JPH0742106B2 - Method for recovering cesium in aqueous solution - Google Patents

Method for recovering cesium in aqueous solution

Info

Publication number
JPH0742106B2
JPH0742106B2 JP4086309A JP8630992A JPH0742106B2 JP H0742106 B2 JPH0742106 B2 JP H0742106B2 JP 4086309 A JP4086309 A JP 4086309A JP 8630992 A JP8630992 A JP 8630992A JP H0742106 B2 JPH0742106 B2 JP H0742106B2
Authority
JP
Japan
Prior art keywords
cesium
solution
aqueous solution
nitric acid
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4086309A
Other languages
Japanese (ja)
Other versions
JPH05254828A (en
Inventor
原 紘 一 谷
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4086309A priority Critical patent/JPH0742106B2/en
Publication of JPH05254828A publication Critical patent/JPH05254828A/en
Publication of JPH0742106B2 publication Critical patent/JPH0742106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D17/00Rubidium, caesium or francium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セシウム含有水溶液中
よりセシウムを効率よく簡単に回収する方法に関するも
のである。さらに詳しくいえば、本発明は、使用済み核
燃料の再処理施設のような原子力利用に関連した施設か
ら発生する、硝酸又は硝酸ナトリウムを主成分として含
む廃液中の放射性セシウムの分離、回収に、特に好適な
セシウム回収方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently and easily recovering cesium from an aqueous solution containing cesium. More specifically, the present invention relates to the separation and recovery of radioactive cesium in waste liquid containing nitric acid or sodium nitrate as a main component, which is generated from a facility related to nuclear power utilization such as a spent nuclear fuel reprocessing facility. The present invention relates to a suitable cesium recovery method.

【0002】[0002]

【従来の技術】原子力関連施設において発生する廃液中
には、種々の放射性物質が含まれており、排出に先立っ
てこれを除去する必要がある。例えば使用済み核燃料の
再処理工程(ビューレックス法)から発生する高レベル
廃液は、比較的高濃度の硝酸又は硝酸ナトリウムを主成
分とし放射性セシウムその他の核種を含有している。
2. Description of the Related Art Waste liquid generated in nuclear facilities contains various radioactive substances, which must be removed prior to discharge. For example, the high-level waste liquid generated from the reprocessing process of spent nuclear fuel (Burex method) contains a relatively high concentration of nitric acid or sodium nitrate as a main component and contains radioactive cesium and other nuclides.

【0003】これまで、このような高レベル放射性廃液
中からセシウムを選択的に除く方法としては、不溶性フ
ェロシアン化物を吸着剤として用いる方法が提案されて
いる(特願平2−240420号)。また、この際、高
濃度硝酸溶液中においては、不溶性フェロシアン化物が
酸化されてその吸着能力を失うので、ある種の酸化防止
剤を併用し、吸着能力の低下を抑制することも提案され
ている(特願平3−142272号)。
A method using an insoluble ferrocyanide as an adsorbent has been proposed as a method for selectively removing cesium from such a high-level radioactive liquid waste (Japanese Patent Application No. 240240/1990). Further, at this time, in a high-concentration nitric acid solution, the insoluble ferrocyanide is oxidized and loses its adsorption ability. Therefore, it is also proposed to use a certain kind of antioxidant together to suppress the decrease in adsorption ability. (Japanese Patent Application No. 3-142272).

【0004】しかしながら、これらの方法において用い
られる不溶性フェロシアン化物は、セシウムに対する吸
着力が大きいため、いったんセシウムを吸着すると、こ
れを電解質溶液により脱着することが困難であり、再生
再利用することができず、使い捨て方式をとらざるを得
ないことになるが、使い捨て方式は高価な吸着剤を多量
に消費するように、放射性セシウム含有率の高い新たな
高レベル放射性廃棄物を大量に発生するという欠点があ
り、実用性は乏しい。
However, since the insoluble ferrocyanide used in these methods has a large adsorptivity for cesium, once cesium is adsorbed, it is difficult to desorb the cesium with an electrolyte solution, and it can be recycled and reused. It is not possible to do so, but it is inevitable that the disposable method will generate a large amount of new high-level radioactive waste with a high content of radioactive cesium so that the disposable method consumes a large amount of expensive adsorbent. It has drawbacks and poor practicality.

【0005】このため、吸着剤から放射性セシウムを効
率的に脱着し、分離回収した放射性セシウムを再利用す
るとともに、再生した吸着剤を循環再使用する方法の開
発が望まれていた。
Therefore, it has been desired to develop a method for efficiently desorbing radioactive cesium from the adsorbent, reusing the separated and recovered radioactive cesium, and recycling and reusing the regenerated adsorbent.

【0006】[0006]

【発明が解決しようとする課題】本発明は、水溶液中の
セシウムを高い選択率で吸着し、かつ容易にこれを脱着
することができる吸着剤を用い、セシウムの分離、回収
を繰り返し継続して行うことができるセシウムの回収方
法を提供することを目的としてなされてものである。
DISCLOSURE OF THE INVENTION The present invention uses an adsorbent capable of adsorbing cesium in an aqueous solution with a high selectivity and easily desorbing the cesium, and continuously separating and recovering cesium. The purpose is to provide a method of recovering cesium that can be carried out.

【0007】[0007]

【課題を解決するための手段】本発明者は、水溶液中の
セシウムを効率よく回収することができ、しかも繰り返
し使用できる吸着剤について種々研究を重ねた結果、一
般に不溶性フェロシアン化物は対応する不溶性フェリシ
アン化物よりもセシウムに対する吸着能力が大きいこ
と、したがって、フェロシアン化物としてセシウムを吸
着させたのち、これを対応するフェリシアン化物に変え
るとセシウムを脱着する点に着目し、これに基づいて本
発明をなすに至った。
The present inventor has conducted various studies on an adsorbent which can efficiently recover cesium in an aqueous solution and can be repeatedly used. As a result, insoluble ferrocyanide is generally insoluble. Based on the fact that the adsorption capacity for cesium is greater than that for ferricyanide, and that after cesium is adsorbed as a ferrocyanide and then converted to the corresponding ferricyanide, cesium is desorbed. Invented.

【0008】すなわち、本発明は、セシウム含有水溶液
を、還元状態の酸化‐還元型不溶性鉄シアノ錯塩と接触
させ、これにセシウムを吸着させて、水溶液から分離し
たのち、該酸化‐還元型不溶性鉄シアノ錯塩を酸化剤で
処理して酸化状態に変換しセシウムを脱着させることを
特徴とする水溶液中のセシウムの回収方法を提供するも
のである。
That is, according to the present invention, an aqueous solution containing cesium is brought into contact with an oxidized-reduced insoluble iron cyano complex salt in a reduced state, and cesium is adsorbed on the complex to separate it from the aqueous solution. The present invention provides a method for recovering cesium in an aqueous solution, which comprises treating a cyano complex salt with an oxidizing agent to convert it into an oxidized state and desorbing cesium.

【0009】本発明方法においてセシウムを吸着させる
ために用いる酸化‐還元型不溶性鉄シアノ錯塩の還元状
態のものとしては、一般式M[Fe(CN)](た
だしMはCu,Co,Ni,Zn,Cd,Mn,Feな
どの二価の遷移金属)で表わされるフェロシアン化物、
又はこれらのMの一部が、一価の陽イオンにより置換さ
れているフェロシアン化物や遷移金属の位置がMo,T
i,Wなどの酸化物で置き換わったフェロシアナイド
で、水に難溶のものを挙げることができ、特に好ましい
のは、フェロシアン化銅及びその銅の一部が一価の陽イ
オンによって置換されたものである。また、酸化状態の
ものとしては、上記のフェロシアン化物に対応するフェ
リシアン化物を挙げることができる。
In the reduced state of the oxidation-reduction insoluble iron cyano complex salt used for adsorbing cesium in the method of the present invention, the general formula M 2 [Fe (CN) 6 ] (where M is Cu, Co, Ni , Zn, Cd, Mn, Fe and other divalent transition metals),
Alternatively, some of these M are substituted with monovalent cations, and the positions of transition metals are Mo, T
Examples of ferrocyanide substituted by oxides such as i and W, which are sparingly soluble in water, include copper ferrocyanide and a part of the copper substituted by a monovalent cation. It is a thing. Moreover, as an oxidation state, the ferricyanide corresponding to the above-mentioned ferrocyanide can be mentioned.

