JPH0742557A - Large two-cycle direct injection type methanol engine - Google Patents

Large two-cycle direct injection type methanol engine

Info

Publication number
JPH0742557A
JPH0742557A JP20460193A JP20460193A JPH0742557A JP H0742557 A JPH0742557 A JP H0742557A JP 20460193 A JP20460193 A JP 20460193A JP 20460193 A JP20460193 A JP 20460193A JP H0742557 A JPH0742557 A JP H0742557A
Authority
JP
Japan
Prior art keywords
nozzle
pilot
auxiliary fuel
spray
fuel valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20460193A
Other languages
Japanese (ja)
Inventor
Noriyasu Inanaga
紀康 稲永
Hirokazu Akagawa
裕和 赤川
Hiroaki Miyano
弥明 宮野
Kunihiko Shimoda
邦彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20460193A priority Critical patent/JPH0742557A/en
Publication of JPH0742557A publication Critical patent/JPH0742557A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To improve thermal efficiency and to reduce a production cost by a method wherein the composite angle of pilot methanol spray satisfies a specified expression while an inter-center distance between the nozzle of an auxiliary fuel value and a glow plug and a diameter of a nozzle satisfy a specified expression. CONSTITUTION:The axis CC1 of a nozzle for pilot spray C1 passing the nozzle center phi1 of an auxiliary fuel valve 1 and the axis CC2 of the nozzle for a pilot spray C2 have respective projections on a horizontal plane which are overlapped with each other. The axis CC1 has an upward angle thetaC1 to a horizontal line H1 passing through the tip of the nozzle and the axis CC2 has a downward angle thetaC2 to the horizontal line H1, and satisfy a condition of 20 deg.C<=(thetaC1+thetaC2)<=37.5 deg.. Nozzles for pilot sprays D1 and D2 from an auxiliary fuel valve 2 are formed in a similar manner described above. Provided a distance between the nozzle centers phi1 and phi2 of the auxiliary fuel valves 1 and 2 to the centers of glow plugs 3 and 4 is L and a diameter of a nozzle is dn, the glow plugs 3 and 4 are mounted so that an expression of 55<=(L/dn)<=120 is eastablished. This constitution performs reliable ignition of methanol spray, improves thermal efficiency, and reduces a production cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大型2サイクル直接噴射
式メタノールエンジンの燃焼室構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion chamber structure for a large two-cycle direct injection type methanol engine.

【0002】[0002]

【従来の技術】大型2サイクルメタノールエンジンに係
る従来技術による例として特願平3−87233の燃焼
室の縦断面図を示した図10を参照してその構成につい
て説明する。図において、1と2は副燃料弁、3と4は
グロープラグ、5と6は副燃焼室B1及びB2から主燃
焼室Aに通じる噴口部、7と8は主燃料弁であり、Uは
シリンダヘッド、Wは排気弁、Xはピストン、Yはシリ
ンダライナである。また、CとDは副燃料弁1と2から
噴射されるパイロット噴霧を表し、Z1,Z2,Z3は
主燃料弁7からの主噴霧を表している。
2. Description of the Related Art As an example of a conventional large-cycle two-cycle methanol engine, the structure thereof will be described with reference to FIG. 10 showing a vertical sectional view of a combustion chamber of Japanese Patent Application No. 3-87233. In the figure, 1 and 2 are auxiliary fuel valves, 3 and 4 are glow plugs, 5 and 6 are injection ports communicating from the auxiliary combustion chambers B1 and B2 to the main combustion chamber A, 7 and 8 are main fuel valves, and U is U. A cylinder head, W is an exhaust valve, X is a piston, and Y is a cylinder liner. Further, C and D represent pilot sprays injected from the auxiliary fuel valves 1 and 2, and Z1, Z2 and Z3 represent main sprays from the main fuel valve 7.

【0003】次にその作用について説明する。副燃料弁
1から副燃焼室B1内に噴射されたメタノールのパイロ
ット噴霧Cは、グロープラグ3により着火されて燃焼し
噴口部5から燃焼ガスが主燃焼室Aへ噴出する。副燃焼
室B2側でも同じ時期に同様にパイロット噴霧Dの着火
・燃焼があり噴口部6から燃焼ガスが主燃焼室へ噴出す
る。パイロット噴霧C,Dは副燃焼室B1,B2内では
安定した着火・燃焼が比較的容易であり、その燃焼ガス
の噴流がいわゆる種火となって主燃料弁7,8から主燃
焼室A内に噴射されるメタノールの主噴霧に着火し燃焼
させる。
Next, the operation will be described. The pilot spray C of methanol injected from the auxiliary fuel valve 1 into the auxiliary combustion chamber B1 is ignited by the glow plug 3 and burned, and combustion gas is ejected from the injection port 5 to the main combustion chamber A. On the side of the auxiliary combustion chamber B2 as well, the pilot spray D is similarly ignited and burned at the same time, and the combustion gas is ejected from the injection port portion 6 to the main combustion chamber. The pilot sprays C and D are relatively easy to ignite and burn stably in the sub-combustion chambers B1 and B2, and the jet flow of the combustion gas serves as so-called seed fire from the main fuel valves 7 and 8 to the main combustion chamber A. It ignites and burns the main spray of methanol injected into.

