JPH0742735A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH0742735A
JPH0742735A JP22776993A JP22776993A JPH0742735A JP H0742735 A JPH0742735 A JP H0742735A JP 22776993 A JP22776993 A JP 22776993A JP 22776993 A JP22776993 A JP 22776993A JP H0742735 A JPH0742735 A JP H0742735A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnets
rotating members
free
oscillating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22776993A
Other languages
Japanese (ja)
Inventor
Masaharu Miki
正晴 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FERROFLUIDICS KK
Original Assignee
NIPPON FERROFLUIDICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FERROFLUIDICS KK filed Critical NIPPON FERROFLUIDICS KK
Priority to JP22776993A priority Critical patent/JPH0742735A/en
Publication of JPH0742735A publication Critical patent/JPH0742735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings

Abstract

PURPOSE:To sufficiently eliminate oscillations at a resonance point and eliminate oscillation energy to some extent even under high speed rotation. CONSTITUTION:When a rotor shows a rotational speed corresponding to resonance point thereof, a free oscillation body 14 is oscillated interlockingly with oscillations in a diameter direction of the rotor, and oscillation energy is eliminated by a viscoelastic body 17. When the rotational speed is further increased and far from the resonance frequency of the free oscillation body 14, the free oscillation body 14 which is in almost static condition is in an axial magnetic field prepared by rotational members 2 and 3, so that eddy current loss is generated in the free oscillation body 14 by diametral variation of the magnetic field interlocked with the oscillations of the rotor in the diameter direction. Oscillation energy is thus eliminated. This effect is distinguished increasingly as rotational speed becomes high resulting in resonance frequency where the free oscillation body 14 is hard to move. Oscillations are sufficiently eliminated at the resonance point by both the functions, and oscillation energy is eliminated to some extent even under high speed rotation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は磁気軸受装置に関する
ものであって、特に回転軸方向のみ能動型磁気軸受と
し、径方向は受動型磁気軸受とした一軸制御型磁気軸受
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing device, and more particularly to a uniaxial control type magnetic bearing device in which an active magnetic bearing is used only in a rotating shaft direction and a passive magnetic bearing is used in a radial direction.

【0002】[0002]

【従来の技術】この種の磁気軸受装置におけるロータの
径方向の共振周波数は、回転数と共振周波数の関係を示
す図3に示すように、慣性モーメントの影響によりロー
タ回転数の上昇に伴って高くなる。ロータが径方向に最
も大きく振動するのは、ロータ回転数と共振周波数とが
一致する点R(図3参照)に対応する回転数である。な
ぜなら外乱の大部分が、ロータの不釣合による回転数に
同期した振動であるためである。
2. Description of the Related Art As shown in FIG. 3, which shows the relationship between the rotational frequency and the resonant frequency, the radial resonance frequency of the rotor in this type of magnetic bearing device is increased by the influence of the moment of inertia as the rotor rotational speed increases. Get higher The rotor vibrates most in the radial direction at the rotation speed corresponding to the point R (see FIG. 3) where the rotor rotation speed and the resonance frequency match. This is because most of the disturbance is vibration that is synchronized with the rotation speed due to unbalance of the rotor.

【0003】通常、共振周波数と一致する回転数以外で
は、少しでも振動吸収があればロータは安定に回転す
る。しかしながらロータが高速回転すると、ステータ側
でのエネルギー損失によりロータの振動エネルギー吸収
とは逆の作用をするロータ内部でのエネルギー損失(内
部摩擦、渦電流損)が増大する。そのためロータ内部で
のエネルギー損失がステータ側でのエネルギー損失(零
回転数での振動吸収に対応)を越えると、実質上、振動
減衰率が負になり、極微小な外乱に対しても、その回転
数における共振周波数でロータが発振してしまう。
Usually, except for the number of revolutions that matches the resonance frequency, if there is any vibration absorption, the rotor will rotate stably. However, when the rotor rotates at high speed, energy loss on the side of the stator increases energy loss (internal friction, eddy current loss) inside the rotor, which acts in a manner opposite to vibration energy absorption of the rotor. Therefore, when the energy loss inside the rotor exceeds the energy loss on the stator side (corresponding to vibration absorption at zero rotation speed), the vibration damping factor becomes substantially negative, and even for extremely small disturbances, The rotor oscillates at the resonance frequency at the rotational speed.

