JPH0741876A - Production of metal or metal alloy ingot by electron beam melting - Google Patents

Production of metal or metal alloy ingot by electron beam melting

Info

Publication number
JPH0741876A
JPH0741876A JP5185996A JP18599693A JPH0741876A JP H0741876 A JPH0741876 A JP H0741876A JP 5185996 A JP5185996 A JP 5185996A JP 18599693 A JP18599693 A JP 18599693A JP H0741876 A JPH0741876 A JP H0741876A
Authority
JP
Japan
Prior art keywords
metal
electron beam
raw material
ingot
material electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5185996A
Other languages
Japanese (ja)
Inventor
Fumiyuki Shimizu
史幸 清水
Yasunori Chiba
泰紀 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Eneos Corp
Original Assignee
Japan Energy Corp
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp, Nikko Kinzoku KK filed Critical Japan Energy Corp
Priority to JP5185996A priority Critical patent/JPH0741876A/en
Publication of JPH0741876A publication Critical patent/JPH0741876A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the ingot which is fine in crystal grains and has a uniform a granular crystalline structure having fine crystal grains by imparting ultrasonic vibrations to metal at the time of melting the metal by irradiation with an electron beam and pulling the molten metal as the ingot. CONSTITUTION:The ingot 9 of the metal to be melted is first arranged in a water-cooled crucible 1 of a bottomless type and a raw material electrode 7 consisting of the metal to be melted on its surface is heated and melted by irradiation with the electron beam 10 from an electron gun 2 to form a molten metal pool 11 in the upper part of the ingot 9. The ingot 9 is made successively longer by the solidification thereof and is pulled gradually from the crucible 1 by a pulling device 8. The ultrasonic vibrator transducer 4 as a raw material is mounted on the metallic electrode 7 in such a case and >=0.1kHz ultrasonic vibrations are applied to the molten metal layer 11, by which the ingot 9 having the fine and uniform granular crystals and excellent plastic workability is obtd. without forming the coarse and large columnar crystals at the time of solidifying the molten metal pool 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電子ビーム溶解による
金属又は金属合金のインゴット製造法に関するものであ
り、さらに詳しく述べるならば、結晶粒が微細でかつ粒
状晶の均質な組織をもつインゴットを電子ビーム溶解に
より製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ingot of a metal or a metal alloy by electron beam melting. More specifically, an ingot having a fine crystal grain and a homogeneous structure of a granular crystal is produced by an electronic method. A method of manufacturing by beam melting.

【0002】[0002]

【従来の技術】電子ビーム溶解法は、真空中において加
速した電子を原料電極である金属又は金属合金に衝突さ
せ加速電子の持っている運動エネルギを熱エネルギに変
換することにより、原料電極を溶解し所要形状のインゴ
ットに鋳造する溶解法の一つである。
2. Description of the Related Art The electron beam melting method melts a raw material electrode by colliding electrons accelerated in a vacuum with a metal or metal alloy, which is a raw material electrode, and converting the kinetic energy of the accelerated electrons into heat energy. This is one of the melting methods of casting into an ingot of the required shape.

【0003】電子ビーム溶解法の具体例を図2を参照に
して説明する。図中、1は水冷式クルーシブル、2は電
子銃、7は原料電極、9はインゴットである。図2で示
すように、電子ビーム溶解設備のメルトチャンバ内に設
置された水冷式クルーシブル1に水平方向又は垂直方向
の原料電極7に電子銃2から電子ビーム10を照射し、
溶湯を水冷式クルーシブル1内に滴下させて、溶解した
原料溶湯8を水冷式クルーシブル1内に鋳込んで連続的
に凝固させつつインゴット9として下方から引き抜くこ
とにより、電子ビームによる高清浄度溶解と連続鋳造を
同時に行うことができる。電子ビーム溶解法はすぐれた
高純度化作用をもっているために、主にチタン、高融点
金属等の金属又は金属合金(以下「金属」と略称する)
のインゴットの製造に用いられており、その優れた清浄
度化作用から高性能、高品質の機能性材料の製造に有用
な手段として近年注目を集めている。
A specific example of the electron beam melting method will be described with reference to FIG. In the figure, 1 is a water-cooled crucible, 2 is an electron gun, 7 is a raw material electrode, and 9 is an ingot. As shown in FIG. 2, a water-cooled crucible 1 installed in a melt chamber of an electron beam melting facility is irradiated with an electron beam 10 from a source electrode 7 in a horizontal direction or a vertical direction from an electron gun 2.
The molten metal 8 is dropped into the water-cooled crucible 1 and the melted raw material molten metal 8 is cast into the water-cooled crucible 1 and continuously solidified while being pulled out from below as an ingot 9. Continuous casting can be performed simultaneously. Since the electron beam melting method has an excellent purification effect, it is mainly a metal such as titanium or a refractory metal or a metal alloy (hereinafter abbreviated as “metal”).
It has been used in the production of ingots and has been attracting attention in recent years as a useful means for producing high-performance, high-quality functional materials due to its excellent cleansing effect.

