JPH074179A - Pipe line survey method - Google Patents

Pipe line survey method

Info

Publication number
JPH074179A
JPH074179A JP32360091A JP32360091A JPH074179A JP H074179 A JPH074179 A JP H074179A JP 32360091 A JP32360091 A JP 32360091A JP 32360091 A JP32360091 A JP 32360091A JP H074179 A JPH074179 A JP H074179A
Authority
JP
Japan
Prior art keywords
excavator
cable
pipe line
coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32360091A
Other languages
Japanese (ja)
Other versions
JP2504887B2 (en
Inventor
Koichi Kimura
宏一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidoh Construction Co Ltd
Original Assignee
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidoh Construction Co Ltd filed Critical Kidoh Construction Co Ltd
Priority to JP3323600A priority Critical patent/JP2504887B2/en
Publication of JPH074179A publication Critical patent/JPH074179A/en
Application granted granted Critical
Publication of JP2504887B2 publication Critical patent/JP2504887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To determine the two-dimensional and three-dimensional positions of a pipe line and the spatial position of an excavator for making a survey work efficient by connecting the outer casing of the excavator to one output end of an AC generator through an insulation coated cable, and then observing and measuring alternating field generated from the cable on the ground surface. CONSTITUTION:One conductive end of an insulation coated cable is electrically connected to the metallic outer casing of an excavator laid at the leading end of a pipe line, and then an AC generator covering a low audio frequency is installed near a shaft where the pipe line starts. One output end of the generator is connected to the conductive section of the cable and the other end is grounded at a position sufficiently away from the shaft, in order not to influence magnetic field near the pipe line and the excavator. Then, power is supplied to a circuit ranging from one output end of the generator to the other end via the casing of the excavator, thereby causing alternate current to flow in the cable in the pipe line. Thereafter, alternating field generated from the cable is observed and measured on the ground using a probe device, thereby first determining the position of the cable and the spatial position of the excavator. Then, a relative position between the cable and the pipe line is measured and the absolute position of the pipe line is determined on the basis of the cable as a reference position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、推進工事又はシール
ド工事を施工する場合の掘進機の立体的位置及び管路全
体の空間的位置を、電磁誘導現象を利用して、地上から
の計測によって測量する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an electromagnetic induction phenomenon to measure the three-dimensional position of an excavator and the spatial position of the entire pipeline from the ground when performing propulsion work or shield work. Regarding the method of surveying.

【0002】[0002]

【従来の技術】従来、推進工事又はシールド工事におい
て、管路全体の測量及び先頭の掘進機の立体的位置に関
する測量は、発進立坑内からトランシットやレベルを用
いた光学測量によって測量するのが一般的方法であっ
た。しかしながら光学測量ではその測量機器の性能にも
よるが、100メートル以上の測量になると水蒸気、霧
等の影響で測量が困難となる場合が多い。そこで、発進
立坑内から一定方向にレーザービームを照射し、先頭位
置のターゲットにあて、そのレーザースポットの照射さ
れたターゲット位置から先頭位置を知る方法が採られて
いる。しかしながらこの方法によっても距離的な限界が
あり、特に曲線路で見通しのきかない場合は一回の測量
では先頭の空間位置は決定できないという欠点がある。
又、掘進作業空間の中を測量していくので、測量中は掘
進作業を一時的に中断するのが一般的である。
2. Description of the Related Art Conventionally, in propulsion work or shield work, surveying of the entire pipeline and surveying the three-dimensional position of the leading excavator is generally done by optical surveying from inside the starting shaft using a transit or level. It was the target method. However, in optical surveying, depending on the performance of the surveying instrument, when surveying over 100 meters, it is often difficult to perform surveying due to the influence of water vapor, fog, and the like. Therefore, a method of irradiating a laser beam in a certain direction from the inside of the starting shaft to hit the target at the head position and knowing the head position from the target position irradiated with the laser spot is adopted. However, even with this method, there is a limit in distance, and there is a drawback that the spatial position of the head cannot be determined by one survey, especially when the road is invisible on a curved road.
In addition, since the survey is performed in the excavation work space, it is common to suspend the excavation work during the survey.