【0004】したがってある定常回転数までロータを安
定に回転させるためには、共振点R(図3参照)で効果
的に振動を吸収することに加えて、定常回転数まで常に
ロータ内部でのエネルギー損失以上にステータ側でのエ
ネルギー吸収(エネルギー損失)が生じるようにする必
要がある。
Therefore, in order to stably rotate the rotor up to a certain steady rotation speed, in addition to effectively absorbing the vibration at the resonance point R (see FIG. 3), the energy inside the rotor is always kept up to the steady rotation speed. It is necessary to cause energy absorption (energy loss) on the stator side more than the loss.

【0005】そこで従来では、振動を吸収する方法とし
て、渦電流式振動吸収装置と粘弾性体支持自由揺動体方
式の振動吸収装置とが提案されている。図2は共振周波
数と減衰係数(振動吸収効果)との関係を示す図であ
り、曲線(イ)は渦電流式振動吸収装置の場合を示して
いる。この渦電流式の場合は、周波数にあまり関係なく
ほぼ一定の振動エネルギーの吸収を図ることができる。
また図2中の曲線(ロ)は、例えば特開平2−1251
06号公報に記載されている粘弾性体支持自由揺動体方
式の振動吸収装置の場合を示しているが、この方式では
ある共振点で非常に高い減衰係数を得ている。
Therefore, conventionally, as a method of absorbing vibration, an eddy current type vibration absorbing apparatus and a viscoelastic body supporting free oscillating body type vibration absorbing apparatus have been proposed. FIG. 2 is a diagram showing the relationship between the resonance frequency and the damping coefficient (vibration absorbing effect), and the curve (a) shows the case of the eddy current type vibration absorbing device. In the case of this eddy current type, it is possible to absorb vibration energy that is substantially constant regardless of the frequency.
In addition, the curve (b) in FIG.
The case of the vibration absorbing device of the viscoelastic body supporting free oscillating body method described in Japanese Patent Laid-Open No. 06 is shown, but in this method, a very high damping coefficient is obtained at a certain resonance point.

【0006】[0006]

【発明が解決しようとする課題】ところで渦電流式振動
吸収装置は、図2中の曲線(イ)に示すように、高周波
でも振動吸収効果が減少しないので、高周波に対するス
テータ側での振動エネルギー吸収には最適であるが、共
振点で充分な振動吸収をしようとすると非常に大型の振
動吸収装置になってしまう。
By the way, in the eddy current type vibration absorbing device, as shown by the curve (a) in FIG. 2, since the vibration absorbing effect does not decrease even at high frequencies, the vibration energy absorbing at the stator side against high frequencies is absorbed. It is most suitable for, but if it tries to absorb enough vibration at the resonance point, it becomes a very large vibration absorber.

【0007】また特開平2−125106号公報に記載
されている粘弾性体支持自由揺動体方式の振動吸収装置
は、図2中の曲線(ロ)に示すように、自由揺動体の共
振周波数をロータの共振点と一致させると、共振点にお
ける振動吸収を大きくでき共振点通過には好都合である
が、共振点以外の周波数においては、その効果が落ちる
ため、ロータを高速回転させた場合に振動吸収が不充分
になる場合がある。
A viscoelastic body supporting free oscillating body type vibration absorber disclosed in Japanese Unexamined Patent Publication No. 2-125106 shows the resonance frequency of the free oscillating body as shown by the curve (b) in FIG. Matching with the resonance point of the rotor makes it possible to increase the vibration absorption at the resonance point and is convenient for passing through the resonance point, but at frequencies other than the resonance point, the effect is reduced, so vibrations occur when the rotor is rotated at high speed. Absorption may be inadequate.