【0004】しかしながら、融点が2000℃以上のモ
リブデン、タングステン等の高融点金属のインゴットを
電子ビーム溶解法で製造するに際して、凝固時に結晶粒
が粗大化し、柱状晶の粗大成長等が起こり、これがイン
ゴットの鍛造、圧延等の後工程時における塑性加工性に
悪影響を及ぼしていることがすでに判明している。この
ような現象は高融点金属の固有の物性(高融点、融解の
潜熱、一次再結晶など)、電子ビーム溶解固有の溶解特
性(冷却速度が遅い、柱状晶を形成し易い)及びこれら
の要因が組み合わされ発現する鋳造特性が原因である。
However, when an ingot of a refractory metal having a melting point of 2000 ° C. or higher such as molybdenum or tungsten is manufactured by the electron beam melting method, the crystal grains become coarse during solidification, and coarse growth of columnar crystals occurs, which causes the ingot. It has already been found that it adversely affects the plastic workability in the subsequent steps such as forging and rolling. Such a phenomenon is due to the inherent physical properties of refractory metals (high melting point, latent heat of fusion, primary recrystallization, etc.), melting characteristics peculiar to electron beam melting (slow cooling rate, easy formation of columnar crystals) and their factors. This is due to the casting characteristics that are manifested by combining.

【0005】上述の問題を解決する有力な手段として、
本出願人は、超音波振動エネルギを溶湯に直接付加する
ことで、結晶核生成の促進や結晶粒粗大化の抑制による
結晶粒の微細化、柱状晶の破壊や粒状晶化を図る方法の
特許出願を提出した(特願平5−9642号、特願平5
−073684号)。ここで、目的とする箇所に超音波
振動エネルギを導入するためには、超音波振動子と振動
ホーンを使用することができ、具体的エネルギ導入法と
しては、ホーンをインゴット下部又は鋳型に固定する下
部固定方式等を採用することができる。
As a powerful means for solving the above problems,
The applicant of the present invention is a patent for a method of directly increasing the ultrasonic vibration energy to the molten metal, thereby promoting the generation of crystal nuclei and suppressing the coarsening of crystal grains to make the crystal grains finer, to break the columnar crystals or to form the granular crystals. Filed an application (Japanese Patent Application No. 5-9642, Japanese Patent Application 5)
-073684). Here, in order to introduce the ultrasonic vibration energy to the target location, an ultrasonic vibrator and a vibrating horn can be used. As a specific energy introduction method, the horn is fixed to the lower part of the ingot or the mold. A lower fixing method or the like can be adopted.

【0006】電子ビーム溶解法以外の溶解鋳造法におい
てはホーンを直接溶湯へ浸漬する上部導入方式による超
音波振動エネルギ付与が可能であるが、上部導入方式
は、高温の溶湯や電子ビームの照射によりホーンが溶解
するので、電子ビーム溶解法には採用できない。一方、
下部方式は、ホーンから溶湯面までの距離が遠く超音波
の伝達効率が悪いこと、クルーシブルがキャビテーショ
ンにより損耗することなど問題が多く実用化が難しかっ
た。
In the melting and casting methods other than the electron beam melting method, it is possible to apply ultrasonic vibration energy by the upper introduction method in which the horn is directly immersed in the molten metal, but the upper introduction method uses high temperature molten metal or electron beam irradiation. Since the horn melts, it cannot be used in the electron beam melting method. on the other hand,
The lower method is difficult to put into practical use due to many problems such as the distance from the horn to the surface of the molten metal is large and the ultrasonic wave transmission efficiency is poor, and the crucible is damaged by cavitation.