【0003】そこで最近では先頭の掘進機に低周波交流
発振器を取りつけて微小コイルに交番電流を流し、その
コイルから発生する電磁界を地表面で観測測定して先頭
の位置を知る方法等、電磁界を利用する方法が一部で採
用されるようになってきた。しかしながら、今までの電
磁界を利用する方法は、地表面からみた場合、双極子と
みなされる微小コイルから発生する電磁界を測定するの
で観測する電磁界の強さはあまり大きくなく、それを観
測測定するには高感度の計測器を必要とし、かつ常に先
頭の掘進機の位置を知るだけで、管路全体の測量は必要
に応じて別の方法で実施しなければならない状態であ
る。
Therefore, recently, a method of attaching a low-frequency AC oscillator to the leading excavator, applying an alternating current to a minute coil, and observing and measuring the electromagnetic field generated from the coil on the ground surface to know the leading position is known. The method of utilizing the world has been adopted by some. However, the method using the electromagnetic field up to now measures the electromagnetic field generated from the minute coil considered as a dipole when viewed from the ground surface, so the strength of the electromagnetic field to be observed is not so large and it can be observed. A high-sensitivity measuring instrument is required for the measurement, and only by knowing the position of the leading excavator at all times, the survey of the entire pipeline must be performed by another method as needed.

【0004】[0004]

【発明が解決しようとする点】従来のように微小コイル
を利用した磁界発生方法では地表面で強力な磁界を得る
ことは面倒且つ困難であり、また先頭位置の間欠的測量
しかできなかった。これらの問題を鑑み、管路又はセグ
メントトンネルの先頭部掘進機の位置測量及び管路、ト
ンネルの全体の位置を必要に応じて随時地表面から観測
測定できる測量方法を提供するものである。
However, it has been difficult and difficult to obtain a strong magnetic field on the ground surface by the conventional magnetic field generating method using a minute coil, and only intermittent measurement of the head position has been possible. In view of these problems, it is an object of the present invention to provide a position surveying method for a leading machine of a pipeline or a segment tunnel and a surveying method capable of observing and measuring the entire location of the pipeline or the tunnel as needed from the ground surface.

【0005】[0005]

【問題解決の手段】かかる問題を解決するため、推進管
内若しくはセグメント管内に架線した絶縁被覆電線路に
通電したときに発生する電磁界を観測することによりま
ず管路全体の位置状況を電線路に置き換えて知り、次に
電線路の先端を掘進機外筒に接続して、外筒から大地に
アースすることにより外筒の位置で急激に磁界が変化す
ることを利用して、これを観測することにより掘進機の
空間的位置を知る方法を採用した。
[Means for solving the problem] In order to solve such a problem, first, by observing an electromagnetic field generated when an insulating coated electric line which is installed in a propulsion pipe or a segment pipe is energized, the position of the entire pipeline is first confirmed in the electric line. Know by replacing it, then connect the tip of the electric line to the excavator outer cylinder, and observe this by utilizing the fact that the magnetic field changes rapidly at the outer cylinder position by grounding the outer cylinder to the ground. Therefore, the method of knowing the spatial position of the excavator was adopted.

【0006】[0006]

【作用】発電機または発振器の出力を大きくするだけ
で、充分な観測測定用電磁界を容易に得ることができ、
又、地表面から観測することにより掘進作業とは無関係
に作業を進めることができる。交番電磁界を発生する電
線路は管路全長にわたっているので、管路全体の測量に
利用することができる。この電線路から発生する交番磁
界は有限電流による電磁界と考えることができ、この場
合の磁界の大きさは第1図に従って次のように示され
る。
[Function] A sufficient electromagnetic field for observation and measurement can be easily obtained only by increasing the output of the generator or the oscillator.
Also, by observing from the ground surface, the work can be carried out independently of the excavation work. Since the electric line that generates the alternating electromagnetic field extends over the entire length of the pipeline, it can be used for surveying the entire pipeline. The alternating magnetic field generated from this electric line can be considered as an electromagnetic field due to a finite current, and the magnitude of the magnetic field in this case is shown as follows according to FIG.

