験装置を提供する事を目的とする。 [ハ] 問題点を解決するための手段 本発明は、高強度を期待できる鋼製の耐圧容器
内に骨材試料を収納する。 そして、加圧水源から耐圧容器に高圧水を圧送
する圧送ルートを形成する。 さらに、加圧源の水量変化を常圧下で計測でき
る計測ルートを前記圧送ルートから独立して形成
する事によつて、前記問題点の解決を図る技術手
段に関するものである。 [ニ] 実施例 以下本発明の一実施例について説明するが、ま
ず図面を参照しながら特性試験装置について説明
する。 (1) 試験装置全体の説明(第1図) 試験装置1は、骨材試料Eを収納する耐圧容
器2と、耐圧容器2に圧力水を供給する保水器
3と一体の手動ポンプ4と、保水器3に連絡し
て加圧吸水量や除圧放水量などを判読する計測
管5で構成する。 (2) 耐圧容器 耐圧容器2はステンレス等の鋼製からなる上
口解放型の筒体であり、耐圧性を考慮して円筒
型に形成する。 この筒体の上口を、エアー抜きバルブ21付
きの閉塞蓋22で閉塞して、骨材試料Eを収納
する完全密封形の筒体を形成する。 (3) 加圧回路 従来の試験装置は加圧手段として高圧ガスを
使用したが、本発明に係る試験装置1は加圧手
段として水を使用する。 すなわち、手動ポンプ4の操作によつて、完
全密封体の保水器3から汲上げた水を耐圧容器
2に圧送できるよう、手動ポンプ4と耐圧容器
2の間を送水管6で連絡する。 送水管6の途上には、耐圧容器2への給水の
みを許容し逆流を防止する逆止弁61,81
と、圧力計62を介在させる。 なお、同図の手動ポンプ4や逆止弁61,8
1等は機構の説明用であつて、その他の公知の
ポンプや逆止弁等を使用できる事は勿論であ
り、実際には高精度の機器を使用する。 (4) 除圧回路 耐圧容器2の底部と保水器3との間には、除
圧管7を連絡する。 除圧管7の途上にはバルブ71を配置する。 バルブ71の開閉操作によつて、耐圧容器2
内の高圧水を保水器3へ案内して、耐圧容器2
内の除圧をできるよう構成する。 (5) 計測管 計測管5は常圧下で水位の増減を計測する目
的の上口解放型の管体である。 従つて、従来のように耐圧構造を採用する必
要はなく、安価な市販品を使用することができ
る。 この計測管5の底部に接続した管51の自由
端は保水器3に接続する。 次に骨材の加圧吸水および除圧放水の試験方法
について説明する。
The present invention relates to a testing device for concrete aggregate, etc. [B] Conventional technology Generally, when concrete is pumped,
It is known that the water absorption rate of aggregate during pumping affects the pumpability and workability of concrete, and the amount of water released from aggregate after pumping affects the strength of concrete after hardening. Therefore, it is necessary to accurately understand the characteristics of pressurized water absorption and depressurized water discharge of aggregate in advance. Under these circumstances, tests are currently being conducted to determine the above-mentioned characteristics using a testing device as shown in FIG. That is, the conventional test device A includes (1) a storage container B that stores the aggregate sample E, (2) a pressure-resistant cylinder C (transparent tube body) that communicates with the storage container B and measures changes in water level, (3) ) Consisting of a cylinder D that stores high-pressure gas for pressurization (nitrogen gas, etc.), using this testing device A, (1) Place the collected aggregate sample E into the storage container B,
Seal. (2) After filling storage container B with water while removing air, pour water into pressure cylinder C and set the reference water level. (3) By adjusting the constant pressure of high-pressure gas (up to 20Kgf/
cm 2 ), create a pressurized state similar to the conditions during actual pump pumping, and measure the amount of water level drop in pressure cylinder C for 5 minutes at 30 second intervals. (Measurement of pressurized water absorption) (4) After measuring the water absorption, release the pressure in pressure cylinder C and measure the rise in the water level in pressure cylinder C at 30 second intervals for 4 minutes. (Measurement of depressurized water discharge amount) [B] Problems to be solved by the present invention The following problems exist in the conventional testing techniques for the characteristics of aggregates described above. (1) Due to the strength of the pressure-resistant cylinder C, which is a transparent tube, the maximum pressing force of the above test equipment is 20 kgf/
At present, the performance of pressure pumps has improved significantly and there are devices with a pump force of about 60 Kgf/cm 2 , but conventional testing techniques are limited in their pressurizing capacity. Therefore, it is not possible to conduct tests that are appropriate to the actual situation. (2) Current technology has limitations in producing a pressure-resistant cylinder C that can withstand high pressure, and actual production is extremely difficult. (3) The pressure cylinder C has both a function as a high pressure container and a function as a measurement container. Therefore, when measuring changes in the amount of water, it is necessary to read the scale by