【0004】[0004]

【発明が解決しようとする課題】大型メタノールエンジ
ンにおいて副燃焼室方式が採用されるのは、副燃焼室で
は安定した着火・燃焼が比較的容易であり、噴口部から
噴出する燃焼ガスが種火となって主燃焼室内に噴射され
る主噴霧に確実に着火し燃焼させるからである。しかし
ながら、副燃焼室方式には次のような欠点がある。即
ち、パイロット噴霧C,Dの燃焼ガスは噴口部5,6で
絞られて噴出するため絞りによる損失があり、熱効率の
改善を図る際の妨げとなる。なお、噴口部5,6の焼損
や、副燃焼室B1,B2の信頼性確保が困難であるなど
の欠点もあり、又副燃焼室の形成に伴いエンジン自体の
生産コストの上昇を招くなどの問題点も指摘されてい
る。
The reason why the auxiliary combustion chamber system is adopted in the large-sized methanol engine is that stable ignition and combustion are relatively easy in the auxiliary combustion chamber, and the combustion gas ejected from the injection port is a pilot flame. This is because the main spray injected into the main combustion chamber is reliably ignited and burned. However, the auxiliary combustion chamber system has the following drawbacks. That is, since the combustion gases of the pilot sprays C and D are squeezed out by the injection ports 5 and 6 and are ejected, there is a loss due to the squeeze, which hinders improvement of thermal efficiency. In addition, there are drawbacks such as burnout of the injection ports 5, 6 and difficulty in ensuring the reliability of the auxiliary combustion chambers B1 and B2, and the production cost of the engine itself is increased due to the formation of the auxiliary combustion chamber. Problems have also been pointed out.

【0005】本発明の目的は前記欠点を解決し、起動時
や低負荷時においてもメタノール噴霧に確実に着火で
き、熱効率の向上や生産コストの低減を実現し得る信頼
性のある大型2サイクル直接噴射式メタノールエンジン
を提供するにある。
The object of the present invention is to solve the above-mentioned drawbacks and to reliably ignite the methanol spray even at the time of start-up or low load, and to provide a reliable large-sized two-cycle direct type which can improve the thermal efficiency and reduce the production cost. An injection type methanol engine is provided.

【0006】[0006]

【課題を解決するための手段】本発明の大型2サイクル
直接噴射式メタノールエンジンは、100%メタノール
を燃料とする大型2サイクル直接噴射式メタノールエン
ジンにおいて、シリンダの軸線に対称且つ一対となって
シリンダヘッドに装着される副燃料弁1,2及びグロー
プラグ3,4と、主燃料弁7,8とを有してなり、副燃
料弁から噴射されるパイロット噴霧の方向と主燃料弁か
ら噴射される主噴霧の方向はいずれも主燃焼室A内に生
成されるスワールと同一方向の成分を有する方向に噴射
され、前記各副燃料弁からはそれぞれの副燃料弁ごとに
2個のパイロット噴霧が噴射され、該パイロット噴射用
ノズルの噴口の軸線はその水平面への投影が重なり合
い、且つ副燃料弁のノズル先端を通る水平線に対して2
個の噴口の軸線は上向き角度θC1と下向き角度θC2
を有し、このパイロット噴霧の合成角度(θC1+θC
2)は20°≦(θC1+θC2)≦37.5°なる条
件を満足し、グロープラグ3,4は副燃料弁1,2のパ
イロット噴霧の噴口の軸線の延長上に装着され、副燃料
弁のノズルとグロープラグの中心間距離をLとし、ノズ
ル噴口径をdnとするとき、55≦(L/dn)≦12
0なる条件を満足することを特徴とする。
A large two-cycle direct injection type methanol engine of the present invention is a large two-cycle direct injection type methanol engine using 100% methanol as a fuel, and is a cylinder paired symmetrically with a cylinder axis. It has auxiliary fuel valves 1 and 2 and glow plugs 3 and 4 mounted on the head, and main fuel valves 7 and 8, and the direction of pilot spray injected from the auxiliary fuel valve and the injection from the main fuel valve. Each of the main spray directions is injected in a direction having a component in the same direction as the swirl generated in the main combustion chamber A, and two pilot sprays are provided from each of the sub fuel valves for each of the sub fuel valves. The axis of the injection port of the pilot injection nozzle overlaps with its projection on the horizontal plane and is 2 with respect to the horizontal line passing through the nozzle tip of the auxiliary fuel valve.
The axis of each nozzle has an upward angle θC1 and a downward angle θC2.
And the combined angle (θC1 + θC
2) satisfies the condition of 20 ° ≦ (θC1 + θC2) ≦ 37.5 °, and the glow plugs 3 and 4 are mounted on the extension of the axis of the pilot spray nozzles of the auxiliary fuel valves 1 and 2, and When the distance between the centers of the nozzle and the glow plug is L and the nozzle injection port diameter is dn, 55 ≦ (L / dn) ≦ 12
It is characterized in that the condition of 0 is satisfied.