【数1】 [Equation 1]

【0007】そして、この電線路ABに流れる電流(交
流)Iによって発生する交番磁界Hは、電線路の断面中
心を中心とする同心円周に向かう磁界であり、(1)式
からその強さは、電線路からの距離に反比例して減少す
る。又この磁界は電流の流れる電線路方向の成分を持た
ない。この事から、電線路が水平の直線で、この電線路
に平行な地表面においては、この交番磁界は次のような
定性的な性質を持つ。 電線路の鉛直真上では、鉛直成分を持たない。 あらゆる場所で、電線路の方向の成分を持たない。 実際には、電線路は必ずしも完全な直線ではなく、又地
表面も完全に電線路と平行ではないが、一般にその誤差
は無視できる程度であるので、電線路の位置の測量は、
水平位置については前記の定性的性質を利用して決定す
ることができる。又、各点での深さは、電線路直上を外
れた二地点の交番磁界の鉛直成分と水平成分との比から
知ることができる。
The alternating magnetic field H generated by the electric current (alternating current) I flowing through the electric line AB is a magnetic field directed toward a concentric circle centered on the center of the cross section of the electric line, and its strength is expressed by the equation (1). , It decreases in inverse proportion to the distance from the electric line. Also, this magnetic field has no component in the direction of the electric line through which the current flows. From this fact, the alternating magnetic field has the following qualitative properties on the ground surface parallel to the electric line and the electric line. There is no vertical component just above the vertical line. It has no component in the direction of the electric line everywhere. Actually, the electric line is not always a perfect straight line, and the ground surface is not completely parallel to the electric line, but the error is generally negligible, so the position measurement of the electric line is
The horizontal position can be determined by using the above-mentioned qualitative property. Further, the depth at each point can be known from the ratio of the vertical component and the horizontal component of the alternating magnetic field at the two points deviating just above the electric line.

【0008】すなわち、第3図から とすれば、深さDはThat is, from FIG. Then, the depth D is

【数2】 D×α=l・・・・・・・・・・・・・・・・・・・・(2)[Formula 2] D × α = l 1 (2)

【数3】 D×β=−l・・・・・・・・・・・・・・・・・・・・(3) となるので、(2)式と(3)式を加えると l+l=D(α−β)=lEquation 3 Since the D × β = -l 2 ···················· ( 3), the addition of (2) and (3) l 1 + l 2 = D (α-β) = 1

【数4】 ここで、α,βは各々その点の磁界の垂直成分と水平成
分の比として得られ、lは二地点間の実測で得られるか
ら、深さDが決まる。ただし、これらはすべて電線路に
垂直な平面で取り扱われなければならない。
[Equation 4] Here, α and β are respectively obtained as the ratio of the vertical component and the horizontal component of the magnetic field at that point, and l is obtained by the actual measurement between two points, so the depth D is determined. However, all of these must be handled on a plane perpendicular to the electric line.

【0009】次に、一般的な管路断面図を第4図に示
す。第4式で有限電線路ABのB点が掘進機外筒の接地
点と考えられるとこの時のβは0となり、第4式は
Next, a general pipeline sectional view is shown in FIG. If the point B of the finite electric line AB is considered to be the grounding point of the excavator outer cylinder in the formula 4, β 1 at this time becomes 0, and the formula 4 is

【数5】 と書かれるから[Equation 5] Is written

【数6】 となる。[Equation 6] Becomes

【0010】ここで掘進機の深さDと電線路の距離lと
の比を
Here, the ratio of the depth D of the excavator to the distance 1 of the electric line is

【数7】 は、0と1の間にあるが、これをXとおくと x=5・・・・X=0.986 x=6・・・・X=0.9863 x=8・・・・X=0.9923 であり、x=5、すなわち深さの5倍離れた所では98
%の相似性、x=8、すなわち深さの5倍離れた所では
99%の相似性をもってX=1とみなすことができる。
その時、
[Equation 7] Is between 0 and 1, but if we put it as X, x = 5 ... X = 0.986 x = 6 ... X = 0.9863 x = 8 ... X = 0.9923, which is 98 at x = 5, that is, at a distance of 5 times the depth.
% Similarity, x = 8, ie 99% similarity at 5 times the depth, can be considered as X = 1.
At that time,