【0010】これらの酸化‐還元型不溶性鉄シアノ錯塩
は、結晶粉末としてそのまま用いてもよいし、また無機
又は有機の多孔質担体に担持させて用いてもよい。この
使用量としては、水溶液中に存在するセシウムに対し、
通常、少なくとも当量、好ましくは2倍当量以上になる
量で用いられる。
These oxidized-reduced insoluble iron cyano complex salts may be used as a crystal powder as they are, or may be used by supporting them on an inorganic or organic porous carrier. As the amount of this used, relative to the cesium present in the aqueous solution,
Usually, it is used in an amount of at least equivalent, preferably double equivalent or more.

【0011】セシウム含有水溶液が高濃度の硝酸を含有
している場合には、硝酸により不溶性フェロシアン化物
がフェリシアン化物に酸化されるのを防止するための物
質を添加する必要がある。そして、不溶性フェロシアン
化物の硝酸による酸化には、亜硝酸が関与し、一定濃度
以上の亜硝酸が共存すると連鎖反応的に硝酸による酸化
が促進されるので、この連鎖反応をひき起こす濃度以下
に亜硝酸濃度を低下させる物質を加えればよい。この亜
硝酸濃度の臨界値は、硝酸濃度、温度、成分組成等のフ
ァクターにより若干変動するが、3Mの常温硝酸溶液に
おいては2×10 −5 M付近にあり、硝酸濃度や温度が
大きくなると低下する傾向がみられる。
When the cesium-containing aqueous solution contains a high concentration of nitric acid, it is necessary to add a substance for preventing the insoluble ferrocyanide from being oxidized to ferricyanide by nitric acid. In addition, nitric acid is involved in the oxidation of insoluble ferrocyanide by nitric acid, and when nitrite at a certain concentration or higher coexists, the oxidation by nitric acid is promoted in a chain reaction, so the concentration should be below the concentration that causes this chain reaction. A substance that reduces the nitrite concentration may be added. The critical value of this nitrous acid concentration varies slightly depending on factors such as nitric acid concentration, temperature, and component composition, but it is around 2 × 10 −5 M in a 3M room temperature nitric acid solution, and decreases as the nitric acid concentration and temperature increase. There is a tendency to do.

【0012】したがって、高濃度の硝酸を含む場合に
は、亜硝酸分解剤、例えば、ヒドラジン、アミド硫酸、
過酸化水素、レゾルシン、ヒドロキノン、メチルヒドロ
キノンなどの二価フェノール類、メチルヒドラジン、フ
ェニルヒドラジン、ジフェニルヒドラジンなどの有機ヒ
ドラジン類、チオグリコール酸、スルファニル酸、スル
ファニルアミド、ヨウ化水素酸、尿素などを単独又は2
種以上を十分な量で添加して亜硝酸の濃度を上記の臨界
値以下にしたのち、セシウムの吸着処理を行うことが必
要である。
Therefore, in the case of containing a high concentration of nitric acid, a nitrite decomposing agent such as hydrazine, amidosulfuric acid,
Dihydric phenols such as hydrogen peroxide, resorcin, hydroquinone and methylhydroquinone, organic hydrazines such as methylhydrazine, phenylhydrazine and diphenylhydrazine, thioglycolic acid, sulfanilic acid, sulfanilamide, hydroiodic acid and urea alone Or 2
It is necessary to add cesium or more in a sufficient amount to make the concentration of nitrous acid equal to or lower than the above-mentioned critical value, and then perform cesium adsorption treatment.

【0013】次に、本発明において、還元状態の不溶性
鉄シアノ錯塩に吸着されたセシウムを脱着するには、こ
れを酸化剤で処理して、酸化状態に変換することが必要
であるが、この際に用いる酸化剤としては、上記の臨界
値以上の亜硝酸を含む、濃度1モル以上の硝酸水溶液が
好適である。
Next, in the present invention, in order to desorb cesium adsorbed on the insoluble iron cyano complex salt in a reduced state, it is necessary to treat it with an oxidizing agent to convert it into an oxidized state. As the oxidizing agent used at this time, an aqueous nitric acid solution containing nitrous acid having a critical value or more and having a concentration of 1 mol or more is suitable.

【0014】この際の亜硝酸は、通常窒素酸化物例えば
酸化窒素、三酸化二窒素、二酸化窒素、四酸化二窒素
などとして、あるいは亜硝酸塩例えば亜硝酸ナトリウ
ム、亜硝酸カリウム、亜硝酸アンモニウムなどとして、
硝酸水溶液中に添加される。工業用硝酸は、通常十分な
濃度の亜硝酸を含んでいるので、3M以上の濃度で使用
する場合には、亜硝酸を添加する必要はない。しかし、
吸着工程で使用した亜硝酸分解剤の残留が認められる場
合には亜硝酸を適宜添加する必要がある。
[0014] Nitrite in this case, usually nitrogen oxides such one nitrogen, dinitrogen trioxide, nitrogen dioxide, as such dinitrogen tetroxide or nitrite such as sodium nitrite, potassium nitrite, as such ammonium nitrite,
It is added to the nitric acid aqueous solution. Industrial nitric acid is usually sufficient
Since it contains a concentration of nitrous acid, it is used at a concentration of 3M or more.
If so, it is not necessary to add nitrous acid. But,
When residual nitrous acid decomposer used in the adsorption process is observed
In this case, it is necessary to add nitrous acid appropriately.

【0015】酸化剤としては、このほか、過酸化物、過
硫酸なども用いることができる。
Other than the above, peroxides, persulfuric acid and the like can be used as the oxidizing agent.

【0016】還元状態の不溶性鉄シアノ錯塩に吸着され
たセシウムは、この不溶性鉄シアノ錯塩が酸化されて酸
化状態に変換されると同時に急速に脱着され、脱着剤溶
液中に溶離してくるので、これを蒸発、濃縮などによっ
て回収することができる。
Cesium adsorbed on the insoluble iron-cyano complex salt in the reduced state is rapidly desorbed at the same time as the insoluble iron-cyano complex salt is oxidized and converted to the oxidized state, and elutes in the desorbent solution. This can be recovered by evaporation, concentration or the like.

【0017】この際、硝酸水溶液のような揮発性の酸水
溶液を用いると、脱着処理液を加熱蒸発処理するだけで
脱着剤とセシウム塩とを回収することができるので有利
である。
At this time, it is advantageous to use a volatile aqueous acid solution such as a nitric acid aqueous solution because the desorbent and the cesium salt can be recovered only by heating and evaporating the desorption treatment solution.

【0018】セシウム吸着時の水素イオン濃度は亜硝酸
分解剤が有効に作用する6M以下が適当である。一方、
脱着時の水素イオン濃度は、脱着率を上げる上では高い
ほど好ましいが、使用する鉄シアノ錯塩系吸着体の酸に
対する安定性や装置等への影響を考慮すると12M以
下、好ましくは7M以下が適当である。酸化剤溶液の酸
濃度が比較的低い場合には、脱着セシウムの一部が酸化
された不溶性鉄シアノ錯塩の結晶格子内に吸蔵されるこ
とがある。特に多孔質担体に担持させて用いる場合に
は、担体の空孔内への吸蔵が著しいので、脱着率を上げ
るためには、脱着、固液分離した後の洗浄を入念に行う
必要がある。
The hydrogen ion concentration during the adsorption of cesium is preferably 6 M or less at which the nitrite decomposing agent effectively acts. on the other hand,
The hydrogen ion concentration during desorption is preferably as high as possible in order to increase the desorption rate, but considering the stability of the iron cyano complex salt-based adsorbent to be used against acid and the influence on the equipment, 12 M or less, preferably 7 M or less is suitable. Is. When the acid concentration of the oxidizing agent solution is relatively low, a part of the desorbed cesium may be occluded in the crystal lattice of the oxidized insoluble iron cyano complex salt. In particular, when the carrier is used by being supported on a porous carrier, since the carrier is remarkably occluded in the pores, it is necessary to carefully perform cleaning after desorption and solid-liquid separation in order to increase the desorption rate.