【0007】[0007]

【作用】本発明による大型2サイクルメタノールエンジ
ンは直接噴射方式を採用して前記のように構成されてい
るので次のような作用効果が得られる。メタノールエン
ジンでは始動時や低負荷時において燃焼が不安定になり
やすく、その際の着火の良否判定の指標として全炭化水
素排出濃度に着目する。副燃料弁1,2のそれぞれから
ノズルの噴口の軸線が上向き角度θC1と下向き角度θ
C2のパイロットメタノール噴霧が噴射されるが、その
合成角度(θC1+θC2)を適当に設定することによ
り、前記した全炭化水素排出濃度の低減を図ることがで
きる。図7に(θC1+θC2)の値と全炭化水素排出
濃度の関係についての実験結果の一例を示した。二点鎖
線で表した従来技術による副燃焼室方式での1/4負荷
時の値と比べ、(θC1+θC2)の値を20°≦(θ
C1+θC2)≦37.5°に設定した領域において全
炭化水素排出濃度の低減が見られ、パイロット噴射によ
る着火が安定して行われていると判定できる。
The large-sized two-cycle methanol engine according to the present invention adopts the direct injection system and is constructed as described above, so that the following effects can be obtained. Combustion tends to be unstable in a methanol engine at the time of starting or under low load, and attention is paid to the total hydrocarbon emission concentration as an index for determining the quality of ignition at that time. From each of the sub fuel valves 1 and 2, the axis of the nozzle nozzle has an upward angle θC1 and a downward angle θ.
Although the C2 pilot methanol spray is injected, by appropriately setting the synthetic angle (θC1 + θC2), the above-mentioned total hydrocarbon emission concentration can be reduced. FIG. 7 shows an example of experimental results regarding the relationship between the value of (θC1 + θC2) and the total hydrocarbon emission concentration. Compared with the value at the time of ¼ load in the auxiliary combustion chamber system according to the conventional technique represented by the two-dot chain line, the value of (θC1 + θC2) is 20 ° ≦ (θ
C1 + θC2) ≦ 37.5 ° was found in the region set to 37.5 °, and it can be determined that ignition by pilot injection is being performed stably.

【0008】着火性向上の更なる条件が、副燃料弁のノ
ズルとグロープラグの中心間距離Lである。パイロット
噴射用ノズルの噴口の径をdnとし、(L/dn)で無
次元中心間距離を定義し、図8に無次元のノズル・グロ
ープラグ間距離(L/dn)と全炭化水素排出濃度の関
係について前述の(θC1+θC2)を35°としたと
きの実験結果の一例を示した。点線によって表して従来
技術による副燃焼室方式での1/4負荷時の値と比べ、
(L/dn)の値を55≦(L/dn)≦120とした
領域において全炭化水素排出濃度の低減が見られ着火性
の向上が図られていると判定できる。
A further condition for improving the ignitability is the distance L between the center of the nozzle of the auxiliary fuel valve and the glow plug. Let the diameter of the nozzle of the pilot injection nozzle be dn, and define the dimensionless center-to-center distance by (L / dn). Figure 8 shows the dimensionless nozzle-glow plug distance (L / dn) and total hydrocarbon emission concentration. Regarding the relationship of, the example of the experimental result when (θC1 + θC2) is set to 35 ° is shown. Expressed by a dotted line, compared with the value at the time of ¼ load in the auxiliary combustion chamber method according to the conventional technique,
In the region where the value of (L / dn) is 55 ≦ (L / dn) ≦ 120, it can be determined that the total hydrocarbon emission concentration is reduced and the ignitability is improved.