【0007】そこで本発明の目的は、電子ビーム溶解法
における上述の問題を解決し、(イ)結晶核の生成を促
進することにより、結晶粒の粗大化を防止しかつ微細化
し、(ロ)柱状晶が発達し始める凝固の初期に、鋳型の
奪熱による影響を弱め、凝固方向をランダムにして柱状
晶を破壊しかつ粒状晶化を図り、これら(イ)、(ロ)
の結果、塑性加工性にすぐれた金属インゴットを工業的
規模で安定して製造できる超音波振動エネルギ付与手段
を確立することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems in the electron beam melting method, and (a) to prevent the crystal grains from coarsening and to make them finer by promoting the generation of crystal nuclei. In the early stage of solidification where columnar crystals start to develop, the influence of heat removal from the mold is weakened, the solidification direction is randomized to destroy the columnar crystals and to form granular crystals.
As a result, the object is to establish an ultrasonic vibration energy applying means capable of stably producing a metal ingot excellent in plastic workability on an industrial scale.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく原料電極を超音波振動媒体とする数多くの
実験を行いつつ鋭意研究を重ねてきた結果、以下の知見
を得るに至った。すなわち原料電極から溶湯に直接超音
波エネルギを付加するには、電子ビーム溶解法のなかで
ドリップメルト法が最も適当であり、ここでは電子ビー
ムドリップメルト法による金属インゴットの製造で得た
知見により本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have earnestly studied while carrying out a number of experiments using a raw material electrode as an ultrasonic vibration medium in order to achieve the above-mentioned object, and as a result, have obtained the following findings. I arrived. That is, in order to apply ultrasonic energy directly to the molten metal from the raw material electrode, the drip melting method is the most suitable among the electron beam melting methods, and here, based on the knowledge obtained in the production of metal ingots by the electron beam drip melting method, The invention was completed.

【0009】したがって、本発明に係る電子ビーム溶解
による金属インゴットの製造方法は、クルーシブル内の
溶湯及び電極の先端の少なくとも一方に電子ビームを照
射しかつ該クルーシブル内の溶湯に浸漬された原料電極
を振動媒体として、該溶湯に超音波振動を付与すること
を特徴とする方法である。すなわち、振動方式を従来の
ように上部又は下部導入方式とするのではなく、原料電
極自体を振動媒体として、超音波を該媒体から溶湯に伝
達させる。その結果、超音波は溶湯内での結晶核生成を
促進し、さらにクルーシブルの内面における方向性をも
つ成長を阻害することにより柱状晶を破壊するものであ
る。また、本発明では原料電極が溶湯に浸漬されかつ溶
湯の熱により溶解される。このためには溶湯に電子ビー
ムを照射して、溶解のための熱を供給するかあるいは電
極自体の先端を電子ビームで溶解する必要がある。また
溶解の初期には従来のドリップメルト法と同様に原料電
極に電子ビームを照射して溶解するか、あるいはクルー
シブル内に予め挿入された原料塊を電子ビームで溶解す
る。
Therefore, in the method for producing a metal ingot by electron beam melting according to the present invention, at least one of the molten metal in the crucible and the tip of the electrode is irradiated with an electron beam and the raw material electrode immersed in the molten metal in the crucible is As a vibration medium, ultrasonic vibration is applied to the molten metal. That is, the vibration method is not the upper or lower introduction method as in the prior art, but ultrasonic waves are transmitted from the medium to the molten metal by using the raw material electrode itself as the vibration medium. As a result, ultrasonic waves destroy the columnar crystals by promoting the formation of crystal nuclei in the molten metal and further inhibiting the directional growth on the inner surface of the crucible. Further, in the present invention, the raw material electrode is immersed in the molten metal and melted by the heat of the molten metal. For this purpose, it is necessary to irradiate the molten metal with an electron beam to supply heat for melting or to melt the tip of the electrode itself with the electron beam. Further, in the initial stage of melting, the raw material electrode is irradiated with an electron beam to be melted as in the conventional drip-melt method, or a raw material mass previously inserted in the crucible is melted with an electron beam.