bringing the eye close to the pressurized pressure cylinder C, which is very dangerous. (4) Since high-pressure gas is used, careful attention is required to manage this high-pressure gas. Mismanagement may lead to a major accident. The present invention was made to solve these problems, and an object of the present invention is to provide a testing device for aggregates, etc., which has excellent testing ability and safety. [C] Means for Solving the Problems According to the present invention, an aggregate sample is stored in a pressure-resistant container made of steel that can be expected to have high strength. Then, a pressure feeding route is formed to force-feed high-pressure water from the pressurized water source to the pressure-resistant container. Furthermore, the present invention relates to technical means for solving the above-mentioned problems by forming a measurement route that can measure changes in the amount of water in a pressurized source under normal pressure, independent of the pressure feeding route. [D] Embodiment An embodiment of the present invention will be described below, but first a characteristic testing device will be explained with reference to the drawings. (1) Description of the entire test device (Fig. 1) The test device 1 includes a pressure container 2 that stores the aggregate sample E, a manual pump 4 integrated with a water retainer 3 that supplies pressurized water to the pressure container 2, It consists of a measuring tube 5 that communicates with the water retainer 3 and reads the pressurized water absorption amount, depressurized water discharge amount, etc. (2) Pressure-resistant container The pressure-resistant container 2 is a cylindrical body made of steel such as stainless steel with an open top, and is formed into a cylindrical shape in consideration of pressure resistance. The upper opening of this cylindrical body is closed with a closing lid 22 equipped with an air release valve 21 to form a completely sealed cylindrical body that accommodates the aggregate sample E. (3) Pressurization circuit Although conventional test devices use high pressure gas as a pressurization means, the test device 1 according to the present invention uses water as a pressurization means. That is, the manual pump 4 and the pressure-resistant container 2 are connected by the water pipe 6 so that water pumped up from the completely sealed water retainer 3 can be pumped into the pressure-resistant container 2 by operating the manual pump 4 . Check valves 61 and 81 are provided along the water pipe 6 to allow only water to be supplied to the pressure container 2 and prevent backflow.
and a pressure gauge 62 is interposed. In addition, the manual pump 4 and check valves 61 and 8 in the same figure
The first class is for explaining the mechanism, and it goes without saying that other known pumps, check valves, etc. can be used, and in reality, high-precision equipment is used. (4) Pressure relief circuit A pressure relief pipe 7 is connected between the bottom of the pressure vessel 2 and the water retainer 3. A valve 71 is disposed in the middle of the pressure relief pipe 7. By opening and closing the valve 71, the pressure vessel 2
The high-pressure water inside is guided to the water retainer 3, and the pressure-resistant water is
The structure is configured to allow for pressure relief inside. (5) Measuring pipe The measuring pipe 5 is an open-top pipe whose purpose is to measure increases and decreases in water level under normal pressure. Therefore, there is no need to adopt a pressure-resistant structure as in the past, and inexpensive commercially available products can be used. The free end of the tube 51 connected to the bottom of the measuring tube 5 is connected to the water retainer 3. Next, the test method for pressurized water absorption and depressurized water discharge of aggregate will be explained.