【0009】[0009]

【実施例】本発明は燃焼室が主燃焼室のみからなる大型
2サイクル直接噴射式のメタノールエンジンで、使用燃
料はパイロット噴射を含み100%メタノールであり、
特定の始動用補助燃料等は使用しない。図1,図4は本
発明の第1実施例に係る直接噴射式メタノールエンジン
の主燃料弁の配置構造を示す縦断面図で、図2,図5は
図1のエンジンにおける副燃料弁とグロープラグの配置
構造を示す縦断面図である。図3,図6には図1,図2
及び図3,図4に示したエンジンの主燃焼室内における
噴霧パターンの説明図を示した。図1〜6を参照してそ
の構成について説明する。これらの図において、1と2
は副燃料弁、3と4はグロープラグ、7と8は主燃料
弁、Aは主燃焼室、Uはシリンダヘッド、Wは排気弁、
Xはピストンである。主燃焼室Aはシリンダの上部にピ
ストンX、排気弁W及びシリンダヘッドUによって囲ま
れる空間で形成され、主燃料弁7,8と副燃料弁1,2
及びグロープラグ3,4がシリンダの軸線に対して対称
に一対となって装着されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a large two-cycle direct injection type methanol engine in which the combustion chamber is composed of only the main combustion chamber, and the fuel used is 100% methanol including pilot injection,
No specific auxiliary fuel for starting is used. 1 and 4 are longitudinal sectional views showing the arrangement structure of the main fuel valve of the direct injection type methanol engine according to the first embodiment of the present invention, and FIGS. 2 and 5 are the auxiliary fuel valve and the glow in the engine of FIG. It is a longitudinal cross-sectional view showing the arrangement structure of the plug. FIGS. 3 and 6 show FIGS.
3 and 4 are explanatory views of the spray pattern in the main combustion chamber of the engine shown in FIGS. The configuration will be described with reference to FIGS. In these figures, 1 and 2
Is a sub fuel valve, 3 and 4 are glow plugs, 7 and 8 are main fuel valves, A is a main combustion chamber, U is a cylinder head, W is an exhaust valve,
X is a piston. The main combustion chamber A is formed in the upper part of the cylinder in a space surrounded by the piston X, the exhaust valve W, and the cylinder head U, and the main fuel valves 7 and 8 and the auxiliary fuel valves 1 and 2 are formed.
The glow plugs 3 and 4 are mounted in a pair symmetrically with respect to the axis of the cylinder.

【0010】主燃料弁7から、メタノール主噴霧Z1,
Z2,Z3が噴射され、主燃料弁8からも主噴霧Y1,
Y2,Y3が噴射されるが、これら主噴霧の噴射方向は
主燃焼室内に生成されるスワールの方向成分と同一の方
向を指向している。副燃料弁1からメタノールパイロッ
ト噴霧C1,C2が噴射され、副燃料弁2からもパイロ
ット噴霧D1,D2が噴霧されるが、これらパイロット
噴霧の噴射方向は前記主噴霧と同様に主燃焼室内に生成
されるスワールと同一方向の成分を有する方向に噴射さ
れる。なお、副燃料弁1のノズル中心φ1を通るパイロ
ット噴霧C1の噴口の軸線CC1と、パイロット噴霧C
2の噴口の軸線CC2は、その水平面への投影は重なり
合い、且つノズルの先端を通る水平線H1に対して上向
き角度θC1と下向き角度θC2を有し、20°≦(θ
C1+θC2)≦37.5°となるように構成されてい
る。副燃料弁2からのパイロット噴霧D1及びD2の噴
口についても同様な構成とされている。
From the main fuel valve 7, methanol main spray Z1,
Z2 and Z3 are injected, and main spray Y1 is also supplied from the main fuel valve 8.
Although Y2 and Y3 are injected, the injection direction of these main sprays is the same as the direction component of the swirl generated in the main combustion chamber. Methanol pilot sprays C1 and C2 are injected from the sub fuel valve 1 and pilot sprays D1 and D2 are also sprayed from the sub fuel valve 2. The injection direction of these pilot sprays is generated in the main combustion chamber as in the case of the main spray. It is injected in a direction having a component in the same direction as the swirl. In addition, the axis CC1 of the nozzle of the pilot spray C1 passing through the nozzle center φ1 of the auxiliary fuel valve 1 and the pilot spray C
The projections of the two nozzles on the horizontal plane of the nozzle line CC2 overlap each other, and have an upward angle θC1 and a downward angle θC2 with respect to a horizontal line H1 passing through the tip of the nozzle, and 20 ° ≦ (θ
C1 + θC2) ≦ 37.5 °. The injection ports of the pilot sprays D1 and D2 from the sub fuel valve 2 have the same structure.