【0019】本発明方法においては、脱着後の酸化状態
にある不溶性鉄シアノ錯塩を還元処理して再生し、再度
セシウムの吸着剤として用いることができる。
In the method of the present invention, the insoluble iron cyano complex salt in the oxidized state after desorption can be reduced and regenerated to be used again as an adsorbent for cesium.

【0020】この再生の際に用いる還元剤としては、ヒ
ドラジン、ヒドラジン基を有する有機ヒドラジン類、二
価フェノール類、チオグリコール酸、ヒドロキシルアミ
ン、過酸化水素、第一ズズ塩、チオ硫酸塩、並びに亜硫
酸ガス、亜硫酸塩、重亜硫塩、亜二チオン酸塩等酸性溶
液中で亜硫酸を生成する物質を単独又は2種以上添加し
た水溶液が用いられる。なお、上記還元剤の多くは微量
の銅イオンによってフェリシアンの還元速度を著しく高
める性質があるため、本発明方法における不溶性鉄シア
ノ錯塩としては、銅を成分として含む不溶性フェロシア
ン化物、例えばフェロシアン化銅又はその一部が一価の
陽イオンによって置換されたものを用いるのが有利であ
る。
As the reducing agent used in this regeneration, hydrazine, organic hydrazines having a hydrazine group, dihydric phenols, thioglycolic acid, hydroxylamine, hydrogen peroxide, dihydrochloride, thiosulfate, and An aqueous solution obtained by adding a single substance or a mixture of two or more substances in an acidic solution such as sulfurous acid gas, sulfite salt, bisulfite salt, and dithionite salt is used. Since many of the above reducing agents have the property of significantly increasing the reduction rate of ferricyan by a trace amount of copper ions, the insoluble iron cyano complex salt in the method of the present invention is an insoluble ferrocyanide containing copper as a component, such as ferrocyanide. It is advantageous to use copper oxide or a part of which is replaced by a monovalent cation.

【0021】使用後の銅系の不溶性フェリシアン化物の
還元は、中性ないし微アルカリ性の条件下で、上記の還
元剤で処理するとほとんど瞬間的に進行する。特にヒド
ラジン及びその塩、亜硫酸ガス、亜硫酸塩、重亜硫酸
塩、亜二チオン酸塩、チオ硫酸塩、第一スズ塩、ヒドロ
キノン、メチルヒドロキノンなどの二価フェノール類、
フェニルヒドラジン等有機ヒドラジン類又はチオグリコ
ール酸を用いれば0.1M程度の酸酸性下でも速やか
に進むので、セシウム脱着後の水洗が不十分でもそれに
続く還元処理を効率よく行なうことができる。さらに、
これらの還元剤のなかでは、ヒドラジンおよびその塩、
ヒドロキノン、メチルヒドロキノンなどの二価フェノー
ル類、フェニルヒドラジン等有機ヒドラジン類またはチ
オグリコール酸がその強力な還元力を有すること、亜硝
酸分解剤として吸着工程への混入可能なこと、再生廃液
の処理に際して燃焼することなどの理由によって特に好
適である。
The reduction of the copper-based insoluble ferricyanide after use proceeds almost instantaneously when it is treated with the above reducing agent under neutral to slightly alkaline conditions. Especially hydrazine and its salts, sulfurous acid gas, sulfite, bisulfite, dithionite, thiosulfate, stannous salt, hydroquinone, dihydric phenols such as methylhydroquinone,
Since rapidly proceeds even under nitric acid acidity about 0.1M With the phenyl hydrazine and organic hydrazines, or thioglycolic acid can be washed with water after the cesium desorption performed efficiently subsequent reduction treatment even insufficient. further,
Among these reducing agents, hydrazine and its salts,
Divalent pheno such as hydroquinone and methylhydroquinone
Organic hydrazines such as phenylhydrazine and phenylhydrazine
Ogolic acid has its strong reducing power,
Can be mixed as an acid decomposer in the adsorption process, recycled waste liquid
Is especially preferable due to burning and other reasons.
It is suitable.

【0022】次に、本発明方法の好適な実施態様の1例
を添付図面に従って説明する。図1は、本発明方法の1
例を示すフローシートであり、吸着工程1でセシウム含
有水溶液を不溶性フェロシアン化物と接触させてセシウ
ムを吸着させ、固液分離してセシウムが除かれた溶液を
排出する。固体部分は次に脱着工程2に送られ、ここで
酸化剤で処理され、不溶性フェリシアン化物に変換さ
れ、セシウムが脱着される。次にセシウムを含む溶液
は、蒸発工程3に送られて、ここで溶媒を蒸発すること
によりセシウム塩が回収される。
Next, an example of a preferred embodiment of the method of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a method 1 of the present invention.
It is a flow sheet showing an example. In the adsorption step 1, a cesium-containing aqueous solution is brought into contact with an insoluble ferrocyanide to adsorb cesium, and solid-liquid separation is performed to discharge the cesium-free solution. The solid portion is then sent to desorption step 2, where it is treated with an oxidant and converted to insoluble ferricyanide to desorb cesium. Next, the solution containing cesium is sent to the evaporation step 3 where the solvent is evaporated to recover the cesium salt.

【0023】他方、脱着工程2で生成した不溶性フェリ
シアン化物は、再生工程4に送られ、ここで還元力のあ
る再生剤溶液と接触させて、再び不溶性フェロシアン化
物に変換し、吸着工程1に循環される。このようにし
て、不溶性フェロシアン化物は繰り返し使用されるが、
この際のセシウム吸着率は6回の再使用によっても、わ
ずか数%の低下が認められるのみである。
On the other hand, the insoluble ferricyanide produced in the desorption step 2 is sent to the regeneration step 4, where it is brought into contact with a regenerant solution having a reducing power to be converted into the insoluble ferrocyanide again, and the adsorption step 1 Is circulated to. In this way, the insoluble ferrocyanide is used repeatedly,
At this time, the cesium adsorption rate is only decreased by several% even after being reused 6 times.

【0024】本発明方法は、カラムを用いた連続法、回
分法のいずれの方式をとることができる。
The method of the present invention may be either a continuous method using a column or a batch method.

【0024】[0024]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。なお、各例中のセシウム量及び分布係数(K
d)及び鉄濃度は次の方法により求めた。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The amount of cesium and the distribution coefficient (K
d) and iron concentration were determined by the following methods.

【0025】(1)セシウム量;原子吸光光度法(空気
‐アセチレン炎)又は原子発光光度度(空気‐アセチレ
ン炎)により、増感剤として0.1M塩化カリウムを用
いて行った。
(1) Amount of cesium: The amount of cesium was measured by atomic absorption photometry (air-acetylene flame) or atomic emission photometry (air-acetylene flame) using 0.1 M potassium chloride as a sensitizer.

【0026】(2)分布係数(Kd);残留セシウム濃
度の測定結果に基づき、各吸着体のセシウム吸着力の指
標として、次式に従って分布係数を算出した。なお、式
中のCはセシウム初濃度(M)、Cはセシウム残留
濃度(M)、Lは液量(ミリリットル)、Wは吸着体重
量(グラム)である。
(2) Distribution coefficient (Kd): Based on the measurement result of the residual cesium concentration, the distribution coefficient was calculated according to the following formula as an index of the cesium adsorption force of each adsorbent. In the formula, C 1 is a cesium initial concentration (M), C 2 is a cesium residual concentration (M), L is a liquid amount (milliliter), and W is an adsorbent weight (gram).

【0027】[0027]

【数1】 [Equation 1]

【0028】(3)鉄濃度;処理液を希釈せずに、Fe
Clの0.1M塩酸溶液を標準液として原子吸光光度
法で測定した。
(3) Iron concentration; Fe
A 0.1 M hydrochloric acid solution of Cl 3 was used as a standard solution and measured by an atomic absorption photometry.