【加圧吸水試験】[Pressure water absorption test]

(1) 満水状態の確認 バルブ71を開いて耐圧容器2から注水し
て、保水器3および耐圧容器2を満水にする。 次に計量採取した骨材試料Eを耐圧容器2内
の網状の収納籠23内に収納した後、閉塞蓋2
2で閉塞する。 さらに計測管5から注水しながら、手動ポン
プ4を操作して、保水器3、手動ポンプ4およ
び各種配管内のエアーをすべて除去する。 以上の作業を終了したらバルブ21,71を
閉止する。 (2) 計測管の零水位の設定 手動ポンプ4のレバー41を最上段で静止さ
せた状態で、計測管5内に注水して、計測管5
に表示された零目盛に水位を合せる。 (3) 加圧 次に手動ポンプ4を操作して送水管6内の水
を耐圧容器2へ圧送する。 この際、逆止弁81が存在することによつ
て、容器2内の圧力が保水器3や計測管5に作
用することがない。 圧力計62で確認しながら、耐圧容器2内の
圧力を例えば60Kgf/cm2程度まで上昇させる。 耐圧容器2を所定の圧力に加圧したら、手動
ポンプ4のレバー41を計測管5の零水位の設
定時のレバー41位置と同位置に保つておく。 これは、装置内部の全水量の条件を同一に保
つておくためである。 (4) 吸水量の測定 満水状態の耐圧容器2内の骨材Eがその孔内
に吸水すれば、その量だけ保水器3内の水量が
減少する。 減少した分だけ保水器3に連通する計測管5
から水が補給されるから、計測管5の水位が低
下する。 計測管5の水位が低下した分の水量が、骨材
試料Eに吸収された加圧吸水量を意味する。 計測管5は従来装置のような高圧はまつたく
作用しないので、常圧下で安全に水位変化を読
み取ることができる。 読み取り精度は計測管5の精度により高精度
となる。 (6) 補正作業 60Kgf/cm2もの高圧下では水の圧縮性を無視
できない。 従つて、正確な吸水量を求めるには、水の圧
縮量で補正する必要がある。 すなわち、骨材試料Eを収納しない状態で前
記とまつたく同じ加圧条件で試験を行なつて求
めた水の圧縮量を、実測の吸水量から差し引く
事によつて、正確な吸水量を求めることができ
る。
(1) Checking the water-filled state Open the valve 71 and inject water from the pressure-resistant container 2 to fill the water retainer 3 and the pressure-resistant container 2 with water. Next, after storing the weighed aggregate sample E in the net-shaped storage basket 23 in the pressure-resistant container 2,
Blocked at 2. Furthermore, while injecting water from the measuring tube 5, the manual pump 4 is operated to remove all air in the water retainer 3, manual pump 4, and various piping. After completing the above work, valves 21 and 71 are closed. (2) Setting the zero water level of the measuring tube With the lever 41 of the manual pump 4 stationary at the highest position, inject water into the measuring tube 5 and
Adjust the water level to the zero scale displayed. (3) Pressurization Next, operate the manual pump 4 to forcefully send water in the water pipe 6 to the pressure container 2. At this time, the presence of the check valve 81 prevents the pressure inside the container 2 from acting on the water retainer 3 or the measuring tube 5. While checking with the pressure gauge 62, the pressure inside the pressure container 2 is increased to about 60 kgf/cm 2 , for example. After pressurizing the pressure vessel 2 to a predetermined pressure, the lever 41 of the manual pump 4 is kept at the same position as the lever 41 when setting the zero water level of the measuring tube 5. This is to keep the total amount of water inside the device the same. (4) Measurement of water absorption amount If the aggregate E in the pressure container 2, which is full of water, absorbs water into its holes, the amount of water in the water retainer 3 will decrease by that amount. A measuring pipe 5 that communicates with the water retainer 3 by the amount that has decreased.
Since water is replenished from the tank, the water level in the measuring tube 5 decreases. The amount of water corresponding to the decrease in the water level in the measuring tube 5 means the amount of pressurized water absorbed by the aggregate sample E. Unlike conventional devices, high pressure does not act on the measuring tube 5, so changes in water level can be safely read under normal pressure. The reading accuracy is high due to the accuracy of the measurement tube 5. (6) Correction work The compressibility of water cannot be ignored under pressures as high as 60Kgf/ cm2 . Therefore, in order to obtain an accurate amount of water absorption, it is necessary to correct the amount of water compressed. That is, the accurate amount of water absorption is determined by subtracting the amount of water compression obtained by conducting a test under the same pressurizing conditions as above without storing aggregate sample E from the actually measured amount of water absorption. be able to.