【0011】グロープラグ3は副燃料弁1のパイロット
噴霧C1,C2の噴口の軸線CC1,CC2(両軸線の
水平面への投影は重なり合う)の延長上に装着される。
また、グロープラグ4は副燃料弁のパイロット噴霧D
1,D2に対応して同様に装着される。なお、副燃料弁
1,2のノズル中心φ1,φ2からグロープラグ3,4
の中心までの距離をLとし、ノズル噴口径をdnとする
とき、55≦(L/dn)≦120となるようにグロー
プラグ3,4が装着されている。
The glow plug 3 is mounted on an extension of the axial lines CC1 and CC2 (both projections of the axial lines overlap on the horizontal plane) of the injection ports of the pilot sprays C1 and C2 of the auxiliary fuel valve 1.
Further, the glow plug 4 is a pilot fuel spray D for the auxiliary fuel valve.
Corresponding to 1 and D2, it is installed similarly. In addition, from the nozzle centers φ1 and φ2 of the auxiliary fuel valves 1 and 2, to the glow plugs 3 and 4
The glow plugs 3 and 4 are attached so that 55 ≦ (L / dn) ≦ 120, where L is the distance to the center of the nozzle and dn is the nozzle orifice diameter.

【0012】次に前記した構成による作用とその効果に
ついて説明する。副燃料弁1及び2からスワールの方向
に沿って噴射されたメタノールパイロット噴霧C1及び
D1は、それぞれに対応して装着されたグロープラグ3
及び4に接触し加熱されて着火し、その反応熱によりパ
イロット噴霧C2及びD2も着火してパイロット噴霧流
全体としての火炎流を生成する。該パイロット噴霧流に
より生成された火炎流に衝突するように主燃料弁7及び
8からメタノール主噴霧を噴射し着火・燃焼させる。こ
の構成とすることにより従来は副燃焼室方式に依存して
いた的確な着火、安定した燃焼が直接噴射方式において
も実現し得るようになった。
Next, the operation and effect of the above configuration will be described. The methanol pilot sprays C1 and D1 injected from the auxiliary fuel valves 1 and 2 along the swirl direction are respectively attached to the glow plugs 3
And 4 are contacted and heated to ignite, and the heat of reaction also ignites the pilot sprays C2 and D2 to generate a flame flow as the entire pilot spray flow. Methanol main spray is injected from the main fuel valves 7 and 8 so as to collide with the flame flow generated by the pilot spray flow, and is ignited and burned. With this configuration, accurate ignition and stable combustion, which have hitherto depended on the auxiliary combustion chamber method, can be realized even in the direct injection method.

【0013】メタノールエンジンでは着火の良否判定の
指標として全炭化水素排出濃度に着目する。図7に副燃
料弁用ノズルの噴口の軸線の上向き角度θC1と下向き
角度θC2の合成角度(θC1+θC2)の値と全炭化
水素排出濃度の関係についての実験結果の一例を示し
た。二点鎖線で表した従来技術による副燃焼室方式での
1/4負荷時の値と比べ、(θC1+θC2)の値を2
0°≦(θC1+θC2)≦37.5°に設定した領域
において全炭化水素排出濃度の低減が見られ、パイロッ
ト噴射による着火が安定して行われていると判定でき
る。
In a methanol engine, attention is paid to the total hydrocarbon emission concentration as an index for determining the quality of ignition. FIG. 7 shows an example of the experimental results on the relationship between the total hydrocarbon discharge concentration and the value of the combined angle (θC1 + θC2) of the upward angle θC1 and the downward angle θC2 of the axis of the nozzle of the auxiliary fuel valve. Compared with the value at the time of 1/4 load in the auxiliary combustion chamber system according to the conventional technique represented by the two-dot chain line, the value of (θC1 + θC2) is 2
A reduction in the total hydrocarbon emission concentration was observed in the region set to 0 ° ≦ (θC1 + θC2) ≦ 37.5 °, and it can be determined that ignition by pilot injection is being performed stably.

【0014】着火性向上の更なる条件が、副燃料弁のノ
ズルとグロープラグの中心間距離Lである。パイロット
噴射用ノズルの噴口の径をdnとして(L/dn)で無
次元中心間距離を定義し、図8に無次元中心間距離(L
/dn)と全炭化水素濃度の関係について、前記した
(θC1+θC2)を35°としたときの実験結果の一
例を示した。点線で表した従来技術による副燃焼室方式
での1/4負荷時の値と比べると(L/dn)の値を5
5≦(L/dn)≦120とした領域において全炭化水
素排出濃度の低減が見られ着火性の向上が図られている
と判定できる。
A further condition for improving the ignitability is the distance L between the nozzle of the auxiliary fuel valve and the center of the glow plug. Letting the diameter of the nozzle of the pilot injection nozzle be dn, the dimensionless center-to-center distance is defined as (L / dn).
Regarding the relationship between / dn) and the total hydrocarbon concentration, an example of the experimental result when (θC1 + θC2) is set to 35 ° is shown. The value of (L / dn) is 5 when compared with the value at the time of 1/4 load in the auxiliary combustion chamber system according to the prior art represented by the dotted line.
In the region of 5 ≦ (L / dn) ≦ 120, it can be determined that the total hydrocarbon emission concentration is reduced and the ignitability is improved.