【0010】本発明の溶解において棒状又は板状の原料
電極に共振周波数の超音波振動を付与することによりさ
らに優れた効果を得ることができる。この方法では原料
電極がその固有の共振周波数で振動するために、溶湯が
攪拌・振動される。例えば、20kHzで共振する棒の
長さは130mmとなるので、130mmの長さの電極
に20KHzの超音波振動を加えると20kHzの超音
波の振幅が増大することとなり上記した効果がさらに高
められる。
In the melting of the present invention, a further excellent effect can be obtained by applying ultrasonic vibration having a resonance frequency to the rod-shaped or plate-shaped raw material electrode. In this method, since the raw material electrode vibrates at its own resonance frequency, the molten metal is stirred and vibrated. For example, since the length of the rod resonating at 20 kHz is 130 mm, when ultrasonic vibration of 20 KHz is applied to the electrode having a length of 130 mm, the amplitude of ultrasonic waves of 20 kHz is increased, and the above-mentioned effect is further enhanced.

【0011】なお、本発明においては、原料電極の先端
に電子ビームを照射する場合は原料電極が先細りとなる
と溶湯に与えられる振動効果が少なくなるので、電極先
端の形状に注意する必要がある。
In the present invention, when the tip of the raw material electrode is irradiated with an electron beam, when the raw material electrode is tapered, the vibration effect given to the molten metal is reduced. Therefore, it is necessary to pay attention to the shape of the tip of the electrode.

【0012】さらに、クルーシブルが底部貫通孔をもつ
水冷型であり、かつ該クルーシブル内で凝固したインゴ
ットを該底部貫通孔から連続的に引抜くと連続鋳造を行
うことができる。
Furthermore, the crucible is a water-cooled type having a bottom through hole, and continuous casting can be performed by continuously pulling out the ingot solidified in the crucible from the bottom through hole.

【0013】また、原料電極を超音波媒体とするために
は超音波振動ホーンと振動子を原料電極と適当な方法で
接続すればよいが、好ましくは原料電極の末端に、超音
波振動ホーンと振動子を介して、該原料電極に固定され
た案内棒により原料電極をクルーシブル内に案内するの
が最も適している。さらに、原料電極に付与する超音波
振動周波数が0.1[kHz]以上であると上記した結
晶粒の微細化や柱状晶の破壊に顕著な効果が得られる。
加えて、原料電極の長さ(L)に応じて周波数(f)を
L=0.5cf-1の関係(c:定数)が一定に保たれる
ように変化させると原料電極全体の溶解過程で共振状況
を得ることができ、均質な微細結晶組織をもつインゴッ
トを製造することができる。以下、図1を参照してさら
に詳しく本発明を説明する。
Further, in order to use the raw material electrode as an ultrasonic medium, the ultrasonic vibration horn and the oscillator may be connected to the raw material electrode by an appropriate method, but preferably, the ultrasonic vibration horn is connected to the end of the raw material electrode. It is most suitable to guide the raw material electrode into the crucible through a vibrator by a guide rod fixed to the raw material electrode. Furthermore, when the ultrasonic vibration frequency applied to the raw material electrode is 0.1 [kHz] or more, a remarkable effect can be obtained in the above-mentioned refinement of crystal grains and breakage of columnar crystals.
In addition, when the frequency (f) is changed according to the length (L) of the raw material electrode so that the relationship (c: constant) of L = 0.5cf-1 is kept constant, the melting process of the entire raw material electrode It is possible to obtain a resonance condition with and to manufacture an ingot having a uniform fine crystal structure. Hereinafter, the present invention will be described in more detail with reference to FIG.