【除圧放水試験】[Depressurized water spray test]

(1) 除圧 吸水試験を終了したら、バルブ71を開け
て、骨材Eに作用していた圧を解放する。 そうすると、骨材Eの孔内に圧入していた水
分が吐き出され保水器3内の水が増加する。 その結果、上昇した計測管5の水位が、残留
吸水量となる。 従つて、加圧時における吸水量からこの残留
吸水量を差し引くと、除圧後の放水量が得られ
る。 [試験例] 前記試験方法に基ずき下記の条件で、軽量骨材
(1Kg)の加圧吸水特性を求めた。 その試験データを第2図に示す。 加圧条件:20Kgf/cm2 40Kgf/cm2 60Kgf/cm2 加圧時間:60分 [ホ] 効果 本発明は以上説明したようになるので次のよう
な効果を期待する事ができる。 (1) 吸水量を測定するルートと、加圧ルートをそ
れぞれ独立して形成した。 従つて、耐圧容器に測定機能を期待する事が
なくなり、耐圧容器の強度を容易に向上させる
事ができる。 そのため、従来まで困難とされていた高圧試
験を安全に行う事ができる。 (2) 従前の試験装置は加圧手段に細心の管理が要
求される高圧ガスを使用していた。 本発明の場合には、加圧水を使用するのでそ
の管理が安全であり、法的制限を受けずに高圧
試験を行う事ができる。 (3) また、手動ポンプを採用したことにより、動
力手段を不要とする。 従つて、窒素ガス等の高圧ガスを使用する場
合に比べて、はるかに経済的である。 (4) 給水側の常圧下で水量変化を測定できるの
で、計測管を圧力容器として使用する必要はな
い。 そのため、市販のビユーレツト等を利用でき
るので安価で高精度の測定が可能となる。 (5) 計測管の精度は、管径を小径化し、かつ延長
して形成することによつて、容易に向上させる
ことができ、極めて高精度の測定を行うことが
できる。 (6) 吸水量が非常に多い場合でも、例えば、計測
管に注水して不足分を補つたり、あるいは注水
容量の大きい計測管を使用して対処できるの
で、吸水量の測定範囲に制限を受けない。 (7) 加圧時の吸水率および除圧時の放水率を瞬時
に求めることができる。 (8) 構造が簡単であるため故障の発生率が低い。 (9) 測定操作が簡単であり、また他の装置類を必
要としない。 (10) 装置がコンパクトであり、持ち運びに便利で
ある。
(1) Pressure release After completing the water absorption test, open the valve 71 to release the pressure acting on the aggregate E. Then, the water that had been press-fitted into the holes of the aggregate E is discharged, and the water in the water retainer 3 increases. As a result, the increased water level in the measuring tube 5 becomes the residual water absorption amount. Therefore, by subtracting this residual water absorption amount from the amount of water absorption during pressurization, the amount of water discharged after depressurization can be obtained. [Test Example] Based on the above test method, the pressurized water absorption characteristics of lightweight aggregate (1 kg) were determined under the following conditions. The test data is shown in FIG. Pressurizing conditions: 20Kgf/cm 2 40Kgf/cm 2 60Kgf/cm 2 Pressurizing time: 60 minutes [e] Effects Since the present invention has been described above, the following effects can be expected. (1) A route for measuring water absorption and a pressurizing route were created independently. Therefore, it is no longer expected that the pressure container has a measuring function, and the strength of the pressure container can be easily improved. Therefore, high-pressure tests, which were previously considered difficult, can be safely performed. (2) Previous test equipment used high-pressure gas, which required careful control of pressurization means. In the case of the present invention, since pressurized water is used, its management is safe, and high pressure tests can be performed without being subject to legal restrictions. (3) Also, by adopting a manual pump, no power means is required. Therefore, it is much more economical than using high pressure gas such as nitrogen gas. (4) Changes in water volume can be measured under normal pressure on the water supply side, so there is no need to use the measurement pipe as a pressure vessel. Therefore, commercially available biurets and the like can be used, making it possible to perform inexpensive and highly accurate measurements. (5) The accuracy of the measurement tube can be easily improved by reducing the diameter of the tube and forming it by extending it, making it possible to perform measurements with extremely high precision. (6) Even if the amount of water absorbed is extremely large, it can be handled by, for example, injecting water into the measuring tube to make up for the shortage, or by using a measuring tube with a large water injection capacity, so there is no limit to the measurement range of the amount of water absorbed. I don't accept it. (7) The water absorption rate during pressurization and the water discharge rate during depressurization can be determined instantly. (8) Due to the simple structure, the failure rate is low. (9) Measurement operation is simple and does not require any other equipment. (10) The device is compact and convenient to carry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:本発明に係る試験装置の説明図、第2
図:軽量骨材の高圧吸水試験の一試験結果のデー
タ、第3図:従来の試験装置の説明図 2:耐圧容器、3:保水器、4:手動ポンプ、
5:計測管、61,81:逆止弁、E:骨材試
料。
Fig. 1: Explanatory diagram of the test device according to the present invention, Fig. 2
Figure: Data from one test result of a high-pressure water absorption test for lightweight aggregates, Figure 3: Explanation diagram of conventional test equipment 2: Pressure-resistant container, 3: Water retainer, 4: Manual pump,
5: Measuring pipe, 61, 81: Check valve, E: Aggregate sample.

