JPH01307543A - Rotary magnetic damper - Google Patents

Rotary magnetic damper

Info

Publication number
JPH01307543A
JPH01307543A JP13655888A JP13655888A JPH01307543A JP H01307543 A JPH01307543 A JP H01307543A JP 13655888 A JP13655888 A JP 13655888A JP 13655888 A JP13655888 A JP 13655888A JP H01307543 A JPH01307543 A JP H01307543A
Authority
JP
Japan
Prior art keywords
disk
magnetic
conductor
rotation angle
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13655888A
Other languages
Japanese (ja)
Inventor
Hisami Kato
久美 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP13655888A priority Critical patent/JPH01307543A/en
Publication of JPH01307543A publication Critical patent/JPH01307543A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping

Abstract

PURPOSE:To obtain a damping characteristic relying on the rotation angle position of a disk in a rotary magnetic damper having a nonmagnetic conductor disk and a magnetic circuit by varying the wall thickness on the same circumference of the conductor disk in the circumferential direction. CONSTITUTION:A nonmagnetic disk 13 is joined to the end of the shaft 10 of a rotary body. When the disk 13 which is normally/reversely rotated integrally with the shaft 10 accompanying the drive of the rotary body cuts a magnetic flux in the void 16 of a magnetic circuit 14, an eddy current flows in the disk 13. The wall thickness on the same circumference of the conductor disk 13 is varied in the circumferential direction, to make a damping force larger in the rotation angle zone in the vicinity of the neutral position while making it smaller in other zones. Thereby, a damping characteristic relying on the rotation angle position of the disk can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この考案は回転磁気ダンパの改良に関する。[Detailed description of the invention] (Industrial application field) This invention relates to improvements in rotating magnetic dampers.

(従来の技術) 回転磁気ダンパは回転体に取り付けて、その回転振動を
減衰させるもので、例えば第4.5図のように構成され
る。1は回転体の袖で、この紬1はブラケット2により
ベアリング3を介し回転自由に支持され、紬1の先には
非磁性の導体(アルミニウム、#1など)により作られ
た円板4が結合される。5は永久磁石6により作られる
磁気回路を構成するヨークで、ヨーク5は磁気回路の空
N7内に円板4の外周部を位置させた状態で、非磁性の
ブラケット2に固定される。
(Prior Art) A rotating magnetic damper is attached to a rotating body to damp its rotational vibration, and is configured as shown in FIG. 4.5, for example. 1 is a sleeve of a rotating body, and this pongee 1 is rotatably supported by a bracket 2 via a bearing 3. At the tip of the pongee 1 is a disc 4 made of a non-magnetic conductor (aluminum, #1, etc.). be combined. Reference numeral 5 denotes a yoke constituting a magnetic circuit made of permanent magnets 6. The yoke 5 is fixed to the non-magnetic bracket 2 with the outer periphery of the disk 4 positioned within the air N7 of the magnetic circuit.

円板4が回転体の駆動により紬1と二体回転すると、円
板4にこれが磁気回路の空隙7内で磁束を切ることによ
り渦電流が流れる。その電磁作用にて円板4の回転速度
に比例する減衰トルク(電磁力)が発生し、回転体の速
度変動、回転振動を抑制するのである。
When the disc 4 rotates together with the pongee 1 due to the drive of the rotating body, this cuts the magnetic flux within the gap 7 of the magnetic circuit, causing an eddy current to flow in the disc 4. This electromagnetic action generates a damping torque (electromagnetic force) proportional to the rotational speed of the disc 4, suppressing speed fluctuations and rotational vibrations of the rotating body.

(発明が解決しようとする課題) ところで、このような回転磁気ダンパにあっては、減衰
係数(減衰トルク/回転角速度)が一義的に決まってし
まうが、回転体の振動状況によって減衰係数を可変とす
ることが望ましく、例えば回転体が±172回転内回転
転角180°の範囲で可逆的に回転)で使用される場合
には、中立位置付近 ′の回転角領域で減衰係数を大き
く、他の領域で小さ(したり、あるいはその逆の減衰特
性が要求されたりする。
(Problem to be solved by the invention) By the way, in such a rotating magnetic damper, the damping coefficient (damping torque/rotational angular velocity) is uniquely determined, but the damping coefficient can be varied depending on the vibration condition of the rotating body. For example, if the rotating body is used in a rotation range of ±172 rotations and reversible rotation angle of 180 degrees, the damping coefficient should be increased in the rotation angle region near the neutral position, and other A small (or vice versa) damping characteristic is required in the region of

そこで、この発明は円板の回転角位置に依存した減衰特
性が得られるようにした回転磁気ダンパの提供を目的と
する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a rotary magnetic damper that can obtain damping characteristics that depend on the rotational angular position of a disc.