【0014】図1は、本発明に係わる金属の製造に適用
される電子ビーム溶解装置の要部説明図である。図1に
おいて、従来の電子ビーム溶解装置と同様にメルトチャ
ンバ(図示せず)内には電子銃2、水冷式クルーシブル
1が配置され、超音波振動子4と振動ホーン5が固定さ
れた原料電極7はフィーダ3に取付けられ、垂直方向あ
るいは傾斜角をもって溶湯に浸漬される。
FIG. 1 is an explanatory view of a main part of an electron beam melting apparatus applied to the production of metal according to the present invention. In FIG. 1, as in the conventional electron beam melting apparatus, an electron gun 2 and a water-cooled crucible 1 are arranged in a melt chamber (not shown), and a raw material electrode having an ultrasonic vibrator 4 and a vibration horn 5 fixed thereto. 7 is attached to the feeder 3 and is immersed in the molten metal in the vertical direction or at an inclination angle.

【0015】図1に示すように水冷式振動ホーン5の先
端に取付けられた原料電極7をすでに形成された溶湯1
1に浸漬させつつ溶湯11に超音波振動を伝達してい
る。この状態で原料電極7を振動媒体として共振させ、
溶解による原料電極の長さの減少量に応じて共振周波数
を追尾させることにより原料電極7が消耗している期間
中に共振を継続することができる。
As shown in FIG. 1, a molten metal 1 in which a raw material electrode 7 attached to the tip of a water-cooled vibrating horn 5 is already formed
Ultrasonic vibrations are transmitted to the molten metal 11 while being immersed in 1. In this state, the raw material electrode 7 is caused to resonate with a vibrating medium,
By tracking the resonance frequency according to the amount of decrease in the length of the raw material electrode due to melting, the resonance can be continued during the period when the raw material electrode 7 is consumed.

【0016】上記装置により、金属インゴットを製造す
るに際しては、まず電子ビーム10によりインゴット9
上に溶湯11のプールを形成する。原料電極7は、溶湯
11の持つ熱又は電子ビームの照射熱により徐々に溶解
され、凝固が進行したインゴット9は水冷式クルーシブ
ル1の下方から引き抜かれる。この時、原料電極7は溶
解の進行につれ長さが短くなるため、フィーダ3で常に
溶湯11との接触状態を保ち、また超音波振動の発振周
波数も常に原料電極7が共振するように可変させる。
When manufacturing a metal ingot with the above apparatus, first, an ingot 9 is produced with an electron beam 10.
A pool of molten metal 11 is formed on top. The raw material electrode 7 is gradually melted by the heat of the molten metal 11 or the irradiation heat of the electron beam, and the ingot 9 in which the solidification has progressed is pulled out from below the water-cooled crucible 1. At this time, since the length of the raw material electrode 7 becomes shorter as the melting progresses, the feeder 3 always maintains the contact state with the molten metal 11, and the oscillation frequency of ultrasonic vibration is varied so that the raw material electrode 7 always resonates. .

【0017】[0017]

【作用】上述のように本発明では、高性能、高品質を要
求される材料を製造するため、溶解原料を電子ビーム溶
解させつつ溶湯へ溶解原料から超音波振動エネルギを伝
達することで、得られたインゴットを微細組織化並びに
粒状晶化し均質な組織にすることで優れた性能を付与せ
しめる。また、超音波振動周波数により溶解原料を共振
させることによりさらに性能向上を図ることができる
(請求項2)。本発明の電子ビーム溶解法と連続鋳造を
組み合わせることにより10mm以下の結晶粒を得るこ
とができる(請求項3)。原料電極の末端に振動子など
を配置すると縦波の場合正確な共振条件を見出すことが
できる(請求項4)。また原料電極の消耗長さに応じて
周波数を変化させることにより均質なインゴットを製造
することができる(請求項6)。
As described above, according to the present invention, in order to produce a material required to have high performance and high quality, it is possible to obtain ultrasonic vibration energy from a molten raw material while melting the molten raw material with an electron beam. Excellent performance can be imparted by making the obtained ingot into a fine structure and granular crystals to form a uniform structure. Further, the performance can be further improved by causing the molten raw material to resonate with the ultrasonic vibration frequency (claim 2). By combining the electron beam melting method of the present invention and continuous casting, crystal grains of 10 mm or less can be obtained (claim 3). When a vibrator or the like is arranged at the end of the raw material electrode, an accurate resonance condition can be found in the case of longitudinal waves (claim 4). Further, a uniform ingot can be manufactured by changing the frequency according to the consumption length of the raw material electrode (claim 6).