【0029】参考例1 塩化銅水溶液に、フェロシアン化ナトリウム水溶液をフ
ェロシアンに対する銅のモル比が2以上となるように添
加し、生成する沈殿をろ別した。次いでこの沈殿を水洗
し、風乾することによりフェロシアン化銅吸着体(以下
CuFCと略す)を調製した。
Reference Example 1 An aqueous solution of sodium ferrocyanide was added to a copper chloride aqueous solution so that the molar ratio of copper to ferrocyanine was 2 or more, and the resulting precipitate was filtered off. Next, this precipitate was washed with water and air-dried to prepare a copper ferrocyanide adsorbent (hereinafter abbreviated as CuFC).

【0030】また、フェロシアン化カリウム水溶液に、
化学量論的計算量の硫酸銅水溶液をそれぞれ添加し、生
成する沈殿を分離、水洗、風乾することにより、各種複
塩形のフェロシアン化銅カリウム吸着体(K2Cu3
C,K2Cu5FC,K2Cu11FC)を調製した。
Further, in an aqueous potassium ferrocyanide solution,
A stoichiometrically calculated amount of each copper sulfate aqueous solution was added, and the resulting precipitate was separated, washed with water, and air-dried to give various double salt forms of potassium potassium ferrocyanide adsorbent (K 2 Cu 3 F).
C, K 2 Cu 5 FC, K 2 Cu 11 FC) were prepared.

【0031】さらに硝酸銅又は硝酸亜鉛の水溶液にフェ
リシアン化ナトリウム水溶液をフェリシアンに対する銅
又は亜鉛のモル比が1.5以上になるように添加し、生
成する沈殿を分離、水洗、風乾することにより、フェリ
シアン化銅吸着体とフェリシアン化亜鉛吸着体を調製し
た。
Further, an aqueous solution of sodium ferricyanide is added to an aqueous solution of copper nitrate or zinc nitrate so that the molar ratio of copper or zinc to ferricyan is 1.5 or more, and the resulting precipitate is separated, washed with water and air-dried. Thus, a copper ferricyanide adsorbent and a zinc ferricyanide adsorbent were prepared.

【0032】参考例2 マクロポーラス陰イオン交換体(アンバーライトIRA
904)をフェロシアン化ナトリウム水溶液と接触させ
て、[Fe(CN)4−形に変換したのち、塩化銅
水溶液で処理し、フェロシアン化銅を樹脂の空孔内に沈
殿させた。この操作を2回繰り返したのち、水洗、風乾
することにより多孔質担体に担持したCuFC(以下I
RA904‐CuFCと略す)を調製した。このものの
60℃乾燥試料基準の重量増加はIRA904の1グラ
ム当り0.452グラムであった。
Reference Example 2 Macroporous anion exchanger (Amberlite IRA
904) was brought into contact with an aqueous sodium ferrocyanide solution to convert it into [Fe (CN) 6 ] 4- form, and then treated with an aqueous copper chloride solution to precipitate copper ferrocyanide in the pores of the resin. After this operation was repeated twice, CuFC (hereinafter referred to as I
RA904-CuFC) was prepared. The weight increase of this product on the basis of the sample dried at 60 ° C. was 0.452 g / g of IRA904.

【0033】参考例3 変色によりフェリシアン化物からフェロシアン化物への
還元を容易に視認できるフェリシアン化銅とフェリシア
ン化亜鉛を用いて酸性溶液(0.1M HNO)、中
性溶液(0.15M酢酸ナトリウム緩衝液)及び純水中
での各種還元剤による還元効果を試験した。試験方法
は、酸性溶液、中性溶液、又は純水に各還元剤を含ませ
た(10−2M)溶液2mlを試験管にとり、供試吸着
体を約2mg加えて変色効果を観察した。ヒドラジン塩
(塩酸塩、硝酸塩、硫酸塩)、チオ硫酸塩(ナトリウム
塩、アンモニウム塩)、亜硫酸塩(ナトリウム塩、カリ
ウム塩)、ヒドロキノン、塩酸フェニルヒドラジン、、
メチルヒドロキノン、チオグリコール酸ナトリウムは、
酸性溶液、中性溶液、純水のいずれの場合もフェリシア
ン化銅を速やかに還元し、黄褐色から赤褐色に変化させ
た。塩酸ヒドロキシルアミンは中性溶液や純水では速や
かに還元変色させたが、酸性溶液では無効であった。
Reference Example 3 Reduction of ferricyanide to ferrocyanide can be easily visually recognized by discoloration. Using copper ferricyanide and zinc ferricyanide, an acidic solution (0.1M HNO 3 ) and a neutral solution (0 The reducing effect of various reducing agents in 15 M sodium acetate buffer) and pure water was tested. As the test method, 2 ml of an acidic solution, a neutral solution, or a solution (10 −2 M) of each reducing agent in pure water was placed in a test tube, and about 2 mg of the test adsorbent was added to observe the discoloring effect. Hydrazine salt (hydrochloride, nitrate, sulfate), thiosulfate (sodium salt, ammonium salt), sulfite (sodium salt, potassium salt), hydroquinone, phenylhydrazine hydrochloride,
Methylhydroquinone, sodium thioglycolate,
Copper ferricyanide was rapidly reduced in any of the acidic solution, the neutral solution, and the pure water to change from yellowish brown to reddish brown. Hydroxylamine hydrochloride rapidly reduced and discolored in neutral solutions and pure water, but was ineffective in acidic solutions.

【0034】一方、フェリシアン化亜鉛に対しては、上
記の還元剤の中では、ヒドロキノン、塩酸フェニルヒド
ラジン、メチルヒドロキノンが中性溶液のみならず酸性
溶液でも有効であり、黄緑色より白色に速やかに変色し
た。亜硫酸塩、塩酸ヒドロキシルアミン、ヒドラジン塩
は酸性溶液では還元反応を呈しなかったが、中性溶液で
はかなり速やかに還元変色させ、純水では徐々に変色さ
せることが観察された。純水中で進みにくいのは還元に
伴うpH低下が原因であった。チオグリコール酸ナトリ
ウムとチオ硫酸塩は酸性溶液ではほとんんど還元作用を
示さず、中性溶液では徐々に還元変色させた。
On the other hand, for zinc ferricyanide, among the above reducing agents, hydroquinone, phenylhydrazine hydrochloride and methylhydroquinone are effective not only in a neutral solution but also in an acidic solution. Discolored. It was observed that sulfite, hydroxylamine hydrochloride, and hydrazine salt did not show a reduction reaction in an acidic solution, but reductively changed color in a neutral solution rather rapidly and gradually changed in pure water. The difficulty in proceeding in pure water was due to the decrease in pH accompanying reduction. Sodium thioglycolate and thiosulfate showed almost no reducing action in acidic solution, but gradually reduced and discolored in neutral solution.

【0035】塩化第一スズはフェリシアン化銅、フェリ
シアン化亜鉛に対して酸性溶液でのみ有効であった。過
酸化水素は酸性溶液や純水(過酸化水素存在下で微酸性
を呈す)では両フェリシアン化物に対して還元反応を呈
しなかったが、中性溶液中ではかなり速やかに還元変色
させることが観察された。
Stannous chloride was effective against copper ferricyanide and zinc ferricyanide only in an acidic solution. Hydrogen peroxide did not show a reduction reaction for both ferricyanides in acidic solution or pure water (which shows a slight acidity in the presence of hydrogen peroxide), but it can reductively change color in a neutral solution fairly quickly. Was observed.