【0008】この発明は上記従来の欠点を解決するため
になされたものであって、その目的は、共振点で充分な
振動吸収ができ、しかも高速回転時もある程度の振動エ
ネルギーの吸収が可能な磁気軸受装置を提供することに
ある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and an object thereof is to be able to sufficiently absorb vibration at a resonance point and also to absorb a certain amount of vibration energy even at a high speed rotation. It is to provide a magnetic bearing device.

【0009】[0009]

【課題を解決するための手段】そこでこの発明の磁気軸
受装置は、ロータを回転させるロータシャフト1の外周
に導電材から成る一対の円板状の回転部材2、3を所定
の間隔でもって設け、上記各回転部材2、3の両側に、
コイル11、13とヨーク10、12とから成る軸方向
制御電磁石8、9をそれぞれ各回転部材2、3とは非接
触に配設し、上記両回転部材2、3の間に導電材から成
る自由揺動体14を非接触で配設すると共に、この自由
揺動体14を粘弾性体17を介してステータ側に支持
し、上記両回転部材2、3の対向面に互いに逆方向に着
磁した複数のリング状の永久磁石4〜7をそれぞれ同心
円状に配設し、かつ両回転部材2、3の相対向する永久
磁石4〜7をそれぞれ異極に着磁し、上記軸方向制御電
磁石8、9のヨーク10、12の磁極面を両回転部材
2、3のそれぞれの永久磁石4〜7の磁極面と対向配設
し、上記自由揺動体14に上記いずれかの回転部材2、
3の永久磁石4、5の磁極面の磁極とは異極に着磁した
永久磁石18、19を配設し、上記回転部材2、3と自
由揺動体14との間の永久磁石4、5、18、19の吸
引力による径方向バネ定数と粘弾性体17の径方向バネ
定数とを自由揺動体14の共振点とロータの共振点とが
略一致するように設定したことを特徴としている。
Therefore, in the magnetic bearing device of the present invention, a pair of disk-shaped rotating members 2 and 3 made of a conductive material are provided at a predetermined interval on the outer periphery of a rotor shaft 1 for rotating the rotor. , On both sides of each of the rotating members 2 and 3,
Axial control electromagnets 8 and 9 composed of coils 11 and 13 and yokes 10 and 12 are arranged so as to be in non-contact with the rotating members 2 and 3, respectively, and made of a conductive material between the rotating members 2 and 3. The free oscillating body 14 is arranged in a non-contact manner, the free oscillating body 14 is supported on the stator side through a viscoelastic body 17, and the opposite surfaces of the rotating members 2 and 3 are magnetized in opposite directions. A plurality of ring-shaped permanent magnets 4 to 7 are arranged concentrically, and the permanent magnets 4 to 7 of the rotating members 2 and 3 facing each other are magnetized to have different polarities. , 9 of the yokes 10 and 12 are arranged so as to face the magnetic pole surfaces of the permanent magnets 4 to 7 of the rotary members 2 and 3, respectively, and the free oscillating body 14 is provided with one of the rotary members 2 and 3.
The permanent magnets 18 and 19 magnetized to have different polarities from the magnetic poles of the permanent magnets 4 and 5 of the permanent magnets 4 and 5 of FIG. , 18 and 19 are set so that the radial spring constant of the viscoelastic body 17 and the radial spring constant of the viscoelastic body 17 are set so that the resonance point of the free oscillating body 14 and the resonance point of the rotor substantially coincide with each other. .