【数8】 となる。一方管路延長のおよそ1/2の点PでA点及
びB点までの距離をそれぞれl、lとすると、これ
らが共に深さの5倍以上であれば(8)式は、
[Equation 8] Becomes On the other hand, assuming that the distances to the points A and B at the point P M that is approximately ½ of the pipeline extension are l 3 and l 4 , respectively, and if both are 5 times the depth or more, the equation (8) is

【数9】 となる。つまり延長が深さの10倍以上進めばその中点
の磁界の強さは先端掘進機の位置の磁界の2倍となる。
従って、このような条件下でP点を選び、先頭方向へ
進んで磁界の強さがPM点の半分になる点を探せばその
位置が掘進機の位置になる。
[Equation 9] Becomes That is, if the extension proceeds more than 10 times the depth, the strength of the magnetic field at the midpoint becomes twice the magnetic field at the position of the tip excavator.
Therefore, select P M point under these conditions, to look for that intensity of the magnetic field is half of the PM point proceeds to the top direction that position is the position of the excavator.

【0011】[0011]

【実施例】推進工事又はシールド工事に用いる、管路の
先頭の掘進機の金属性外筒に、絶縁被覆電線の通電部の
一端を電気的に接続する。管路の発進立坑付近に低周波
の可聴周波数又はそれを上回る周波数の正弦波交番電流
又は高次高聴波を含む交番電流発電機又は発振器を置
き、その出力の一端を先の絶縁被覆電線の通電部に接続
し、他端は管路及び掘進機付近の磁界に影響を及ぼさな
いように発進立坑から充分離れた所に接地板又は接地棒
を介して接地する。しかる後に発電機又は発振器の出力
側の一端から、絶縁被覆電線、掘進機外筒、大地、接地
板又は接地棒、電線を経て発電機又は発振器の出力側の
他端に至る回路に通電し、管内の絶縁被覆電線に交番電
流を流す。このようにして設置された絶縁被覆電線から
発生する交番磁界を探査装置により地上から観察測定す
ることによりまず絶縁被覆電線の位置と掘進機の空間的
位置を決定する。次に絶縁被覆電線と管路又はセグメン
トとの相対的位置を測定し絶縁被覆電線を基準に管路又
はセグメントの絶対位置を決定する。
[Embodiment] One end of a current-carrying part of an insulated coated electric wire is electrically connected to a metallic outer cylinder of a machine for excavating a pipe, which is used for propulsion work or shield work. Place a sinusoidal alternating current of low frequency or higher frequency in the vicinity of the starting shaft of the pipeline, or an alternating current generator or oscillator containing high-order high-acoustic waves. The other end is grounded via a grounding plate or rod at a place sufficiently far from the starting shaft so as not to affect the magnetic field near the pipeline and the excavator. After that, from the output side end of the generator or oscillator, the insulated coating electric wire, the excavator outer cylinder, the ground, the ground plate or ground rod, through the wire to energize the circuit leading to the output side of the generator or oscillator, An alternating current is applied to the insulated wire in the pipe. First, the position of the insulating coated electric wire and the spatial position of the excavator are determined by observing and measuring the alternating magnetic field generated from the insulating coated electric wire thus installed from the ground by the exploration device. Next, the relative position of the insulated coated electric wire and the pipeline or segment is measured, and the absolute position of the pipeline or segment is determined based on the insulated coated electrical wire.

【0012】次に磁界の測定方法について説明する。管
路から発生する磁界の性質については先に詳細に述べた
ところであるが、実際にはこの性質を勘案していろいろ
な実施方法が可能である。そこで、最も理解し易い測量
方法の一実施例について説明する。まず第5図に示すよ
うに互いに直角に組み合わされた探査コイルを用いた方
法を示す。3つのコイルは互いにそのコイル面が直角に
なるように組み合わされている。そして、その各々をx
コイル、yコイル、zコイルとする。このコイルは円形
でも矩形でも自由であるが、その面積とコイルの巻き数
は同じであることが望ましい。すなわち、もしも面積や
コイルの巻き数に差がある場合には、同じ強さの磁界に
おいて同じ大きさの起電力を発生するような補正が必要
である。
Next, a method of measuring the magnetic field will be described. Although the nature of the magnetic field generated from the pipe has been described in detail above, various implementation methods are actually possible in consideration of this nature. Therefore, an embodiment of the surveying method that is the easiest to understand will be described. First, as shown in FIG. 5, a method using probe coils assembled at right angles to each other will be described. The three coils are assembled so that their coil surfaces are perpendicular to each other. And each of them is x
Coils, y coils, and z coils. The coil may be circular or rectangular, but it is desirable that the area and the number of turns of the coil are the same. That is, if there is a difference in the area or the number of turns of the coil, it is necessary to correct the electromotive force of the same magnitude in the magnetic field of the same strength.