【0036】実施例1 KCuFC風乾物0.02g(無水物換算)をねじ
蓋付三角フラスコに秤取し、亜硝酸分解剤として10
−4Mヒドラジンを含む2×10−3M CsCl/3
M HNO溶液10ml添加して、恒温振とう槽(2
5℃)中で振とうし、24時間吸着処理した。次いで。
四フッ化エチレン樹脂製フィルターを装着した減圧ろ過
装置でろ過(以下単にろ過という)し、ろ液中の残留セ
シウムと鉄濃度を分析した。吸着体は水洗ろ液のpHが
3以下になるまで水洗した。次いで脱着剤溶液として1
−2Mの亜硝酸含有3M硝酸10mlを用いて、吸着
体をできるだけねじ蓋付三角フラスコに移し、恒温振と
う槽(25℃)中で脱着処理した。24時間後ろ過し、
ろ液量を秤り、ろ液中の残留セシウムと鉄濃度を分析し
た。吸着体は水洗ろ液がpH3以下になるまで水洗し、
水洗ろ液量を秤り、水洗ろ液中の残留セシウム濃度を分
析した。
Example 1 0.02 g of K 2 Cu 3 FC air-dried material (calculated as an anhydride) was weighed in an Erlenmeyer flask equipped with a screw cap, and 10 wt.
2 × 10 −3 M CsCl / 3 containing −4 M hydrazine
Add 10 ml of MHNO 3 solution and incubate in a constant temperature shaker (2
The mixture was shaken in (5 ° C.) and subjected to adsorption treatment for 24 hours. Then.
Filtration (hereinafter simply referred to as filtration) was performed with a vacuum filtration device equipped with a tetrafluoroethylene resin filter, and the residual cesium and iron concentrations in the filtrate were analyzed. The adsorbent was washed with water until the pH of the washed filtrate was 3 or less. Then as desorbent solution 1
The adsorbent was transferred to an Erlenmeyer flask with a screw lid as much as possible using 10 ml of 3 M nitric acid containing 0 −2 M nitrous acid, and desorbed in a constant temperature shaking tank (25 ° C.). Filter after 24 hours,
The amount of the filtrate was weighed and the concentration of residual cesium and iron in the filtrate was analyzed. The adsorbent is washed with water until the pH of the washed filtrate is below pH 3,
The amount of the filtrate washed with water was weighed and the residual cesium concentration in the filtrate washed with water was analyzed.

【0037】次に、再生剤溶液として1.44×10
−2Mヒドラジンを含む0.1M硝酸溶液10mlを添
加し、気泡の発生がほとんど止まるまで(約30分間)
還元処理後pH3以下となるまで水洗した。次いで、亜
硝酸分解剤として10−4Mのヒドラジンを含む2×1
−3M CsCl/3M HNO溶液10mlを用
いて吸着体をできるだけねじ蓋付三角フラスコに移し、
上記と同様の方法で第2回目の吸着処理を行った。脱着
後の再生操作をはさみながら、上記の吸着、脱着操作を
6回繰り返した。図2に各回の吸着率、脱着率(第2回
目以降は新たなセシウム吸着量に対するろ液中の脱着セ
シウム量の比率で表わした見掛け脱着率)、吸着処理液
又は脱着処理中の鉄濃度を示した。同図から、セシウム
の吸脱着がかなり効率よく行われ、また、KCu
Cの分解も極めて軽微であることが認められる。
Next, as a regenerant solution, 1.44 × 10
-Add 10 ml of 0.1 M nitric acid solution containing 2 M hydrazine until the generation of bubbles almost stops (about 30 minutes)
After the reduction treatment, the product was washed with water until the pH became 3 or less. Then, 2 × 1 containing 10 −4 M hydrazine as a nitrous acid decomposer
0 -3 M CsCl / 3M HNO 3 solution 10ml was transferred as much as possible screw cap Erlenmeyer flask adsorbent used,
The second adsorption treatment was performed in the same manner as above. The above adsorption and desorption operations were repeated 6 times while sandwiching the regeneration operation after desorption. Fig. 2 shows the adsorption rate, desorption rate (apparent desorption rate expressed by the ratio of the amount of desorbed cesium in the filtrate to the new amount of cesium adsorbed from the second time onward) and the iron concentration in the adsorption treatment liquid or desorption treatment. Indicated. From the figure, the adsorption and desorption of cesium were carried out quite efficiently, and K 2 Cu 3 F
It can be seen that the decomposition of C is also extremely slight.

【0038】なお、脱着ろ過後の水洗ろ液中のセシウム
分析から、吸着体の結晶格子中に吸蔵され、水洗によっ
て溶離するセシウムが約10%程度あることが認められ
た。
From the analysis of cesium in the washing filtrate after desorption filtration, it was confirmed that about 10% of cesium was stored in the crystal lattice of the adsorbent and eluted by washing with water.

【0039】実施例2〜4 KCuFC、KCu11FC及びCuFC風乾物
0.02g(無水物換算)について、実施例1と同様に
して6回繰り返し処理を行った。各吸着体についてセシ
ウムの平均吸着率と平均脱着率(ろ液中のセシウムにつ
いて)を表1に示す。
Examples 2 to 4 K 2 Cu 5 FC, K 2 Cu 11 FC and 0.02 g of CuFC air-dried material (anhydrous equivalent) were subjected to a repeated treatment 6 times in the same manner as in Example 1. Table 1 shows the average adsorption rate of cesium and the average desorption rate (for cesium in the filtrate) of each adsorbent.

【0040】実施例5 フェリシアン化銅風乾物0.02g(無水物換算)をね
じ蓋付三角フラスコに秤取し、再生剤溶液として1.4
4×10−2Mヒドラジンを含む0.1M硝酸溶液10
mlを添加し、気泡の発生がほとんど止まるまで(約3
0分間)還元処理し、ろ過した。吸着体をろ液がpH3
以下になるまで水洗したのち、亜硝酸分解剤として10
−4Mのヒドラジンを含む2×10−3M CsCl/
3M HNO溶液10mlを用いて、吸着体をできる
だけねじ蓋付三角フラスコに移し、実施例1と同様の方
法で第1回目の吸着処理を行った。続いて、実施例1と
同様に脱着、再生の順に処理した。このように、脱着後
の再生操作をはさみながら吸着、脱着操作を6回繰り返
した。セシウムの平均吸着率と平均脱着率(ろ液中のセ
シウムについて)を表1に示す。
Example 5 0.02 g of copper ferricyanide air-dried product (calculated as anhydrous product) was weighed in an Erlenmeyer flask with a screw cap, and a regenerant solution of 1.4 was prepared.
0.1M nitric acid solution 10 containing 4 × 10 −2 M hydrazine
Add ml until almost no bubbles are generated (about 3
It was reduced for 0 minutes and filtered. The pH of the adsorbent is pH 3
After washing with water until
2 × 10 −3 M CsCl / containing −4 M hydrazine
The adsorbent was transferred to an Erlenmeyer flask with a screw lid as much as possible using 10 ml of a 3M HNO 3 solution, and the first adsorption treatment was performed in the same manner as in Example 1. Subsequently, as in Example 1, the processing was performed in the order of desorption and regeneration. In this way, the adsorption and desorption operations were repeated 6 times while sandwiching the regeneration operation after desorption. Table 1 shows the average adsorption rate and the average desorption rate of cesium (for cesium in the filtrate).

【0041】実施例6 IRA904‐CuFC風乾物0.2g(無水物換算)
について、吸着処理時のヒドラジン添加濃度を10−3
Mとし、脱着剤溶液を10−2Mの亜硝酸含有5M硝酸
濃度とした以外は実施例1と同じ条件で、脱着後の再生
操作をはさみながら吸着、脱着操作を6回繰り返した。
なお、脱着処理後のろ過による固液分離においてはイオ
ン交換樹脂の空孔内に脱着セシウムが吸蔵されており、
水洗操作中にもかなり多量のセシウムが溶離することが
わかった。表1にセシウムの平均吸着率と平均脱着率
(水洗によって溶離するセシウムを含めた)を示す。
Example 6 0.2 g of IRA904-CuFC air-dried matter (anhydrous equivalent)
The concentration of hydrazine added during the adsorption treatment was 10 −3
Adsorption and desorption operations were repeated 6 times under the same conditions as in Example 1 except that the desorption agent solution was M and the desorption agent solution had a concentration of 5 M nitric acid containing 10 −2 M nitrous acid.
In the solid-liquid separation by filtration after the desorption process, desorbed cesium is stored in the pores of the ion exchange resin,
It was found that a considerable amount of cesium was eluted during the washing operation. Table 1 shows the average adsorption rate and the average desorption rate of cesium (including cesium eluted by washing with water).