【0010】[0010]

【作用】上記磁気軸受装置では、ロータがその共振点に
対応する回転数を通過するとき、自由揺動体14はロー
タの径方向の振動に連動して揺動し、効果的に振動エネ
ルギーを粘弾性体17で吸収する。さらに回転数が上昇
し、ロータの共振周波数が慣性モーメントの影響で自由
揺動体14の共振周波数と離れてくるにしたがって、自
由揺動体14はロータに連動しては動かなくなる。その
ため粘弾性体17による振動エネルギーの吸収効率が低
下する。ところが一方、このほとんど静止している自由
揺動体14は、回転部材2、3によって作られる軸方向
の磁場内にあり、また導電体であるので、ロータの径方
向の振動に連動した磁場の径方向変化により、自由揺動
体14内で渦電流損が発生し、振動エネルギーを吸収す
る。この効果は、自由揺動体14が動きにくくなる高速
回転時の共振周波数になるほど有効になる。これらの両
作用により、共振点で充分な振動吸収ができ、しかも高
速回転時もある程度の振動エネルギーの吸収が可能な振
動吸収装置を構成することができる。
In the above magnetic bearing device, when the rotor passes through the number of revolutions corresponding to its resonance point, the free oscillating body oscillates in conjunction with the radial vibration of the rotor, effectively absorbing the vibration energy. It is absorbed by the elastic body 17. As the number of revolutions further increases and the resonance frequency of the rotor moves away from the resonance frequency of the free oscillating body 14 under the influence of the moment of inertia, the free oscillating body 14 does not move in conjunction with the rotor. Therefore, the absorption efficiency of the vibration energy by the viscoelastic body 17 decreases. On the other hand, since the free oscillating body 14 which is almost stationary is in the magnetic field in the axial direction created by the rotating members 2 and 3 and is a conductor, the diameter of the magnetic field interlocked with the radial vibration of the rotor. An eddy current loss occurs in the free oscillating body 14 due to the change in direction, and the vibration energy is absorbed. This effect becomes more effective as the resonance frequency at the time of high speed rotation in which the free oscillating body 14 becomes difficult to move becomes. Due to both of these actions, it is possible to configure a vibration absorbing device that can sufficiently absorb the vibration at the resonance point and can absorb the vibration energy to some extent even at high speed rotation.

【0011】[0011]

【実施例】次にこの発明の磁気軸受装置の具体的な実施
例について、図面を参照しつつ詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, specific embodiments of the magnetic bearing device of the present invention will be described in detail with reference to the drawings.

【0012】図1に磁気軸受装置の一実施例を示す。ま
ず図1により能動型軸方向磁気軸受機構について説明す
ると、ロータを回転させるロータシャフト1の外周にそ
の軸方向に沿って所定の間隔でもって2つの回転部材
2、3が一体的に設けられている。上記回転部材2、3
は円板状に形成されており、両回転部材2、3の対向す
る面にはリング状の永久磁石4、5と6、7がそれぞれ
2つ同心円上に設けられ、これらの永久磁石4、5と
6、7は回転軸方向に着磁され、それらの着磁方向は互
いに逆になっている。図1では、上側の回転部材2の外
側永久磁石4の露出面をS極、内側永久磁石5の露出面
がN極とし、下側の回転部材3の外側永久磁石6の露出
面をN極、内側永久磁石7の露出面がS極としてあり、
回転部材2、3の永久磁石4、5と6、7は、それぞれ
互いに引き合うような着磁方向となっている。
FIG. 1 shows an embodiment of the magnetic bearing device. First, the active axial magnetic bearing mechanism will be described with reference to FIG. 1. Two rotary members 2 and 3 are integrally provided on the outer circumference of a rotor shaft 1 for rotating a rotor along the axial direction thereof at predetermined intervals. There is. The rotating members 2, 3
Is formed in a disk shape, and two ring-shaped permanent magnets 4, 5 and 6, 7 are concentrically provided on the opposite surfaces of both rotary members 2, 3, respectively. The magnets 5 and 6 and 7 are magnetized in the rotation axis direction, and their magnetizing directions are opposite to each other. In FIG. 1, the exposed surface of the outer permanent magnet 4 of the upper rotating member 2 is the S pole, the exposed surface of the inner permanent magnet 5 is the N pole, and the exposed surface of the outer permanent magnet 6 of the lower rotating member 3 is the N pole. , The exposed surface of the inner permanent magnet 7 is the S pole,
The permanent magnets 4, 5 and 6, 7 of the rotating members 2, 3 are magnetized so as to attract each other.