Claims (1)

【特許請求の範囲】 1 骨材試料を収納して水圧によつて加圧する加
圧ルートと、 水位変化を常圧下で計測できる計測ルートをそ
れぞれ独立して形成し、 加圧前の水位と加圧後あるいは除圧時の水位か
ら骨材の吸水量や放水量を求めて行なう事を特徴
とする、 コンクリート用骨材等の試験装置。
[Scope of Claims] 1. A pressurization route that stores an aggregate sample and pressurizes it with water pressure, and a measurement route that can measure water level changes under normal pressure are formed independently, and the water level before pressurization and the A testing device for aggregates for concrete, etc., which is characterized by determining the amount of water absorbed and discharged by the aggregate from the water level after compression or during depressurization.
JP25566084A 1984-12-05 1984-12-05 Tester for concrete aggrigate or the like Granted JPS61133860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25566084A JPS61133860A (en) 1984-12-05 1984-12-05 Tester for concrete aggrigate or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25566084A JPS61133860A (en) 1984-12-05 1984-12-05 Tester for concrete aggrigate or the like

Publications (2)

Publication Number Publication Date
JPS61133860A JPS61133860A (en) 1986-06-21
JPH0123739B2 true JPH0123739B2 (en) 1989-05-08

Family

ID=17281836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25566084A Granted JPS61133860A (en) 1984-12-05 1984-12-05 Tester for concrete aggrigate or the like

Country Status (1)

Country Link
JP (1) JPS61133860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029339A (en) * 2014-07-25 2016-03-03 日本電信電話株式会社 Method for extracting concrete pore solution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981180B1 (en) 2010-01-08 2010-09-10 (주)군도기술산업 Resisting pressure test apparatus for overpressure preventing reputure board of pipe
CN102128760B (en) * 2010-12-08 2012-05-30 中国建筑第八工程局有限公司 Method for testing pumpability of concrete mixture
CN108534719A (en) * 2018-03-27 2018-09-14 刘云龙 A kind of road and bridge concrete structure monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016029339A (en) * 2014-07-25 2016-03-03 日本電信電話株式会社 Method for extracting concrete pore solution

Also Published As

Publication number Publication date
JPS61133860A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
CA1250823A (en) Method of and apparatus for filling a container with gas
US20020053365A1 (en) Method for filling a vehicle fuel tank with gas
CN106053243B (en) The intelligent quick detection line of the rotating disc type liquefied petroleum gas steel cylinder water pressure test
JPH0545173B2 (en)
JP2007525638A (en) Measurement of fluid volume in a container using pressure
US5263367A (en) Method and apparatus for determining delivery amounts and rates of pumps in the medicotechnical field
EP0689044B1 (en) Apparatus for and method of measuring gas absorbing characteristics
US4575807A (en) Method and apparatus for leak test
JPH0123739B2 (en)
US4345458A (en) Water tank assembly for a pressure resistance measuring apparatus for testing containers
KR102094423B1 (en) Volume change measuring device for repeated pressurized testing of high pressure container
JP2004012350A (en) Pressure testing device and test method of compressed-gas cylinder
JPH07122609B2 (en) Method and apparatus for non-aqueous tank pressure-resistant expansion test of high-pressure gas container
CN111024932A (en) Device and method for measuring underwater volume compressibility of rubber material
KR20180010473A (en) measurment method of pressing water without pressure container for pressure inspection of non-water jacket type for pressure container
US4002054A (en) Method and means for volumetric expansion testing
EP0552841B1 (en) Method and device for detecting undissolved gas in a hydraulic control system
CN211292236U (en) Gas hydrate-containing coal body preparation device and mechanical property testing system
CN220525258U (en) Single-flow valve leakage measuring device
JP3134021B2 (en) Pressurizing device for horizontal loading tester in bore
CN205958370U (en) Compound cement mortar elastic modulus tester
JPS6352692B2 (en)
Northey Rapid consolidation tests for routine investigations
CN210603725U (en) Pressure transmitter detection device of ship ballast water management system
CN211122255U (en) Testing device for large gas cylinder by using external measurement method