【0042】実施例7 IRA904‐CuFC風乾物0.2g(無水物換算)
について、吸着処理時の溶液をヒドラジンを含まない2
×10−3M CsCl/3M NaNO溶液10m
lとし、脱着剤溶液を10−2Mの亜硝酸含有3M硝酸
溶液とした以外は実施例6と同じ条件で、脱着後の再生
操作をはさみながら吸着、脱着操作を6回繰り返した。
Example 7 0.2 g of IRA904-CuFC air-dried matter (anhydrous equivalent)
Regarding, the solution at the time of adsorption treatment does not contain hydrazine 2
× 10 −3 M CsCl / 3M NaNO 3 solution 10 m
The adsorption and desorption operations were repeated 6 times while sandwiching the regeneration operation after desorption under the same conditions as in Example 6 except that the desorption agent solution was 1 and the desorption agent solution was a 3 M nitric acid solution containing 10 −2 M nitrous acid.

【0043】表1にセシウムの平均吸着率と平均脱着率
(水洗によって溶離するセシウムを含めた)を示す。
Table 1 shows the average adsorption rate and the average desorption rate of cesium (including cesium eluted by washing with water).

【0044】[0044]

【表1】 [Table 1]

【0045】実施例8 KCuFC風乾物0.02g(無水物換算)につい
て、再生剤溶液を0.02M亜硫酸含有0.1M硝酸溶
液とした以外は実施例1と同じ条件で、吸着、脱着操作
を2回繰り返した。その結果、第1回目、第2回目のセ
シウム吸着率は各99.8、99.8%、第1回目、第
2回目のセシウム脱着率(ろ液中のセシウムについて)
は各63.6、79.3%(水洗によって溶離するセシ
ウムを含めた脱着率は、各71.8、90.1%)であ
った。
Example 8 About 0.02 g of K 2 Cu 3 FC air-dried matter (calculated as an anhydride), adsorption was carried out under the same conditions as in Example 1 except that the regenerant solution was a 0.1M nitric acid solution containing 0.02M sulfite. The desorption operation was repeated twice. As a result, the first and second cesium adsorption rates were 99.8 and 99.8%, respectively, and the first and second cesium desorption rates (for cesium in the filtrate).
Was 63.6, 79.3% (desorption rate including cesium eluted by washing with water, 71.8, 90.1%, respectively).

【0046】実施例9 KCuFC風乾物0.02g(無水物換算)につい
て、1.81×10-3M CsNO/3M NaNO
溶液10ml添加して、恒温振とう槽(25℃)中で
振とうし、24時間吸着処理したのち、ろ過し、ろ液中
の残留セシウムと鉄濃度を分析した。次いで脱着剤溶液
として、1.07×10−4Mの亜硝酸を含む10M硝
酸10mlを用いて、吸着体をできるだけねじ蓋付三角
フラスコに移し、恒温振とう槽(25℃)中で脱着処理
した。24時間後ろ過し、ろ液量を秤り、ろ液中の残留
セシウムと鉄濃度を分析した。吸着体は、水洗ろ液がp
H3以下になるまで水洗し、水洗ろ液量を秤り、水洗ろ
液中の残留セシウム濃度を分析した。次に、再生剤溶液
として1.44×10−2Mヒドラジンを含む0.1M
硝酸溶液10mlを添加し、気泡の発生がほとんど止ま
るまで(約30分間)還元処理後pH3以下となるまで
水洗した。次いで、1.81×10−3MCsCl/3
M NaNO溶液10mlを用いて吸着体をできるだ
けねじ蓋付三角フラスコに移し、上記と同様の方法で第
2回目の吸着処理と脱着処理を行った。
Example 9 1.82 × 10 −3 M CsNO 3 / 3M NaNO for 0.02 g of K 2 Cu 3 FC air-dried matter (anhydrous equivalent)
Three solutions (10 ml) were added, and the mixture was shaken in a constant temperature shaking tank (25 ° C.) and subjected to adsorption treatment for 24 hours, then filtered, and the residual cesium and iron concentrations in the filtrate were analyzed. Then, 10 ml of 10 M nitric acid containing 1.07 × 10 −4 M nitrous acid was used as the desorbent solution, and the adsorbent was transferred to an Erlenmeyer flask with a screw lid as much as possible, and desorbed in a constant temperature shaking tank (25 ° C.). did. After 24 hours, the mixture was filtered, the amount of the filtrate was weighed, and the residual cesium and iron concentrations in the filtrate were analyzed. For the adsorbent, the washed filtrate is p
It was washed with water until H3 or less, the amount of the filtrate washed with water was weighed, and the residual cesium concentration in the filtrate washed with water was analyzed. Next, 0.1 M containing 1.44 × 10 −2 M hydrazine as a regenerant solution.
A nitric acid solution (10 ml) was added, and the mixture was reduced until the generation of air bubbles almost stopped (about 30 minutes) and then washed with water until the pH became 3 or less. Then 1.81 × 10 −3 MCsCl / 3
The adsorbent was transferred to an Erlenmeyer flask with a screw cap as much as possible using 10 ml of the M NaNO 3 solution, and the second adsorption treatment and desorption treatment were performed in the same manner as above.

【0047】その結果、第1回目、第2回目のセシウム
吸着率は、各99.2、98.9%第1回目、第2回目
の脱着率(ろ液中のセシウムについて)は各90.2、
97.4%(水洗によって溶離するセシウムを含めた脱
着率もほぼ同じ値)であった。第1回目、第2回目の脱
着処理液中の鉄濃度は各1.8、0.4ppmであっ
た。
As a result, the first and second cesium adsorption rates were 99.2 and 98.9%, respectively, and the first and second desorption rates (for cesium in the filtrate) were 90. 2,
It was 97.4% (desorption rate including cesium eluted by washing with water was almost the same value). The iron concentrations in the first and second desorption treatment solutions were 1.8 and 0.4 ppm, respectively.