(課題を解決するための手段) そのため、この発明は非磁性の導体円板と、その回転中
心に対してオフセットした位置で導体円板をよぎるよう
に磁界を形成する磁気回路とを備え、導体円板の回転に
伴って生じる渦電流の電磁作用にもとづき減衰トルクを
発生させる回転磁気ダンパにおいて、導体円板の同一円
周上の肉厚を周方向に変化させたものである。
(Means for Solving the Problems) Therefore, the present invention includes a non-magnetic conductor disk and a magnetic circuit that forms a magnetic field across the conductor disk at a position offset from the center of rotation of the conductor disk. In a rotating magnetic damper that generates damping torque based on the electromagnetic action of eddy currents generated as the disc rotates, the thickness of the conductor disc on the same circumference is varied in the circumferential direction.

(作用) これによると、磁界中で磁束を切る円板の体積(磁束に
さらされる面積X板厚)が円板の回転角位置によって変
化するため、円板の回転角位置によって発生減衰トルク
が変化し、回転角位置に依存した減衰特性が得られる。
(Effect) According to this, the volume of the disk that cuts magnetic flux in a magnetic field (area exposed to magnetic flux x plate thickness) changes depending on the rotational angular position of the disk, so the generated damping torque depends on the rotational angular position of the disk. This results in a damping characteristic that varies and depends on the rotational angular position.

(実施例) 第1図において、10はブラケット11によりベアリン
グ12を介し回転自由に支持した回転体の軸で、軸10
の先には非磁性の導体で作られた円板13が結合される
。14は永久磁石15により作られる磁気回路14を構
成するヨークで、ヨーク15は磁気回路14の空隙16
内に円板13の外周部を位置させた状態で非磁性のブラ
ケット11に固定される。
(Example) In FIG. 1, reference numeral 10 denotes the shaft of a rotating body supported by a bracket 11 through a bearing 12 for free rotation.
A disc 13 made of a non-magnetic conductor is coupled to the tip of the disc. 14 is a yoke that constitutes the magnetic circuit 14 made by the permanent magnet 15;
The disc 13 is fixed to the non-magnetic bracket 11 with the outer circumference of the disc 13 positioned inside.

そして、円板13は磁気回路14の空隙16内を通過す
る作動部分の体積(磁束にさらされる面積×板厚)が周
方向に変化するように形成される。
The disk 13 is formed such that the volume (area exposed to magnetic flux x plate thickness) of the active portion that passes through the air gap 16 of the magnetic circuit 14 changes in the circumferential direction.

具体的には回転体が±172回転内回転後運動すると想
定した場合、円板13の板厚を第2図でも示すように回
転体の中立位置付近の回転角領域で大きく、他の領域で
中立位置から離れるにしたがって次第に小さくなるよう
に設定する。
Specifically, when it is assumed that the rotating body rotates within ±172 rotations, the thickness of the disk 13 is large in the rotation angle region near the neutral position of the rotating body, and in other regions, as shown in Fig. 2. It is set so that it gradually becomes smaller as it moves away from the neutral position.

回転体の駆動に伴って紬10と一体に正逆回転する円板
13には、これが磁気回路14の空IFJI6内で磁束
をきることにより渦電流が流れ、その電磁作用により円
板13の回転速度に比例した減衰力が作用する。この減
衰力は円板13の磁気回路14の空隙16内を通過する
作動部分の体積にも比例するため、第3図で−示すよう
に円板13の板厚変化に応じ中立位置付近の回転角領域
で大きく、他の領域で中立位置から離れるにしたがって
小さくなるような減衰係数の変化特性が得られ、したが
って±172回転内回転後運動する回転体の回転振動の
効果的な減液も可能となる。
In the disk 13, which rotates forward and backward together with the pongee 10 as the rotating body is driven, an eddy current flows through the disk 13 by cutting the magnetic flux in the empty IFJI 6 of the magnetic circuit 14, and the rotation of the disk 13 is caused by the electromagnetic action. A damping force proportional to the speed acts. This damping force is also proportional to the volume of the actuating part passing through the air gap 16 of the magnetic circuit 14 of the disk 13, so as shown in FIG. A damping coefficient change characteristic that is large in the corner region and becomes smaller in other regions as the distance from the neutral position is obtained is obtained, and therefore it is possible to effectively reduce the rotational vibration of a rotating body that moves after rotation within ±172 rotations. becomes.