【0013】そして能動型軸方向磁気軸受機構を構成す
る軸方向制御電磁石8、9は、上記回転部材2、3を上
下から挟むように配置されており、この軸方向制御電磁
石8、9は、一部を切断した略コ字型のヨーク10、1
2と、このヨーク10、12内に配設したコイル11、
13とで構成されている。
The axial direction control electromagnets 8 and 9 constituting the active type axial magnetic bearing mechanism are arranged so as to sandwich the rotating members 2 and 3 from above and below, and the axial direction control electromagnets 8 and 9 are arranged as follows. Approximately U-shaped yoke 10, 1 with a part cut away
2 and a coil 11 arranged in the yokes 10 and 12,
13 and 13.

【0014】ここで軸方向制御電磁石8のヨーク10の
両端の磁極面と回転部材2の永久磁石4、5の磁極面と
がそれぞれ同心円上に対向するようにヨーク10が形成
されている。また他方の軸方向制御電磁石9のヨーク1
2も同様である。すなわち永久磁石が作る磁束が、例え
ば回転部材2、3の内側の永久磁石5、7を通り、次に
軸方向制御電磁石9のヨーク12の内側ヨーク12aか
ら外側ヨーク12bを回り、さらに回転部材3、2の外
側の永久磁石6、4を通り、最後に軸方向制御電磁石8
のヨーク10の外側ヨーク10bから内側ヨーク10a
を通って、再び回転部材2の内側の永久磁石5に戻るよ
うにする。このように配置することにより、永久磁石
4、5、6、7によるバイアス磁束を軸方向制御電磁石
8、9により変調でき、ロータ位置をロータシャフト1
の軸方向に制御することができることになる。
Here, the yoke 10 is formed so that the magnetic pole surfaces of both ends of the yoke 10 of the axial control electromagnet 8 and the magnetic pole surfaces of the permanent magnets 4 and 5 of the rotary member 2 are concentrically opposed to each other. The yoke 1 of the other axial control electromagnet 9
2 is also the same. That is, the magnetic flux generated by the permanent magnets passes, for example, through the permanent magnets 5 and 7 inside the rotating members 2 and 3, then from the inner yoke 12a of the yoke 12 of the axial control electromagnet 9 to the outer yoke 12b, and further the rotating member 3 2 through the outer permanent magnets 6, 4 and finally the axial control electromagnet 8
Outer yoke 10b of inner yoke 10 to inner yoke 10a
To return to the permanent magnet 5 inside the rotary member 2 again. With such an arrangement, the bias magnetic fluxes of the permanent magnets 4, 5, 6, 7 can be modulated by the axial control electromagnets 8, 9 and the rotor position can be changed.
It will be possible to control in the axial direction.

【0015】次に受動型径方向磁気軸受機構について説
明する。リング状の自由揺動体14の内側の部分は、上
記回転部材2、3の間に遊嵌された状態で配置されてお
り、本体ケース15の固定部材16の側から粘弾性体1
7によりある適当なバネ定数で支持されている。なお粘
弾性体17としては、例えばゴム、磁性流体、真空グリ
ス、あるいはシリコンゲル材等を用いている。自由揺動
体14と回転部材2とが無接触で径方向に連動するよう
に、自由揺動体14の内側の上部に軸方向に着磁したリ
ング状の永久磁石18、19を2つ回転部材2と磁極面
が対向し、互いに吸引するように同軸上に配置してあ
る。このように配置することにより、ロータを回転部材
2を介してある径方向バネ定数で支持することができ
る。
Next, the passive radial magnetic bearing mechanism will be described. The inner portion of the ring-shaped free oscillating body 14 is disposed in a state of being loosely fitted between the rotating members 2 and 3, and the viscoelastic body 1 from the side of the fixing member 16 of the main body case 15.
It is supported by a suitable spring constant by 7. As the viscoelastic body 17, for example, rubber, magnetic fluid, vacuum grease, silicon gel material or the like is used. The rotating member 2 includes two ring-shaped permanent magnets 18 and 19 axially magnetized in an upper portion of the inside of the free oscillating body 14 so that the free oscillating body 14 and the rotating member 2 interlock with each other in a radial direction without contact. And the magnetic pole surfaces face each other, and are arranged coaxially so as to attract each other. With this arrangement, the rotor can be supported by the rotating member 2 with a certain radial spring constant.