【0048】実施例例10 KCuFC風乾物0.02g(無水物換算)につい
て、脱着剤溶液を1.28×10−4M亜硝酸を含む1
2M硝酸溶液とした以外は実施例9と同じ条件で、脱着
後の再生操作をはさみながら、吸着、脱着操作を2回繰
り返した。その結果、第1回目、第2回目のセシウム吸
着率は各99.3、98.3%、第1回目、第2回目の
脱着率(ろ液中のセシウムについて)各90.0、9
7.1%(水洗によって溶離するセシウムを含めた脱着
率もほぼ同じ値)であった。第1回目、第2回目の脱着
処理液中の鉄濃度は各1.4、0.2ppmであった。
実施例11 無機多孔体にフェロシアン化銅を担持した吸着体の例と
して、シリカゲルとフェロシアン化銅との複合吸着体
(シリカゲルーCuFCと記す)を以下のように調製し
た。球状シリカゲル(富士デヴ ィソン化学社製MB−
4B)にフェロシアン化カリウム水溶液を含浸、乾燥を
繰り返して可及的にフェロシアン化カリウムを細孔内に
担持させたのち、飽和硝酸銅溶液で攪拌しながら湿潤、
乾燥を繰り返して細孔内にフェロシアン化銅を十分沈澱
させた。水を加えてデカンテーションにより浮遊フェロ
シアン化銅沈澱を除き、風乾した。乾燥シリカゲル1g
当りのフェロシアン化銅担持量は、0.136gであっ
た。当該シリカゲル−CuFC風乾物0.111gにつ
いて、吸着処理時のヒドラジン添加濃度を10 −3 Mと
し、脱着剤溶液を10 −3 Mの亜硝酸含有5M硝酸溶液
とした以外は実施例1と同じ条件で、脱着後の再生操作
をはさみながら吸着、脱着操作を6回繰り返した。セシ
ウムの平均吸着率と平均脱着率(水洗によって溶離する
セシウムを含めた)は、各85.3%、96.5%であ
った。また、吸着処理液、脱着処理液中の平均鉄濃度は
各0.48ppm、3.36ppmであった。
Example 10 With respect to 0.02 g of K 2 Cu 3 FC air-dried matter (calculated as an anhydride), the desorbing agent solution was 1.28 × 10 −4 M containing nitrous acid.
Under the same conditions as in Example 9 except that the 2M nitric acid solution was used, the adsorption and desorption operations were repeated twice while sandwiching the regeneration operation after desorption. As a result, the first and second cesium adsorption rates were 99.3 and 98.3%, respectively, and the first and second desorption rates (for cesium in the filtrate) were 90.0 and 9 respectively.
It was 7.1% (desorption rate including cesium eluted by washing with water was almost the same value). The iron concentrations in the first and second desorption treatment solutions were 1.4 and 0.2 ppm, respectively.
Example 11 Example of adsorbent in which copper ferrocyanide is supported on inorganic porous material
Then, a composite adsorbent of silica gel and copper ferrocyanide
(Silica gel-CuFC) was prepared as follows.
It was Spherical silica gel (MB-manufactured by Fuji Devison Chemical Co., Ltd.
4B) is impregnated with an aqueous potassium ferrocyanide solution and dried.
Repeat as much as possible to put potassium ferrocyanide into the pores.
After supporting, wet with saturated copper nitrate solution with stirring,
Repeated drying to fully precipitate copper ferrocyanide in the pores
Let Floating ferro by adding water and decanting
The copper cyanide precipitate was removed and air dried. 1g of dried silica gel
The supported amount of copper ferrocyanide per unit was 0.136 g.
It was 0.111 g of the silica gel-CuFC air dried material
Therefore, the concentration of hydrazine added during the adsorption treatment was set to 10 −3 M.
Then, the desorbent solution was replaced with a 5 M nitric acid solution containing 10 −3 M nitrous acid.
Regeneration operation after desorption under the same conditions as in Example 1 except that
The adsorption and desorption operations were repeated 6 times while sandwiching. Cess
Average adsorption rate and desorption rate of um (elute by washing with water)
(Including cesium) was 85.3% and 96.5%, respectively.
It was. The average iron concentration in the adsorption treatment solution and desorption treatment solution is
The values were 0.48 ppm and 3.36 ppm, respectively.

【0049】参考例4 KCuFC風乾物0.02g(無水物換算)につい
て、一定量の亜硝酸ナトリウム添加のもとで脱着剤溶液
の硝酸濃度を変化させた以外は実施例9と同じ条件で、
吸着、脱着操作を行った。図3は、市販の高純度硝酸
(3M希釈時での亜硝酸濃度:2〜3×10−5M)で
脱着剤溶液の硝酸濃度を調整したときのセシウム脱着率
(ろ液中のセシウムについて)の変化をいくつかの一定
の亜硝酸ナトリウム添加量のもとで測定した結果であ
る。この結果から、セシウムの脱着には一定濃度(1.
5〜2.3×10−5M)以上の亜硝酸の存在下が必要
であるが、脱着が顕著に起こる領域では脱着率は亜硝酸
濃度によらず、硝酸濃度の影響が大きいことが認められ
た。また、硝酸濃度7M以上での脱着率の増加は軽微で
あった。
Reference Example 4 With respect to 0.02 g (dry matter equivalent) of K 2 Cu 3 FC air-dried matter, the same as Example 9 except that the nitric acid concentration of the desorbent solution was changed under the addition of a certain amount of sodium nitrite. Under the same conditions,
Adsorption and desorption operations were performed. FIG. 3 shows the cesium desorption rate (for cesium in the filtrate) when the nitric acid concentration of the desorbent solution was adjusted with commercially available high-purity nitric acid (nitrous acid concentration at the time of diluting 3M: 2-3 × 10 −5 M). ) Is the result of measurement under some constant addition amount of sodium nitrite. From this result, a certain concentration (1.
5 to 2.3 × 10 −5 M) or more is required in the presence of nitrous acid, but in the region where desorption is remarkable, the desorption rate does not depend on the nitrite concentration, but the effect of nitric acid concentration is large. Was given. Further, the increase in the desorption rate at a nitric acid concentration of 7 M or more was slight.

【0050】参考例5 KCuFC風乾物0.02g(無水物換算)につい
て、脱着剤溶液を亜硝酸ナトリウムを添加しない3M
HCl溶液、10−2Mの亜硝酸ナトリウムを添加した
3M HCl溶液又は10−2Mの亜硝酸ナトリウムを
添加した2MHCl/1M HNO混合溶液とした以
外は実施例9と同じ条件で吸着、脱着操作を行った。そ
の結果、セシウム脱着率は各0、13.5、47.8%
(ろ液中のセシウムについて)であった。
Reference Example 5 With respect to 0.02 g of K 2 Cu 3 FC air-dried matter (anhydrous equivalent), a desorbent solution containing 3M of sodium nitrite was not added.
HCl solution, except for using 10 -2 M sodium nitrite 3M HCl solution was added, or 10 -2 2 M HCI was added sodium nitrite M / 1M HNO 3 mixed solution of the adsorption under the same conditions as in Example 9, desorption The operation was performed. As a result, the cesium desorption rate was 0, 13.5, and 47.8%, respectively.
(For cesium in the filtrate).

【0051】参考例6 KCuFC風乾物0.01g(無水物換算)をねじ
蓋付三角フラスコに秤取し、これに10−3Mの亜硝酸
ナトリウムと種々の濃度のヒドラジンを添加した10
−3M CsCl/3M HNO溶液10ml、又は
亜硝酸ナトリウムを添加せず種々の濃度のヒドラジンを
添加した10−3M CsCl/3M HNO溶液1
0ml添加して、恒温振とう槽(25℃)中で振とう
し、24時間吸着処理後ろ過した。ろ液中のセシウムを
分析し、分布係数(Kd)を算出した。図4は、ヒドラ
ジン添加濃度によるセシウムの分布係数の変化を亜硝酸
ナトリウムを添加した場合と無添加の場合を比較したも
のである。この結果は、KCuFCの酸化によるセ
シウム吸着能低下の防止には共存亜硝酸に対して当量以
上のヒドラジンの添加が必要なことを示す。
Reference Example 6 0.01 g of K 2 Cu 3 FC air-dried material (calculated as anhydrous product) was weighed in an Erlenmeyer flask equipped with a screw cap, and 10 −3 M sodium nitrite and various concentrations of hydrazine were added thereto. Done 10
-3 M CsCl / 3M HNO 3 solution 10 ml or 10 -3 M CsCl / 3M HNO 3 solution 1 with various concentrations of hydrazine added without the addition of sodium nitrite
0 ml was added, and the mixture was shaken in a constant temperature shaking tank (25 ° C.), subjected to adsorption treatment for 24 hours and then filtered. Cesium in the filtrate was analyzed and the distribution coefficient (Kd) was calculated. FIG. 4 compares changes in the distribution coefficient of cesium depending on the concentration of hydrazine added, with and without addition of sodium nitrite. This result indicates that it is necessary to add an equivalent amount or more of hydrazine to coexisting nitrous acid in order to prevent the decrease of the cesium adsorption capacity due to the oxidation of K 2 Cu 3 FC.

【0052】参考例7 KCuFC風乾物0.01g(無水物換算)につい
て、ヒドラジンをアミド硫酸にかえて参考例6と同様の
処理を行なった。図5は、アミド硫酸添加濃度によるセ
シウムの分布係数の変化を亜硝酸ナトリウムを添加した
場合と無添加の場合を比較したものである。この結果
は、KCuFCの酸化によるセシウム吸着能低下の
防止には共存亜硝酸に対して当量以上のアミド硫酸の添
加が必要なことを示す。
Reference Example 7 With respect to 0.01 g of K 2 Cu 3 FC air-dried material (calculated as an anhydride), hydrazine was changed to amido sulfuric acid and the same treatment as in Reference Example 6 was performed. FIG. 5 compares changes in the distribution coefficient of cesium depending on the concentration of amide-sulfuric acid added, with and without the addition of sodium nitrite. This result indicates that addition of an equivalent amount or more of amido-sulfuric acid to coexisting nitrous acid is necessary to prevent the decrease of cesium adsorption capacity due to the oxidation of K 2 Cu 3 FC.