【0013】さて、絶縁被覆電線路に交番電流を通電し
て、地表面でこの3要素コイルは常にzコイルを水平に
して使用する。 電線路の水平位置の測定 この3要素コイルを略管路線上に置き、管路方向に略直
角に左右移動を行い、Zコイルの起電力が零の点を求め
れば、その点の鉛直下に電線路がある。この起電力の零
点を求めるには、Zコイルにレシーバーを繋ぎ、直接交
流音を聞きながら無音点を求めてもよいし、起電力をメ
ーターで測定して零点表示で求めてもよく、いろいろな
方法が考えられる。このような方法で管路上と思われる
地点で零点を次々と求めていき、これらの零点を結べば
それが電線路の水平位置となる。
By applying an alternating current to the insulating coated electric line, the z coil of the three-element coil is always used horizontally on the ground surface. Measurement of horizontal position of electric line This three-element coil is placed on a substantially pipeline and moved left and right at a substantially right angle to the pipeline direction. If a point where the electromotive force of the Z coil is zero is obtained, it is placed vertically below that point. There is an electric line. In order to obtain the zero point of this electromotive force, a receiver may be connected to the Z coil and a silent point may be obtained by directly listening to an alternating current sound, or the electromotive force may be measured by a meter and displayed as a zero point. A method can be considered. In this way, zero points are successively obtained at points that are considered to be on the pipeline, and if these zero points are connected, it becomes the horizontal position of the electric line.

【0014】次に、Zコイル零点位置で、Zコイルを水
平にしたままZコイルの中心鉛直線の周囲にXコイルと
Yコイルを回転させる。そして、Yコイルの零点を求め
るとそのときのYコイルの枠の方向は、その点における
電線路の方向を示している。そこで、左右何れの位置に
Xコイルがあってもよいのだが、Xコイルの枠の方向
(つまり管路と直角方向)に移動した任意の点でXコイ
ルとZコイルとの起電力の比を求め、次に反対側の任意
の点でXコイルとZコイルとの起電力の比を求める。そ
の方法は、第6図のようなブリッジ回路の平衡で求める
のが最も簡便で、このときの平衡零点検出は、レシーバ
ー音でもメーターによる方法でもよい。次に、できれば
反対方向に移動して同じ操作を行い、先に説明したαと
βをもとめれば、実測値l(2点間距離)と第4式から
深さDを求めることができる。
Next, at the Z coil zero point position, the X coil and the Y coil are rotated around the central vertical line of the Z coil while keeping the Z coil horizontal. Then, when the zero point of the Y coil is obtained, the direction of the frame of the Y coil at that time indicates the direction of the electric line at that point. Therefore, although the X coil may be located at any of the left and right positions, the ratio of the electromotive force between the X coil and the Z coil can be determined at any point moved in the direction of the frame of the X coil (that is, the direction perpendicular to the pipeline). Then, the ratio of the electromotive forces of the X coil and the Z coil is obtained at an arbitrary point on the opposite side. The method is most conveniently determined by the balance of the bridge circuit as shown in FIG. 6, and the balanced zero point detection at this time may be a method using a receiver sound or a meter. Next, if possible, move in the opposite direction and perform the same operation, and by obtaining α and β described above, the depth D can be obtained from the measured value l (distance between two points) and the fourth equation.