【0016】次に本発明の振動吸収装置の動作原理につ
いて説明する。ここで図2中で破線で示した曲線(ハ)
が本発明による振動吸収方式である。まず回転部材2と
自由揺動体14との間の永久磁石4、5と18、19の
吸引力による径方向バネ定数と自由揺動体14を支持す
る粘弾性体17の径方向バネ定数とを適当な値に設定し
て、自由揺動体14の共振点とロータの共振点とを一致
させる。この設定により、ロータがその共振点に対応す
る回転数を通過するとき、自由揺動体14はロータの径
方向の振動に連動して揺動し、効果的に振動エネルギー
を粘弾性体17で吸収する。
Next, the operation principle of the vibration absorbing device of the present invention will be described. Here, the curve (c) shown by the broken line in FIG.
Is the vibration absorption method according to the present invention. First, the radial spring constant due to the attractive force of the permanent magnets 4, 5 and 18, 19 between the rotary member 2 and the free rocking body 14 and the radial spring constant of the viscoelastic body 17 supporting the free rocking body 14 are appropriately set. The resonance point of the free oscillating body 14 and the resonance point of the rotor are matched with each other. With this setting, when the rotor passes the number of revolutions corresponding to its resonance point, the free oscillating body 14 oscillates in conjunction with the radial vibration of the rotor, and the viscoelastic body 17 effectively absorbs the vibration energy. To do.

【0017】さらに回転数が上昇し、ロータの共振周波
数が慣性モーメントの影響で自由揺動体14の共振周波
数と離れてくるにしたがって、自由揺動体14はロータ
に連動しては動かなくなる。そのため粘弾性体17によ
る振動エネルギーの吸収効率が低下する。ところが一
方、このほとんど静止している自由揺動体14は、回転
部材2、3によって作られる軸方向の磁場内にあり、ま
た導電体であるので、ロータの径方向の振動に連動した
磁場の径方向変化により、自由揺動体14内で渦電流損
が発生し、振動エネルギーを吸収する。この効果は、自
由揺動体14が動きにくくなる高速回転時の共振周波数
になるほど有効になる。すなわち図2に示すように、高
速回転時には自由揺動体14内で発生した渦電流損によ
り振動エネルギーを吸収するものであり、従来の粘弾性
体支持自由揺動体式振動吸収の場合よりも減衰係数を大
きくすることができる。これらの両作用により、共振点
で充分な振動吸収ができ、しかも高速回転時もある程度
の振動エネルギーの吸収が可能な振動吸収装置を構成す
ることができる。
As the number of revolutions further increases and the resonance frequency of the rotor moves away from the resonance frequency of the free oscillating body 14 due to the influence of the moment of inertia, the free oscillating body 14 does not move in conjunction with the rotor. Therefore, the absorption efficiency of the vibration energy by the viscoelastic body 17 decreases. On the other hand, since the free oscillating body 14 which is almost stationary is in the magnetic field in the axial direction created by the rotating members 2 and 3 and is a conductor, the diameter of the magnetic field interlocked with the radial vibration of the rotor. An eddy current loss occurs in the free oscillating body 14 due to the change in direction, and the vibration energy is absorbed. This effect becomes more effective as the resonance frequency at the time of high speed rotation in which the free oscillating body 14 becomes difficult to move becomes. That is, as shown in FIG. 2, the vibration energy is absorbed by the eddy current loss generated in the free oscillating body 14 at the time of high speed rotation, and the damping coefficient is larger than that in the case of the conventional viscoelastic body supporting free oscillating body type vibration absorption. Can be increased. Due to both of these actions, it is possible to configure a vibration absorbing device that can sufficiently absorb the vibration at the resonance point and can absorb the vibration energy to some extent even at high speed rotation.