【0015】図9に本発明の第2実施例に係るエンジン
の主燃焼室内における噴霧パターンの説明図を示した。
第1実施例と異って、副燃料弁1は主燃料弁7に対して
スワールSWの下流側に配設されている。この第2実施
例においても、図7及び図8に示した実験結果と同様な
データが得られている。
FIG. 9 is an explanatory view of the spray pattern in the main combustion chamber of the engine according to the second embodiment of the present invention.
Unlike the first embodiment, the sub fuel valve 1 is arranged downstream of the swirl SW with respect to the main fuel valve 7. Also in this second embodiment, the same data as the experimental results shown in FIGS. 7 and 8 are obtained.

【0016】[0016]

【発明の効果】本発明により、従来は副燃焼室方式に依
存していた的確な着火、安定した燃焼が、直接噴射方式
において実現し得るようになった。これにより、起動時
や低負荷時にもメタノール噴霧に確実に着火でき、熱効
率の向上、生産コストの低減を図り、信頼性の高い大型
2サイクル直接噴射式メタノールエンジンを提供し得る
ようになった。
According to the present invention, accurate ignition and stable combustion, which have hitherto depended on the auxiliary combustion chamber system, can be realized by the direct injection system. As a result, the methanol spray can be reliably ignited even at startup or under a low load, thermal efficiency can be improved, production cost can be reduced, and a highly reliable large two-cycle direct injection type methanol engine can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る大型2サイクル直接
噴射式メタノールエンジンの主燃料弁からの噴霧パター
ンとその配置構造を示す縦断面図
FIG. 1 is a vertical cross-sectional view showing a spray pattern from a main fuel valve of a large two-cycle direct injection type methanol engine according to a first embodiment of the present invention and an arrangement structure thereof.

【図2】図1のエンジンにおける副燃料弁からのパイロ
ット噴霧パターンとグロープラグの配置構造を示す縦断
面図
2 is a longitudinal sectional view showing a pilot spray pattern from a sub fuel valve and an arrangement structure of a glow plug in the engine of FIG.

【図3】図1及び図2に示したエンジンの主燃焼室内に
おける主・副燃料弁、グロープラグの配置及び噴霧パタ
ーンの説明平面図
FIG. 3 is an explanatory plan view of arrangements of main / sub fuel valves, glow plugs, and spray patterns in the main combustion chamber of the engine shown in FIGS. 1 and 2;

【図4】図1のエンジンにおける主噴霧の噴射方向を示
す縦断面図
4 is a vertical cross-sectional view showing the injection direction of the main spray in the engine of FIG.

【図5】図1のエンジンにおける副燃料弁からのパイロ
ット噴霧についての説明用縦断面図
5 is a longitudinal sectional view for explaining pilot spray from the auxiliary fuel valve in the engine of FIG.

【図6】図4及び図5における主・副燃料弁のノズル噴
口の軸線及びグロープラグ配置の説明平面図
6 is an explanatory plan view of an axis line of a nozzle injection port of a main / sub fuel valve and a glow plug arrangement in FIGS. 4 and 5; FIG.

【図7】本発明に係るメタノールエンジンにおけるパイ
ロット噴霧用ノズルの噴口軸線の合成角度と全炭化水素
排出濃度についての実験結果の一例図
FIG. 7 is a diagram showing an example of experimental results on the combined angle of the nozzle axis of the pilot spray nozzle and the total hydrocarbon emission concentration in the methanol engine according to the present invention.

【図8】本発明に係るメタノールエンジンにおける副燃
料弁ノズルとグロープラグの中心間距離Lと前記ノズル
の噴口径dnとによる無次元中心距離(L/dn)につ
いての全炭化水素排出濃度の実験結果の一例図
FIG. 8: Experiment of total hydrocarbon emission concentration about dimensionless center distance (L / dn) by center distance L between auxiliary fuel valve nozzle and glow plug and methanol nozzle diameter dn in methanol engine according to the present invention An example of the result

【図9】本発明の第2実施例に係るメタノールエンジン
の主燃焼室内における配置構造の説明平面図
FIG. 9 is an explanatory plan view of the arrangement structure in the main combustion chamber of the methanol engine according to the second embodiment of the present invention.

【図10】従来の技術による副燃焼室方式のメタノール
エンジンの燃焼室の縦断面図。
FIG. 10 is a vertical cross-sectional view of a combustion chamber of a methanol engine of a sub combustion chamber type according to the related art.