【0018】[0018]

【実施例】続いて本発明の効果を実施例によって更に具
体的に説明する。図1、2に示したような装置を使用し
それぞれ「本発明法」並びに「従来の電子ビーム溶解
法」により金属インゴットを製造した。ここではその代
表例として電子ビーム出力が100[kw]であるφ1
20mmのモリブデンインゴットの製造について説明す
る。
EXAMPLES Next, the effects of the present invention will be described more specifically by way of examples. Metal ingots were manufactured by the "invention method" and the "conventional electron beam melting method" using the apparatus shown in FIGS. Here, as a typical example, φ1 with an electron beam output of 100 [kw]
The production of a 20 mm molybdenum ingot will be described.

【0019】なお、「従来の電子ビーム溶解法」を実施
する際には図2で示した如く超音波振動子とホーンを使
用せず、一方「本発明法」は、炉内圧力1×10-4〜1
×10-5[mbar]の範囲内で次の手段で実施した。
フィーダに取付けられた原料電極を長さ0.5[m]か
ら0.05[m]になるまで溶解し、それに応じて周波
数も4[kHz]〜45[kHz]まで変化させ、共振
条件を保ちつつ溶湯に直接浸漬させ凝固を進行させた。
When the "conventional electron beam melting method" is carried out, the ultrasonic vibrator and the horn are not used as shown in FIG. 2, while the "invention method" is a furnace pressure of 1 × 10. -4 ~ 1
It was carried out by the following means within the range of × 10 -5 [mbar].
The raw material electrode attached to the feeder is melted from a length of 0.5 [m] to a length of 0.05 [m], and the frequency is also changed from 4 [kHz] to 45 [kHz] accordingly, and the resonance condition is changed. While keeping it, it was directly immersed in the molten metal to proceed with solidification.

【0020】このようにして得られたφ120×500
mmLのモリブデンのインゴットのマクロ組織を見ると
従来の電子ビーム溶解法によって得られるインゴットの
平均結晶粒径は10mm以上でかつ不均一、柱状晶であ
るのに対して、「本発明法」によって得られるインゴッ
トの平均粒径は10mm以下と微細であり柱状晶は完全
に破壊され粒状晶化しておりしかも均質な組織であっ
た。また1回の溶解では原料電極の先端は50mm程度
残して溶解を終了し、その後振動子4とホーン7を原料
電極からとり外し、別の電極に取り付け、再使用し、こ
れを何回も繰り返した。
Φ120 × 500 thus obtained
Looking at the macrostructure of an ingot of mmL of molybdenum, the average crystal grain size of the ingot obtained by the conventional electron beam melting method is 10 mm or more, and it is non-uniform and columnar crystals, whereas it is obtained by the method of the present invention. The average grain size of the resulting ingot was as fine as 10 mm or less, and the columnar crystals were completely broken into granular crystals and had a homogeneous structure. In addition, in one melting, the tip of the raw material electrode is left about 50 mm to complete the melting, then the vibrator 4 and the horn 7 are removed from the raw material electrode, attached to another electrode, reused, and repeated many times. It was

【0021】[0021]

【発明の効果】以上説明したごとく、この発明によれ
ば、結晶粒が微細化されかつ粒状晶化されしかも均質な
組織である金属又はインゴットを安定して量産すること
が可能になるなど、産業上極めて有用な効果がもたらさ
れる。
Industrial Applicability As described above, according to the present invention, it is possible to stably mass-produce a metal or an ingot whose crystal grains are refined and crystallized and which has a uniform structure. This brings about a very useful effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる金属又は金属合金の製造に適用
される装置例の要部説明図である。
FIG. 1 is a principal part explanatory view of an example of an apparatus applied to manufacture a metal or a metal alloy according to the present invention.