【0018】[0018]

【発明の効果】以上のようにこの発明の磁気軸受装置で
は、ロータがその共振点に対応する回転数を通過すると
き、自由揺動体がロータの径方向の振動に連動して揺動
し、振動エネルギーを粘弾性体で吸収する。さらに回転
数が上昇し、ロータの共振周波数が慣性モーメントの影
響で自由揺動体の共振周波数と離れてくるにしたがっ
て、ロータの径方向の振動に連動した磁場の径方向変化
により、自由揺動体内で渦電流損が発生し、振動エネル
ギーを吸収する。したがってこれらの両作用により、共
振点で充分な振動吸収ができ、しかも高速回転時もある
程度の振動エネルギーの吸収が可能な振動吸収装置を構
成することができる。
As described above, in the magnetic bearing device of the present invention, when the rotor passes the rotation speed corresponding to its resonance point, the free oscillating body oscillates in conjunction with the radial vibration of the rotor, Vibration energy is absorbed by the viscoelastic body. As the number of revolutions further increases and the resonance frequency of the rotor moves away from the resonance frequency of the free oscillating body due to the influence of the moment of inertia, the radial change of the magnetic field linked to the radial vibration of the rotor causes the free oscillating body to move. Eddy current loss occurs at and absorbs vibration energy. Therefore, by both of these actions, it is possible to configure a vibration absorbing device that can sufficiently absorb the vibration at the resonance point and can absorb the vibration energy to some extent even at the high speed rotation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の磁気軸受装置の一実施例の断面図で
ある。
FIG. 1 is a sectional view of an embodiment of a magnetic bearing device of the present invention.

【図2】共振周波数と減衰係数(振動吸収効果)との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a resonance frequency and a damping coefficient (vibration absorbing effect).

【図3】回転数と共振周波数との関係を示す図である。FIG. 3 is a diagram showing a relationship between a rotation speed and a resonance frequency.

【符号の説明】[Explanation of symbols]