(発明の効果) ・ 以上要するにこの発明によれば、非磁性の導体円板
と、その回転中心に対してオフセットした位置で導体円
板をよぎるように磁界を形成する磁気回路とを備え、導
体円板の回転に伴って生じる渦電流の電磁作用にもとづ
き減衰トルクを発生させる回転磁気ダンパにおいて、導
体円板の同一円周上の肉厚を周方向に変化させただので
、円板の回転角位置に依存した減衰特性が得られる。
(Effects of the Invention) - In summary, according to the present invention, a non-magnetic conductor disk is provided with a magnetic circuit that forms a magnetic field across the conductor disk at a position offset from the center of rotation of the conductor disk. In a rotating magnetic damper that generates damping torque based on the electromagnetic action of eddy currents generated as the disk rotates, the thickness of the conductor disk on the same circumference is changed in the circumferential direction, so the rotation angle of the disk is A position-dependent damping characteristic is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す断面図、第2図は同じ
く円板作動部の展開形状図、第3図は同じく減衰係数の
変化特性図、第4図は従来装置の断面図、第5図はその
作動説明図である。 10・・・軸、13・・・円板、14・・・磁気回路、
16・・・空隙。 第1図 ゝゝト””””15 第3図 ハ 置 第4図    第5図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a developed shape diagram of the disc operating section, FIG. 3 is a diagram of the change characteristics of the damping coefficient, and FIG. 4 is a sectional view of a conventional device. FIG. 5 is an explanatory diagram of its operation. 10... Axis, 13... Disk, 14... Magnetic circuit,
16...Void. Figure 1: Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、非磁性の導体円板と、その回転中心に対してオフセ
ットした位置で導体円板をよぎるように磁界を形成する
磁気回路とを備え、導体円板の回転に伴って生じる渦電
流の電磁作用にもとづき減衰トルクを発生させる回転磁
気ダンパにおいて、導体円板の同一円周上の肉厚を周方
向に変化させたことを特徴とする回転磁気ダンパ。
1.Equipped with a non-magnetic conductor disk and a magnetic circuit that forms a magnetic field across the conductor disk at a position offset from the center of rotation, the electromagnetic field of eddy current generated as the conductor disk rotates. A rotary magnetic damper that generates damping torque based on action, characterized in that the thickness of a conductor disk on the same circumference is varied in the circumferential direction.
JP13655888A 1988-06-02 1988-06-02 Rotary magnetic damper Pending JPH01307543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13655888A JPH01307543A (en) 1988-06-02 1988-06-02 Rotary magnetic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13655888A JPH01307543A (en) 1988-06-02 1988-06-02 Rotary magnetic damper

Publications (1)

Publication Number Publication Date
JPH01307543A true JPH01307543A (en) 1989-12-12

Family

ID=15178039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13655888A Pending JPH01307543A (en) 1988-06-02 1988-06-02 Rotary magnetic damper

Country Status (1)

Country Link
JP (1) JPH01307543A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875694A3 (en) * 1997-04-18 2000-06-28 Ebara Corporation Damper device and turbomolecular pump with damper device
JP2003247600A (en) * 2002-02-26 2003-09-05 Nok Corp Torque fluctuation absorbing damper
WO2013104594A1 (en) * 2012-01-13 2013-07-18 Carl Zeiss Sports Optics Gmbh Image-stabilized long-range device
CN103742585A (en) * 2014-01-07 2014-04-23 中铁大桥局集团武汉桥梁科学研究院有限公司 Stay cable permanent magnet eddy current damper and damping generation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555454A (en) * 1978-06-28 1980-01-16 Toyota Motor Corp Device for suppressing fluctuation in torque of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555454A (en) * 1978-06-28 1980-01-16 Toyota Motor Corp Device for suppressing fluctuation in torque of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875694A3 (en) * 1997-04-18 2000-06-28 Ebara Corporation Damper device and turbomolecular pump with damper device
JP2003247600A (en) * 2002-02-26 2003-09-05 Nok Corp Torque fluctuation absorbing damper
WO2013104594A1 (en) * 2012-01-13 2013-07-18 Carl Zeiss Sports Optics Gmbh Image-stabilized long-range device
US9625734B2 (en) 2012-01-13 2017-04-18 Carl Zeiss Sports Optics Gmbh Image-stabilized long-range optical device
CN103742585A (en) * 2014-01-07 2014-04-23 中铁大桥局集团武汉桥梁科学研究院有限公司 Stay cable permanent magnet eddy current damper and damping generation method

Similar Documents

Publication Publication Date Title
JPS61175314A (en) Magnetic bearing
JPS6139839A (en) Torque motor
JPH01307543A (en) Rotary magnetic damper
JP2887338B2 (en) Magnetic coupling
JPS6327577B2 (en)
JPH01307542A (en) Rotary magnetic damper
JPH0648009B2 (en) Controlled axial magnetic bearing device
JP2004239799A (en) Rotation angle detecting device
JP2543854Y2 (en) motor
JPH09322474A (en) Spindle motor of which rotary shaft having magnetic bearings is fixed
WO2023189970A1 (en) Magnetic levitation motor
JPH06249290A (en) Eddy current damper
JPH0156627B2 (en)
JPH02435U (en)
JPS6035897Y2 (en) rotation detection device
JPS58221182A (en) Timer of eddy current plate type
JP3294501B2 (en) Rotary electromagnetic actuator
JPH03255220A (en) Magnetic bearing device
JP2000065568A (en) Inclination angle sensor
JPS60125414A (en) Magnetic bearing device
JPH01320347A (en) Rotary magnetic damper
JPS5854219A (en) Magnetic bearing
JPS5839251B2 (en) magnetic bearing device
JPS5854285B2 (en) Five-axis controlled magnetic bearing
RU1778884C (en) Inertia damper