【符号の説明】[Explanation of symbols]

1,2…副燃料弁、3,4…グロープラグ、7,8…主
燃料弁、A…主燃焼室、U…シリンダヘッド、W…排気
弁、X…ピストン、Z1,Z2,Z3,Y1,Y2,Y
3…メタノール主噴霧、C1,C2,D1,D2…メタ
ノールパイロット噴霧、SW…スワール、φ1,φ2…
副燃料弁ノズル中心、H1…水平線、CC1,CC2…
パイロット噴霧噴口軸線、θC1…噴口軸線CC1の上
向き角度、θC2…噴口軸線CC2の下向き角度、dn
…副燃料弁ノズル噴口径、L…副燃料弁ノズルとグロー
プラグの中心間距離。
1, 2 ... Sub fuel valve, 3, 4 ... Glow plug, 7, 8 ... Main fuel valve, A ... Main combustion chamber, U ... Cylinder head, W ... Exhaust valve, X ... Piston, Z1, Z2, Z3, Y1 , Y2, Y
3 ... Methanol main spray, C1, C2, D1, D2 ... Methanol pilot spray, SW ... Swirl, φ1, φ2 ...
Center of sub fuel valve nozzle, H1 ... Horizontal line, CC1, CC2 ...
Pilot spray nozzle axis, θC1 ... Angle upward of nozzle axis CC1, θC2 ... Angle downward of nozzle axis CC2, dn
... diameter of the auxiliary fuel valve nozzle, L ... distance between the auxiliary fuel valve nozzle and the center of the glow plug.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月24日[Submission date] September 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】着火性向上の更なる条件が、副燃料弁のノ
ズルとグロープラグの中心間距離Lである。パイロット
噴射用ノズルの噴口の径をdnとLて(L/dn)で無
次元中心間距離を定義し、図8に無次元中心間距離(L
/dn)と全炭化水素排出濃度の関係について、前記し
た(θC1+θC2)を35°としたときの実験結果の
一例を示した。点線で表した従来技術による副燃焼室方
式での1/4負荷時の値と比べると(L/dn)の値を
55≦(L/dn)≦120とした領域において全炭化
水素排出濃度の低減が見られ着火性の向上が図られてい
ると判定できる。
A further condition for improving the ignitability is the distance L between the nozzle of the auxiliary fuel valve and the center of the glow plug. The dimensionless center-to-center distance is defined by defining the nozzle diameter of the pilot injection nozzle as dn and L (L / dn).
Regarding the relationship between / dn) and the total hydrocarbon discharge concentration, an example of the experimental result when (θC1 + θC2) is set to 35 ° is shown. Compared with the value at the time of 1/4 load in the auxiliary combustion chamber system according to the prior art represented by the dotted line, the value of (L / dn) is 55 ≦ (L / dn) ≦ 120 It can be judged that the reduction is seen and the ignition performance is improved.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02P 19/00 A (72)発明者 下田 邦彦 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F02P 19/00 A (72) Inventor Kunihiko Shimoda 12 Nishiki-cho, Naka-ku, Yokohama-shi, Kanagawa Mitsubishi Heavy Industries Shares Company Yokohama Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 100%メタノールを燃料とする大型2
サイクル直接噴射式メタノールエンジンにおいて、シリ
ンダの軸線に対称且つ一対となってシリンダヘッドに装
着される副燃料弁(1),(2)及びグロープラグ
(3),(4)と、主燃料弁(7),(8)とを有して
なり、副燃料弁から噴射されるパイロット噴霧の方向と
主燃料弁から噴射される主噴霧の方向はいずれも主燃焼
室A内に生成されるスワールと同一方向の成分を有する
方向に噴射され、前記各副燃料弁からはそれぞれの副燃
料弁ごとに2個のパイロット噴霧が噴射され、該パイロ
ット噴射用ノズルの噴口の軸線はその水平面への投影が
重なり合い、且つ副燃料弁のノズル先端を通る水平線に
対して2個の噴口の軸線は上向き角度θC1と下向き角
度θC2を有し、このパイロット噴霧の合成角度(θC
1+θC2)は20°≦(θC1+θC2)≦37.5
°なる条件を満足し、グロープラグ(3),(4)は副
燃料弁(1),(2)のパイロット噴霧の噴口の軸線の
延長上に装着され、副燃料弁のノズルとグロープラグの
中心間距離をLとし、ノズル噴口径をdnとするとき、
55≦(L/dn)≦120なる条件を満足することを
特徴とする大型2サイクル直接噴射式メタノールエンジ
ン。
1. A large size 2 using 100% methanol as fuel.
In a cycle direct injection type methanol engine, auxiliary fuel valves (1) and (2) and glow plugs (3) and (4), which are symmetrical to the axis of the cylinder and which are mounted on the cylinder head in pairs, and the main fuel valve ( 7) and (8), the direction of the pilot spray injected from the auxiliary fuel valve and the direction of the main spray injected from the main fuel valve are both swirl generated in the main combustion chamber A. Two pilot sprays are injected from each of the auxiliary fuel valves for each auxiliary fuel valve, and the axis of the injection port of the pilot injection nozzle is projected on its horizontal plane. The axes of the two nozzles have an upward angle θC1 and a downward angle θC2 with respect to a horizontal line that overlaps and passes through the nozzle tip of the auxiliary fuel valve. The combined angle (θC
1 + θC2) is 20 ° ≦ (θC1 + θC2) ≦ 37.5
Is satisfied, the glow plugs (3) and (4) are mounted on the extension of the axis of the pilot fuel spray nozzles of the auxiliary fuel valves (1) and (2), and the nozzles of the auxiliary fuel valve and the glow plug are attached. When the center-to-center distance is L and the nozzle nozzle diameter is dn,
A large two-cycle direct injection type methanol engine, which satisfies the condition of 55 ≦ (L / dn) ≦ 120.
JP20460193A 1993-07-27 1993-07-27 Large two-cycle direct injection type methanol engine Pending JPH0742557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20460193A JPH0742557A (en) 1993-07-27 1993-07-27 Large two-cycle direct injection type methanol engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20460193A JPH0742557A (en) 1993-07-27 1993-07-27 Large two-cycle direct injection type methanol engine