【図2】従来の電子ビーム溶解法による金属又は金属合
金の製造に適用される装置例の要部説明図である。
FIG. 2 is a principal part explanatory view of an apparatus example applied to the production of a metal or a metal alloy by a conventional electron beam melting method.

【符号の説明】[Explanation of symbols]

1 水冷式クルーシブル 2 電子銃 3 原料電極フィーダ 4 超音波振動子 5 超音波振動ホーン 6 振動子保護ケース 7 原料電極 8 インゴット引抜き装置 9 インゴット 10 電子ビーム 11 溶湯 1 Water-cooled Crucible 2 Electron Gun 3 Raw Material Electrode Feeder 4 Ultrasonic Transducer 5 Ultrasonic Vibrating Horn 6 Transducer Protective Case 7 Raw Material Electrode 8 Ingot Extractor 9 Ingot 10 Electron Beam 11 Molten Metal

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子ビーム溶解による金属又は金属合金
インゴットの製造方法において、クルーシブル内の溶湯
及び原料電極の先端の少なくとも一方に電子ビームを照
射しかつ該クルーシブル内の溶湯に浸漬された原料電極
を振動媒体として、前記溶湯に超音波振動を付与するこ
とを特徴とする電子ビーム溶解による金属又は金属合金
インゴットの製造方法。
1. A method for producing a metal or metal alloy ingot by electron beam melting, wherein at least one of the molten metal in the crucible and the tip of the raw material electrode is irradiated with an electron beam and the raw material electrode immersed in the molten metal in the crucible is used. A method for producing a metal or metal alloy ingot by electron beam melting, characterized in that ultrasonic vibration is applied to the molten metal as a vibration medium.
【請求項2】 前記原料電極に共振周波数の超音波振動
を付与することを特徴とする請求項1記載の電子ビーム
溶解による金属又は金属合金インゴットの製造方法。
2. The method for producing a metal or metal alloy ingot by electron beam melting according to claim 1, wherein ultrasonic vibration having a resonance frequency is applied to the raw material electrode.
【請求項3】 前記クルーシブルが、底部貫通孔をもつ
水冷型であり、かつ該クルーシブル内で凝固したインゴ
ットを該底部貫通孔から連続的に引抜くことを特徴とす
る請求項1又は2記載の電子ビーム溶解による金属又は
金属合金インゴットの製造方法。
3. The crucible is a water-cooled type having a bottom through hole, and the ingot solidified in the crucible is continuously pulled out from the bottom through hole. A method for producing a metal or metal alloy ingot by electron beam melting.
【請求項4】 原料電極の末端に、超音波振動ホーンと
振動子を介して、該原料電極に固定された案内棒により
前記原料電極を前記クルーシブル内に案内すする請求項
1から3までの何れか1項記載の電子ビーム溶解による
金属又は金属合金インゴットの製造方法。
4. The raw material electrode is guided to the inside of the crucible by a guide rod fixed to the raw material electrode via an ultrasonic vibration horn and a vibrator at the end of the raw material electrode. A method for producing a metal or metal alloy ingot by electron beam melting according to any one of claims.
【請求項5】 原料電極に付与する超音波振動周波数が
0.1[kHz]以上である請求項1から4までの何れ
か1項記載の電子ビーム溶解による金属又は金属合金イ
ンゴットの製造方法。
5. The method for producing a metal or metal alloy ingot by electron beam melting according to claim 1, wherein the ultrasonic vibration frequency applied to the raw material electrode is 0.1 [kHz] or higher.
【請求項6】 原料電極の長さに応じて周波数を変化さ
せることを特徴とする、請求項2記載の電子ビーム溶解
による金属又は金属合金インゴットの製造方法。
6. The method for producing a metal or metal alloy ingot by electron beam melting according to claim 2, wherein the frequency is changed according to the length of the raw material electrode.
JP5185996A 1993-07-28 1993-07-28 Production of metal or metal alloy ingot by electron beam melting Pending JPH0741876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185996A JPH0741876A (en) 1993-07-28 1993-07-28 Production of metal or metal alloy ingot by electron beam melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185996A JPH0741876A (en) 1993-07-28 1993-07-28 Production of metal or metal alloy ingot by electron beam melting