【0053】[0053]

【発明の効果】本発明の方法によれば、不溶性鉄シアノ
錯塩系吸着体の繰り返し使用により、硝酸や硝酸ナトリ
ウムを主成分とする水溶液中のセシウムの効率のよい分
離回収が達成でき、それに伴う廃棄物の発生が少ないこ
とは明かである。本発明の方法を例えば硝酸又は硝酸ナ
トリウムを主成分とする高レベル廃液中の放射性セシウ
ムの分離回収に適用すればその効率的処理技術の開発に
資するところ極めて大である。
According to the method of the present invention, by repeatedly using the insoluble iron cyano complex salt-based adsorbent, it is possible to achieve efficient separation and recovery of cesium in an aqueous solution containing nitric acid or sodium nitrate as a main component. It is clear that less waste is generated. If the method of the present invention is applied to the separation and recovery of radioactive cesium in high-level waste liquid containing nitric acid or sodium nitrate as a main component, it will be extremely useful in developing the efficient treatment technology.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法のフローシートである。1 is a flow sheet of the method of the present invention.

【図2】 鉄シアノ錯塩系吸着体の繰り返し使用回数と
セシウム吸着率及び脱着率との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the number of repeated uses of an iron cyano complex salt-based adsorbent and the cesium adsorption rate and desorption rate.

【図3】 鉄シアノ錯塩系吸着体の硝酸及び亜硝酸濃度
トセシウム脱着率との関係を示すグラフ。
FIG. 3 is a graph showing the relationship between nitric acid and nitrite concentration of the iron cyano complex salt-based adsorbent and the desorption rate of tocesium.

【図4】 亜硝酸分解剤としてヒドラジンを用いたとき
の添加量とセシウム分布係数との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the amount added and the cesium distribution coefficient when hydrazine is used as the nitrous acid decomposer.

【図5】 亜硝酸分解剤としてアミド硫酸を用いたとき
の添加量とセシウム分布係数との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the addition amount and the cesium distribution coefficient when using amido-sulfuric acid as a nitrous acid decomposer.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 セシウム含有水溶液を、還元状態の酸化
‐還元型不溶性鉄シアノ錯塩と接触させ、これにセシウ
ムを吸着させて水溶液から分離したのち、該酸化‐還元
型不溶性鉄シアノ錯塩を酸化剤で処理して酸化状態に変
換しセシウムを脱着させることを特徴とする水溶液中の
セシウムの回収方法。
1. A cesium-containing aqueous solution is brought into contact with an oxidized-reduced insoluble iron cyano complex salt in a reduced state, and cesium is adsorbed on this to separate it from the aqueous solution. A method for recovering cesium in an aqueous solution, which is characterized in that the cesium is desorbed by converting into an oxidized state by treatment with cesium.
【請求項2】 酸化剤が亜硝酸を含有する硝酸水溶液で
ある請求項1記載の方法。
2. The method according to claim 1, wherein the oxidizing agent is an aqueous nitric acid solution containing nitrous acid.
【請求項3】 セシウムを脱着させた後の不溶性鉄シア
ノ錯塩を還元処理して再生し、繰り返し使用する請求項
1又は2記載の方法。
3. The method according to claim 1, wherein the insoluble iron cyano complex salt after desorption of cesium is subjected to a reduction treatment to be regenerated and repeatedly used.
【請求項4】 脱着したセシウムを含む硝酸水溶液を加
熱蒸発処理することにより、酸化剤及びセシウムを回収
する請求項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the oxidizing agent and cesium are recovered by subjecting the desorbed cesium-containing nitric acid aqueous solution to heat evaporation treatment.
【請求項5】 高濃度の硝酸を含有するセシウム含有水
溶液に、亜硝酸分解剤を加えたのち、これを還元状態の
酸化‐還元型不溶性鉄シアノ錯塩と接触させ、これにセ
シウムを吸着させて水溶液から分離したのち、該酸化‐
還元型不溶性鉄シアノ錯塩を酸化剤で処理して酸化状態
に変換しセシウムを脱着させることを特徴とする水溶液
中のセシウムの回収方法。
5. A nitrous acid decomposing agent is added to a cesium-containing aqueous solution containing a high concentration of nitric acid, which is then brought into contact with an oxidized-reduced insoluble iron cyano complex salt in a reduced state to adsorb cesium on the complex. After separation from the aqueous solution, the oxidation-
A method for recovering cesium in an aqueous solution, which comprises treating a reduced insoluble iron cyano complex salt with an oxidizing agent to convert it into an oxidized state to desorb cesium.
【請求項6】 酸化剤が亜硝酸を含有する硝酸水溶液で
ある請求項5記載の方法。
6. The method according to claim 5, wherein the oxidizing agent is an aqueous nitric acid solution containing nitrous acid.
【請求項7】 脱着したセシウムを含む硝酸水溶液を加
熱蒸発処理することにより、酸化剤及びセシウムを回収
する請求項5記載の方法。
7. The method according to claim 5, wherein the oxidizing agent and cesium are recovered by subjecting the desorbed cesium-containing nitric acid aqueous solution to heat evaporation treatment.
JP4086309A 1992-03-09 1992-03-09 Method for recovering cesium in aqueous solution Expired - Lifetime JPH0742106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086309A JPH0742106B2 (en) 1992-03-09 1992-03-09 Method for recovering cesium in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086309A JPH0742106B2 (en) 1992-03-09 1992-03-09 Method for recovering cesium in aqueous solution

Publications (2)

Publication Number Publication Date
JPH05254828A JPH05254828A (en) 1993-10-05
JPH0742106B2 true JPH0742106B2 (en) 1995-05-10

Family

ID=13883238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086309A Expired - Lifetime JPH0742106B2 (en) 1992-03-09 1992-03-09 Method for recovering cesium in aqueous solution

Country Status (1)

Country Link
JP (1) JPH0742106B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3749941B2 (en) * 1997-09-04 2006-03-01 独立行政法人産業技術総合研究所 Method for producing cesium separator
JP2013108850A (en) * 2011-11-21 2013-06-06 Nusac Inc Adsorbent for removing radioactive element, manufacturing method therefor, and usage thereof
CN105597660A (en) * 2015-12-30 2016-05-25 清华大学 Preparing method of particle caesium removing inorganic ion adsorbent and product and application

Also Published As

Publication number Publication date
JPH05254828A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US4394354A (en) Silver removal with halogen impregnated activated carbon
JPH0688277A (en) Lithium recovering method and electrode used therefor
JP3469899B2 (en) Radioactive material decontamination method
JP2560253B2 (en) Method for producing and regenerating ion exchanger for cesium separation
JP4247633B2 (en) Adsorbent
JP2003201527A (en) Method for isolating rhenium
JPH0243808B2 (en)
JPH0742106B2 (en) Method for recovering cesium in aqueous solution
US4396585A (en) Silver removal with halogen impregnated non-carbon adsorbents
WO2022210847A1 (en) Lithium-containing solution production method
JPH02233503A (en) Purification of hydrochloric acid
JP2004528548A (en) Decontamination method of solid iodine filter
CA1236308A (en) Process for hydrometallurgical extraction of precious metals
SU1309914A3 (en) Method of extracting non-ferrous and/or noble metals from aqueous solutions
JP3390148B2 (en) Purification treatment method for salt water for electrolysis
JPH01167203A (en) Collection of iodine in gas
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
JPS6058796B2 (en) Treatment method for nitric acid waste liquid containing iron
RU2049545C1 (en) Method of extraction of cesium from nitrate solutions
TWI704109B (en) Method of recovering gold using thiourea graphene
JPS58112088A (en) Purification of hydrazine-contg. waste water
JPH06106031A (en) Lithium isotope separating agent and separation of lithium isotope using the same
JP2641239B2 (en) Silver adsorbent and method of using the same
JPH0346552B2 (en)
RU2048560C1 (en) Method for extraction of molybdenum from tungsten-containing solutions

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term