Publications (1)

Publication Number Publication Date
JPH0742557A true JPH0742557A (en) 1995-02-10

Family

ID=16493166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20460193A Pending JPH0742557A (en) 1993-07-27 1993-07-27 Large two-cycle direct injection type methanol engine

Country Status (1)

Country Link
JP (1) JPH0742557A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500301A (en) * 2014-09-29 2015-04-08 清华大学 Direct injection compression ignition engine and cold start method thereof
CN108457785A (en) * 2018-05-31 2018-08-28 广西玉柴机器股份有限公司 A kind of nozzle arrangements of heavy type methanol engine multi-point injection
WO2022208576A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208577A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208575A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208578A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500301A (en) * 2014-09-29 2015-04-08 清华大学 Direct injection compression ignition engine and cold start method thereof
CN108457785A (en) * 2018-05-31 2018-08-28 广西玉柴机器股份有限公司 A kind of nozzle arrangements of heavy type methanol engine multi-point injection
WO2022208576A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208577A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208575A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
WO2022208578A1 (en) * 2021-03-29 2022-10-06 三菱自動車工業株式会社 Engine control device
EP4279730A1 (en) * 2021-03-29 2023-11-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine control device
EP4279730A4 (en) * 2021-03-29 2024-05-15 Mitsubishi Motors Corp Engine control device

Similar Documents

Publication Publication Date Title
US20050211217A1 (en) Pre-chambered type spark plug with pre-chamber entirely below a bottom surface of a cylinder head
US5170758A (en) Valve-controlled internal combustion engine with air compression
US20050000484A1 (en) Pre-chambered type spark plug with a flat bottom being aligned with a bottom surface of a cylinder head
US11434811B2 (en) Combustion pre-chamber device for an internal combustion engine
JP2002276373A (en) Direct injection type internal combustion engine
JPH0742557A (en) Large two-cycle direct injection type methanol engine
US4059079A (en) Internal combustion engine
WO2022050123A1 (en) Spark plug for internal combustion engine and internal combustion engine having same
JP2721685B2 (en) Spark ignition gas engine
US4043309A (en) Internal combustion engine having auxiliary combustion chamber
US4048973A (en) Internal combustion engine provided with pre-combustion chamber
JP2778846B2 (en) Methanol engine
JP3160455B2 (en) Large side injection methanol engine
JPH0925823A (en) Pre-combustion chamber structure for methanol engine
JP3298361B2 (en) In-cylinder injection internal combustion engine
JP7487595B2 (en) Spark plug for internal combustion engine and internal combustion engine
JPS6144382Y2 (en)
JPH0742560A (en) Combustion chamber for methanol engine
JP2022114784A (en) Spark plug for internal combustion engine
JP2007273421A (en) Spark plug
JP2023016618A (en) Spark plug for internal combustion engine and internal combustion engine having the same
EP0156805A1 (en) Internal combustion engine, piston and heat plug having fuel diverting barrier means.
JPH0742433U (en) Engine spark plug mounting structure
JP2513233Y2 (en) Combustion chamber of a sub-chamber internal combustion engine
JP3046897B2 (en) Large side injection methanol engine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000815