1 ロータシャフト 2 回転部材 3 回転部材 4 永久磁石 5 永久磁石 6 永久磁石 7 永久磁石 8 軸方向制御電磁石 9 軸方向制御電磁石 10 ヨーク 11 コイル 12 ヨーク 13 コイル 14 自由揺動体 17 粘弾性体 18 永久磁石 19 永久磁石 1 Rotor Shaft 2 Rotating Member 3 Rotating Member 4 Permanent Magnet 5 Permanent Magnet 6 Permanent Magnet 7 Permanent Magnet 8 Axial Control Electromagnet 9 Axial Control Electromagnet 10 Yoke 11 Coil 12 Yoke 13 Coil 14 Free Oscillator 17 Viscoelastic Body 18 Permanent Magnet 19 permanent magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロータを回転させるロータシャフト
(1)の外周に導電材から成る一対の円板状の回転部材
(2)(3)を所定の間隔でもって設け、上記各回転部
材(2)(3)の両側に、コイル(11)(13)とヨ
ーク(10)(12)とから成る軸方向制御電磁石
(8)(9)をそれぞれ各回転部材(2)(3)とは非
接触に配設し、上記両回転部材(2)(3)の間に導電
材から成る自由揺動体(14)を非接触で配設すると共
に、この自由揺動体(14)を粘弾性体(17)を介し
てステータ側に支持し、上記両回転部材(2)(3)の
対向面に互いに逆方向に着磁した複数のリング状の永久
磁石(4〜7)をそれぞれ同心円状に配設し、かつ両回
転部材(2)(3)の相対向する永久磁石(4〜7)を
それぞれ異極に着磁し、上記軸方向制御電磁石(8)
(9)のヨーク(10)(12)の磁極面を両回転部材
(2)(3)のそれぞれの永久磁石(4)〜(7)の磁
極面と対向配設し、上記自由揺動体(14)に上記いず
れかの回転部材(2)(3)の永久磁石(4)(5)の
磁極面の磁極とは異極に着磁した永久磁石(18)(1
9)を配設し、上記回転部材(2)(3)と自由揺動体
(14)との間の永久磁石(4)(5)(18)(1
9)の吸引力による径方向バネ定数と粘弾性体(17)
の径方向バネ定数とを自由揺動体(14)の共振点とロ
ータの共振点とが略一致するように設定したことを特徴
とする磁気軸受装置。
1. A pair of disk-shaped rotating members (2) (3) made of a conductive material are provided at a predetermined interval on the outer circumference of a rotor shaft (1) for rotating a rotor, and each rotating member (2) is provided. Axial control electromagnets (8) and (9) composed of coils (11) and (13) and yokes (10) and (12) are not in contact with the rotating members (2) and (3), respectively, on both sides of (3). And a free oscillating body (14) made of a conductive material is disposed between the rotating members (2) and (3) without contact, and the free oscillating body (14) is attached to the viscoelastic body (17). ), And a plurality of ring-shaped permanent magnets (4 to 7), which are magnetized in opposite directions to each other on opposite surfaces of the rotating members (2) and (3), are concentrically arranged. And the permanent magnets (4 to 7) of the rotating members (2) and (3) facing each other are magnetized to different polarities, respectively. Axial control electromagnet (8)
The magnetic pole surfaces of the yokes (10) and (12) of (9) are arranged so as to face the magnetic pole surfaces of the permanent magnets (4) to (7) of the rotary members (2) and (3), respectively, and the free rocker ( 14) the permanent magnets (18) (1) magnetized to have different polarities from the magnetic poles of the magnetic pole surfaces of the permanent magnets (4) and (5) of the rotating members (2) and (3).
9), and the permanent magnets (4) (5) (18) (1) between the rotating members (2) (3) and the free oscillating body (14).
9) Radial spring constant and viscoelastic body (17)
The magnetic bearing device is characterized in that the radial spring constant is set so that the resonance point of the free oscillating body (14) and the resonance point of the rotor substantially coincide with each other.
JP22776993A 1993-07-30 1993-07-30 Magnetic bearing device Pending JPH0742735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22776993A JPH0742735A (en) 1993-07-30 1993-07-30 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22776993A JPH0742735A (en) 1993-07-30 1993-07-30 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH0742735A true JPH0742735A (en) 1995-02-10

Family

ID=16866096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22776993A Pending JPH0742735A (en) 1993-07-30 1993-07-30 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH0742735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041266B2 (en) 2010-03-11 2015-05-26 Korea Institute Of Machinery & Materials Magnetic bearing structure and turbo machine having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041266B2 (en) 2010-03-11 2015-05-26 Korea Institute Of Machinery & Materials Magnetic bearing structure and turbo machine having the same

Similar Documents

Publication Publication Date Title
US3959673A (en) Oscillation motors
US6213737B1 (en) Damper device and turbomolecular pump with damper device
US3304449A (en) Apparatus for producing sonic and ultrasonic oscillations
JPS5938457B2 (en) Rotor magnetic bearing mechanism
US20120098370A1 (en) Stabilization of flywheels
JPS645161B2 (en)
US6543289B1 (en) Rotational vibration testing apparatus
JPH11230255A (en) Inertia damper
JP3599529B2 (en) Vibration energy converter
JPH0742735A (en) Magnetic bearing device
JP2006075734A (en) Flat oscillating actuator
JP6166847B2 (en) Magnetic and / or electrostatic resonator
JPH06173948A (en) Magnetic damper device for magnetic bearing and magnetic bearing device
JPS5972973A (en) Ultrafine rotary actuator
JP2002034201A (en) Spindle motor
JPH112292A (en) Damper device
JPH02125105A (en) Magnetic bearing device
JP2000308291A (en) Electric motor
JPH1162878A (en) Turbo molecular pump
JPS5884220A (en) Magnetic bearing
JPH01307543A (en) Rotary magnetic damper
RU1778884C (en) Inertia damper
Nagaya et al. Permanent magnet pulse motor with high temperature superconducting levitation
JPH06249290A (en) Eddy current damper
JPS6211178Y2 (en)