Publications (1)

Publication Number Publication Date
JPH0741876A true JPH0741876A (en) 1995-02-10

Family

ID=16180550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185996A Pending JPH0741876A (en) 1993-07-28 1993-07-28 Production of metal or metal alloy ingot by electron beam melting

Country Status (1)

Country Link
JP (1) JPH0741876A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326149A (en) * 2006-05-12 2007-12-20 Chiba Inst Of Technology Method for producing composite body of carbon nanomaterial and metallic material
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US9617617B2 (en) 2010-04-09 2017-04-11 Southwire Company, Llc Ultrasonic degassing of molten metals
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326149A (en) * 2006-05-12 2007-12-20 Chiba Inst Of Technology Method for producing composite body of carbon nanomaterial and metallic material
JP4526550B2 (en) * 2006-05-12 2010-08-18 学校法人千葉工業大学 Method for producing composite of carbon nanomaterial and metal material
US9617617B2 (en) 2010-04-09 2017-04-11 Southwire Company, Llc Ultrasonic degassing of molten metals
US10640846B2 (en) 2010-04-09 2020-05-05 Southwire Company, Llc Ultrasonic degassing of molten metals
US10316387B2 (en) 2013-11-18 2019-06-11 Southwire Company, Llc Ultrasonic probes with gas outlets for degassing of molten metals
US9481031B2 (en) 2015-02-09 2016-11-01 Hans Tech, Llc Ultrasonic grain refining
US10441999B2 (en) 2015-02-09 2019-10-15 Hans Tech, Llc Ultrasonic grain refining
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
US10022786B2 (en) 2015-09-10 2018-07-17 Southwire Company Ultrasonic grain refining
US10639707B2 (en) 2015-09-10 2020-05-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting

Similar Documents

Publication Publication Date Title
CN105458264B (en) A kind of increasing material manufacturing method under contact type mechanical vibration condition
JP3309141B2 (en) Method and apparatus for casting crystalline silicon ingot by electron beam melting
JP4836244B2 (en) Casting method
JP4594336B2 (en) Solidification method
JP2013215756A (en) METHOD FOR MANUFACTURING Al-Si-BASED CASTING ALLOY
JP2005088083A (en) Manufacturing device of metal slurry in solid-liquid coexistent state
JPH0741876A (en) Production of metal or metal alloy ingot by electron beam melting
CN1332773C (en) Improved method of vibration exciting metal liquid shape crystal nucleus and its device
JP2011507705A (en) Control method of solidification structure of steel using ultrasonic wave application
JPH06287661A (en) Production of smelted material of refractory metal
Han et al. Grain refining of pure aluminum
CN1301166C (en) Preparation method of high speed steel blank and its equipment
JP7457691B2 (en) Ultrasonic enhancement of direct chill casting materials
US4291742A (en) Method and apparatus for obtaining an ingot
US3045302A (en) Casting of metals and alloys
JP7206965B2 (en) Method and apparatus for manufacturing titanium ingot
CN106637397A (en) Polycrystalline silicon ingot, preparation method of polycrystalline silicon ingot and polycrystalline silicon ingot furnace
CN106513640A (en) Ultrasonic mold casting method for alloy steel
JPH10140260A (en) Method of precast forming
RU2132252C1 (en) Ingot production method
RU2799570C2 (en) Ultrasonic improvement of materials produced by direct cooling casting
US3592636A (en) Manufacture of alloys
JPH11350051A (en) Manufacture of titanium ingot
JP7256385B2 (en) Manufacturing method and manufacturing apparatus for titanium alloy ingot
JP2005279766A (en) Method and apparatus for producing solid-liquid coexisting state metallic slurry

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Effective date: 20050920

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060123

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120127

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250