【0015】次に、すでに埋設された管路延長の略中央
に3要素コイルを置き、YコイルとZコイルとの起電力
が零になるように設置する。もう一つの3要素コイル
を、YコイルとZコイルとの起電力が零になるように保
ちながらXコイルの枠の方向に移動させ、Xコイルの起
電力が先に設置した3要素コイルのXコイルの起電力の
50%になる磁界の位置を求めると、その位置が掘進機
の水平位置となる。この50%の位置を求めるには、第
6図ブリッジを利用してLを設置したXコイルとし、
計算上LがLの50%になるようにrを調節して
おいて、Lのコイルを移動して平衡点を求めればよ
い。
Next, a three-element coil is placed at approximately the center of the already-extended conduit extension and is installed so that the electromotive forces of the Y coil and the Z coil become zero. The other three-element coil is moved in the direction of the frame of the X coil while keeping the electromotive forces of the Y coil and the Z coil to be zero, and the electromotive force of the X coil is the X of the three-element coil previously installed. When the position of the magnetic field at which 50% of the electromotive force of the coil is obtained, that position becomes the horizontal position of the excavator. To determine this 50% position, and X coil using a sixth FIG bridge established the L 2,
It suffices to adjust r 2 so that L 1 is 50% of L 2 in calculation and then move the coil of L 1 to obtain the equilibrium point.

【0016】[0016]

【考案の効果】本発明は、シールド工事や推進工事等の
管路位置測量を効率的に且つ正確に測定でき、次のよう
な効果がある。 工事を中断することなく測量できるので工期を短縮で
きる。 直線路・曲線路に無関係に測量できるので、測量時間
を短縮できる。 掘進機の位置と管路の位置を同時に知ることができ
る。 測量機器が安価に作成できる。
INDUSTRIAL APPLICABILITY The present invention can efficiently and accurately measure pipe line position measurement for shield construction, propulsion construction, and the like, and has the following advantages. The construction period can be shortened because the survey can be performed without interrupting the construction. Since surveying can be performed regardless of straight or curved roads, the surveying time can be shortened. It is possible to know the position of the excavator and the position of the pipeline at the same time. Survey equipment can be made at low cost.

【0017】[0017]

【図面の簡単な説明】[Brief description of drawings]

【第1図】 任意の点での、有限電線路ABから受ける
磁界Hを示す説明図
FIG. 1 is an explanatory diagram showing a magnetic field H received from a finite electric line AB at an arbitrary point.

【第2図】 交番磁界の広がり方を示す説明図FIG. 2 is an explanatory diagram showing how the alternating magnetic field spreads.

【第3図】 2点測定による電線路の深さDの求め方を
示す説明図
FIG. 3 is an explanatory view showing how to obtain the depth D of the electric line by two-point measurement.

【第4図】 管路敷設工事概要(縦断面図)と測点位置
[Fig. 4] Outline of pipe laying work (longitudinal section) and station position diagram

【第5図】 ブリッジ回路図[Fig. 5] Bridge circuit diagram

【第6図】 探査器のコイルの組合せ方を示す概念図FIG. 6 is a conceptual diagram showing how to combine the coils of the probe.

【符号の説明】[Explanation of symbols]

I :交番電流値 r:測点から線分ABに下ろした垂線の長さ β:測点から点Bを見込む角度 β:測点から点Aを見込む角度 H :測点での磁界 D :地表面から電線路までの深さ l :2測点間距離 l・l:電線路直上から測点までの距離 Hv1・Hv2:磁界の垂直成分 Hh1・Hh2:磁界の水平成分 l:中間測点から縦坑(発振器出力)までの距離 l:中間測点から掘進機(掘進機接点)までの距離 P :掘進機(掘進機接点)直上の点 P:中間測点 L:中間測点に設置した探査器のXコイル L:移動探査器のXコイル R:抵抗 R:可変抵抗、Rの1/2にとる。I: Alternating current value r 0 : Length of the perpendicular line drawn from the measurement point to the line segment AB 1 : Angle at which the point B is seen from the measurement point β 2 : Angle at which the point A is seen from the measurement point H: Magnetic field at the measurement point D: Depth from the ground surface to the electric line l: Distance between two measuring points l 1 · l 2 : Distance from directly above the electric line to the measuring point Hv 1 · Hv 2: Vertical component of magnetic field Hh 1 · Hh 2: Horizontal component of magnetic field l 3: distance from the middle measuring point to shafts (oscillator output) l 4: intermediate distance from measuring point to the excavator (excavator contact) P: excavator (excavator contact) point directly above P M: intermediate stations L 1 : X-coil of a probe installed at an intermediate measuring point L 2 : X-coil of a mobile probe R 1 : resistance R 2 : variable resistance, which is 1/2 of R 1 .

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】推進工事又はシールド工事に用いる管路の
先頭の掘進機の金属性の外筒と交番電流発振器又は発電
機の出力の一端を絶縁被覆電線にて電気的に接続し、そ
の出力の他端を掘進機付近の磁界に影響を及ぼさないよ
うに十分に離れた所に接地し、掘進機外筒を経て電流を
流すことにより絶縁被覆電線から発生する交番磁界を地
表面で観測測定し、管路又はシールドセグメントの平面
的立体的位置と先頭掘進機の空間的位置を決定すること
を特徴とした管路測量方法。
1. A metallic outer cylinder of a machine to be used for propulsion work or shield work and one end of an output of an alternating current oscillator or a generator are electrically connected by an insulation coated electric wire, and the output is provided. The other end of the cable is grounded at a place far enough from the influence of the magnetic field near the excavator, and the alternating magnetic field generated from the insulated wire is observed and measured on the ground surface by passing an electric current through the outer casing of the excavator. However, the pipe surveying method is characterized in that the three-dimensional position of the pipe or the shield segment and the spatial position of the leading machine are determined.
JP3323600A 1991-10-03 1991-10-03 Pipeline survey method Expired - Fee Related JP2504887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3323600A JP2504887B2 (en) 1991-10-03 1991-10-03 Pipeline survey method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3323600A JP2504887B2 (en) 1991-10-03 1991-10-03 Pipeline survey method

Publications (2)

Publication Number Publication Date
JPH074179A true JPH074179A (en) 1995-01-10
JP2504887B2 JP2504887B2 (en) 1996-06-05

Family

ID=18156525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3323600A Expired - Fee Related JP2504887B2 (en) 1991-10-03 1991-10-03 Pipeline survey method

Country Status (1)

Country Link
JP (1) JP2504887B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466171A (en) * 1977-11-05 1979-05-28 Sumitomo Electric Ind Ltd Depth measuring method of buried cables
JPS59153112A (en) * 1983-02-21 1984-09-01 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring horizontal displacement of tunnel excavating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5466171A (en) * 1977-11-05 1979-05-28 Sumitomo Electric Ind Ltd Depth measuring method of buried cables
JPS59153112A (en) * 1983-02-21 1984-09-01 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring horizontal displacement of tunnel excavating machine

Also Published As

Publication number Publication date
JP2504887B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US20140312904A1 (en) Method of locating the position of linear objects
KR20160134654A (en) Buried-metal detection method, and detection device therefor
CN107346037B (en) Three-dimensional underground piping accurately detecting method
KR20110058313A (en) Three-dimension electromagnetic induction surveying equipment for surveying of underground facilities
JP2001116850A (en) Method and device for detecting underground pipe
JP2504887B2 (en) Pipeline survey method
US4982163A (en) Method and a device for the determination of the condition of the insulation of an object coated with an electric insulation
JPH0196584A (en) Method for surveying position of piping buried under ground
JP2005526970A (en) Time domain induction method and apparatus for locating an object embedded in a medium by inducing and measuring transient eddy currents
JP4000208B2 (en) Buried object exploration equipment
RU2710233C1 (en) System for controlling distance between bucket of excavator and wall surface of pipeline and method for its implementation
JP3169754B2 (en) Method and apparatus for monitoring damage degree of coated steel pipe
JPH028754A (en) Soil inspection using radio wave
JPS59108954A (en) Damage position detection for cover applied on buried piping
JPS642227B2 (en)
JPH10197648A (en) Position survey device for underground pipe
RU2699379C1 (en) Method for determination of depth of occurrence and distance to point of passage of communications
RU2400779C1 (en) Method of searching for damages in underground pipe insulation
JP5211276B2 (en) Electromagnetic induction voltage prediction method
JPS625117A (en) Position detector of excavating machine
JPS59163586A (en) Detecting method of buried electric conductor
JP2000249685A (en) Method for investigating damage position of anticorrosion coat of buried metallic pipe and apparatus therefor
RU1774157C (en) Method of determining working-to-hole distance
RU2234111C1 (en) Induction cable route seeker
JPH0772750B2 (en) Underground line location detection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees