JPH0741513B2 - Method and device for controlling spindle temperature of machine tool - Google Patents

Method and device for controlling spindle temperature of machine tool

Info

Publication number
JPH0741513B2
JPH0741513B2 JP13859892A JP13859892A JPH0741513B2 JP H0741513 B2 JPH0741513 B2 JP H0741513B2 JP 13859892 A JP13859892 A JP 13859892A JP 13859892 A JP13859892 A JP 13859892A JP H0741513 B2 JPH0741513 B2 JP H0741513B2
Authority
JP
Japan
Prior art keywords
spindle
cooling
cooler
temperature
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13859892A
Other languages
Japanese (ja)
Other versions
JPH05329743A (en
Inventor
啓之 藤田
敬三 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP13859892A priority Critical patent/JPH0741513B2/en
Publication of JPH05329743A publication Critical patent/JPH05329743A/en
Publication of JPH0741513B2 publication Critical patent/JPH0741513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の主軸頭内に
循環供給される冷却液の冷却制御を行ない、主軸温度を
所定値に維持する工作機械の主軸温度制御方法及び装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spindle temperature control method and apparatus for a machine tool, which controls cooling of a cooling liquid circulated and fed into a spindle head of a machine tool to maintain the spindle temperature at a predetermined value.

【0002】[0002]

【従来の技術】特公昭48−3797号公報には、冷却
液(循環液)の温度上昇量をフィードバックして発熱部
に対する冷却を制御する技術が開示されている。この技
術を工作機械の主軸冷却に適用した場合における作用・
効果の一例を示す図5ののカーブ(一点鎖線)に着目
すると、主軸頭への供給液温度が時間とともに減衰曲線
を描いて所定の目標温度に収束し(同図(C))、主軸
起動によって上昇した主軸頭からの回収液温度や主軸熱
変位量がこの冷却制御により下降・維持される事が認め
られる(同図(A),(B))。
2. Description of the Related Art Japanese Patent Publication No. 48-3797 discloses a technique for controlling the cooling of a heat generating portion by feeding back a temperature rise amount of a cooling liquid (circulating liquid). Action when this technology is applied to spindle cooling of machine tools
Focusing on the curve in FIG. 5 (one-dot chain line) showing an example of the effect, the temperature of the liquid supplied to the spindle head draws an attenuation curve with time and converges to a predetermined target temperature (FIG. (C)), and the spindle is started. It can be seen that the temperature of the recovered liquid from the spindle head and the amount of thermal displacement of the spindle, which have risen due to this, are lowered and maintained by this cooling control ((A) and (B) in the same figure).

【0003】しかしながら、このように主軸起動時から
冷却のフィードバック制御を行う場合、その応答遅れ
(冷却開始の遅れ)が大きいために、直ちに効果的な冷
却を行えないといった不都合がある。これに対して、本
出願人の手に掛かる特開昭64−51253号公報は、
主軸の起動と同時に発熱部の発熱仕事率(計算値)に等
しい冷却仕事率で冷却器の運転を開始し(フィードフォ
ワード制御)、所定時間経過後、フィードバック制御を
行う技術を開示している。これを上記同様に主軸冷却に
適用した場合における作用・効果の一例を示す図5の
のカーブ(破線)に着目すると、上記公報のそれと比較
して、主軸頭からの回収液温度が基準温度に収束するま
での時間が短くなり(同図(B))、主軸熱変位量が低
く抑えられることが認められる(同図(A))。すなわ
ち、主軸起動時より迅速で効果的な冷却を開始すること
ができる。
However, when feedback control of cooling is performed from the start of the spindle in this way, there is a disadvantage that effective cooling cannot be performed immediately because of a large response delay (delay of cooling start). On the other hand, Japanese Patent Application Laid-Open No. 64-51253, which is applied to the applicant,
Disclosed is a technique of starting the operation of the cooler at a cooling power equal to the heat generation power (calculated value) of the heat generating portion (feedforward control) at the same time when the main shaft is started, and performing feedback control after a predetermined time has elapsed. Focusing on the curve (dashed line) in FIG. 5 showing an example of the action and effect when this is applied to the spindle cooling in the same manner as described above, the temperature of the liquid recovered from the spindle head becomes the reference temperature as compared with that in the above publication. It can be seen that the time until convergence is shortened ((B) in the same figure), and the thermal displacement of the spindle is suppressed to a low value ((A) in the same figure). That is, it is possible to start cooling more quickly and effectively than when the spindle is started.

【0004】[0004]

【発明が解決しようとする課題】しかるに、上記後者の
改善技術は、発熱及び冷却の仕事量(=仕事率×時間)
に関する配慮を欠くために、冷却の初期段階(フィード
フォワード制御段階)において冷却が実際的に不足して
おり、その後のフィードバック制御により徐々にそれが
解消されるものの、安定状態になるまでに結構な時間を
無駄に消費してしまう。
However, in the latter improvement technique, the work of heat generation and cooling (= work rate × time) is used.
Due to the lack of consideration regarding the fact that cooling is actually insufficient in the initial stage of cooling (feed-forward control stage) and it is gradually eliminated by the subsequent feedback control, it is sufficient until a stable state is reached. It wastes time.

【0005】そこで、本発明は、主軸起動時に主軸温度
が安定するまでの時間を可能な限り短くし、以って主軸
の熱変位が安定するまでの時間を短くかつその変位自体
を小さくすることをその課題とする。
Therefore, in the present invention, the time until the spindle temperature stabilizes at the time of starting the spindle is shortened as much as possible, so that the time until the thermal displacement of the spindle stabilizes is shortened and the displacement itself is reduced. Is the task.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明に係る主軸温度制御方法は、冷却器で冷却され
た冷却液を主軸装置内に循環して主軸温度を所定値に維
持する工作機械の主軸温度制御方法において、主軸回転
数に対応した主軸の発熱仕事率を予め求め、主軸が指定
回転数で回転したときその指定回転数に対応した前記予
め求めた発熱仕事率と等しい冷却仕事率になるまで前記
冷却器を駆動するフィードフォワード制御を開始し、前
記冷却器の冷却仕事率が前記予め求めた発熱仕事率に到
達するまでの遅れ時間を求め、前記求めた遅れ時間と前
記冷却器の冷却仕事率とからこの時間遅れに起因する不
足冷却仕事量を演算し、前記演算した不足冷却仕事量と
ほぼ等しい仕事量を追加の仕事として前記冷却器に引き
続き行わせ、その後、前記主軸温度が前記所定値になる
ようにフィードバック制御を行うようにしたことを構成
上の特徴とする。
In order to solve the above problems, a spindle temperature control method according to the present invention circulates a cooling liquid cooled by a cooler in a spindle device to maintain a spindle temperature at a predetermined value. In the spindle temperature control method for machine tools, the heat generation work rate of the spindle corresponding to the spindle rotation speed is obtained in advance, and when the spindle rotates at the designated rotation speed, cooling equal to the previously obtained heat generation work rate corresponding to the designated rotation speed is performed. Start the feedforward control to drive the cooler until the power is reached, obtain the delay time until the cooling power of the cooler reaches the heat generation power obtained in advance, the obtained delay time and the From the cooling power of the cooler, the insufficient cooling work due to this time delay is calculated, and the cooling device is allowed to continue to perform a work substantially equal to the calculated insufficient cooling work as additional work. Characterized in construction in that the main shaft temperature to perform a feedback control so that the predetermined value.

【0007】また、本発明に係る主軸温度制御装置は、
冷却器で冷却された冷却液を主軸装置内に循環して主軸
温度を所定値に維持する工作機械の主軸温度制御装置に
おいて、冷却液を冷却する冷却器と、予め求めた主軸回
転数に対応した主軸の発熱仕事率を記憶する記憶手段
と、主軸が指定回転数で回転したときその指定回転数に
対応した前記記憶手段に記憶されている発熱仕事率と等
しい冷却仕事率になるまで前記冷却器の駆動を開始し、
前記冷却器の冷却仕事率が前記記憶手段に記憶されてい
る発熱仕事率に到達するまでの遅れ時間を求め、前記求
めた遅れ時間と前記冷却器の冷却仕事率とからこの時間
遅れに起因する不足冷却仕事量を演算し、前記演算した
不足冷却仕事量とほぼ等しい仕事量を追加の仕事として
前記冷却器に引き続き行わせるように前記冷却器を駆動
するフィードフォワード制御手段と、前記追加の仕事量
が前記演算した不足冷却仕事量とほぼ等しくなった後
は、前記主軸温度が前記所定値になるようにフィードバ
ック制御を行うフィードバック制御手段と、を具備して
構成したことを構成上の特徴とする。
Further, the spindle temperature control device according to the present invention is
In a spindle temperature control device for machine tools that circulates the cooling liquid cooled by a cooling device in the spindle device to maintain the spindle temperature at a predetermined value, it corresponds to the cooling device that cools the cooling liquid and the spindle rotational speed that is obtained in advance. Storage means for storing the heat generation power of the main spindle, and when the main spindle rotates at a specified rotation speed, the cooling power is equal to the heat generation power stored in the storage means corresponding to the specified rotation speed Start driving the vessel,
A delay time until the cooling power of the cooler reaches the heat generation power stored in the storage means is obtained, and due to this time delay from the obtained delay time and the cooling power of the cooler. Feed-forward control means for driving the cooler so as to calculate an undercooling work amount, and to allow the cooler to continue to perform a work amount substantially equal to the calculated undercooling work amount; and the additional work. After the amount becomes almost equal to the calculated insufficient cooling work amount, feedback control means for performing feedback control so that the spindle temperature becomes the predetermined value is configured. To do.

【0008】[0008]

【作用】発熱仕事量と等価である冷却仕事量に基づいて
主軸起動時よりフィードフォワード制御が為されるの
で、冷却液が極めて短時間のうちに目標温度に冷却さ
れ、主軸の熱変位等が効果的に抑制され、また、その後
に、冷却液温度のフィードバック制御を行えば、冷却の
安定性・信頼性等が損なわれない。
[Function] Since the feedforward control is performed from the time of starting the spindle based on the cooling work which is equivalent to the heat generating work, the cooling liquid is cooled to the target temperature in an extremely short time, and the thermal displacement of the spindle is prevented. If it is effectively suppressed, and if feedback control of the cooling liquid temperature is performed thereafter, the stability and reliability of cooling are not impaired.

【0009】[0009]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明に係る工作機械の主軸温度制御装
置の一実施例の全体概略構成図である。先ず同図を参照
して、本実施例の機械的構成について説明すると、工作
機械の基台を成すベッド(図示せず)には、主軸頭11
が可動に取着され、この主軸頭11内には、その先端に
加工工具(図示せず)が取り付けられる主軸12が回転
自在に支承されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall schematic configuration diagram of an embodiment of a spindle temperature control device for a machine tool according to the present invention. First, referring to the figure, the mechanical configuration of the present embodiment will be described. A spindle head 11 is attached to a bed (not shown) that forms the base of a machine tool.
Is movably attached, and a spindle 12 to which a working tool (not shown) is attached is rotatably supported in the spindle head 11.

【0010】主軸12は、その回転時において、摩擦抵
抗等によって高発熱する軸受部(ベアリング)14等か
らの伝熱により高温に加熱され、従って、これを冷却す
るために、主軸頭11(主軸12)に冷却液(図示せ
ず)を循環供給するポンプ17を具えた冷却配管系19
が設けられる。この冷却配管系19には、冷却液を冷却
するための冷却器21が付設され、冷却器21には、イ
ンバータ23によって駆動されるコンプレッサ24があ
り、適宜冷媒ガスを圧縮する。
When the spindle 12 rotates, the spindle 12 is heated to a high temperature by the heat transfer from the bearing 14 which generates a large amount of heat due to frictional resistance and the like. Therefore, in order to cool the spindle 12, the spindle head 11 (spindle) is used. 12) A cooling pipe system 19 having a pump 17 that circulates a cooling liquid (not shown)
Is provided. The cooling pipe system 19 is provided with a cooler 21 for cooling the cooling liquid, and the cooler 21 has a compressor 24 driven by an inverter 23, and appropriately compresses the refrigerant gas.

【0011】また、冷却配管系19には、主軸頭11か
ら回収された冷却液の温度(回収液温度)、及び冷却器
21によって適切に冷却されそこから主軸頭11に供給
される冷却液の温度(供給液温度)をそれぞれ検出する
回収液温度検出器27、及び供給液温度検出器29が介
装される。これらの温度検出器27,29からの液温の
データは、上記インバータ23を制御するCPU(制御
装置)31に入力される。ここで回収液温度は主軸頭内
を流れてあたためられた冷却液の温度であり、主軸温度
を代表した温度である。もちろん、主軸温度として、主
軸軸受外周温度等、他の箇所の温度で代表させることも
可能である。
In the cooling pipe system 19, the temperature of the cooling liquid recovered from the spindle head 11 (recovered liquid temperature) and the temperature of the cooling liquid appropriately cooled by the cooler 21 and supplied to the spindle head 11 from there. A recovery liquid temperature detector 27 and a supply liquid temperature detector 29 that detect the respective temperatures (supply liquid temperature) are provided. The liquid temperature data from these temperature detectors 27 and 29 is input to a CPU (control device) 31 that controls the inverter 23. Here, the temperature of the recovered liquid is the temperature of the cooling liquid that has flowed and warmed in the spindle head, and is a temperature representative of the spindle temperature. Of course, as the spindle temperature, it is also possible to represent the temperature of other locations such as the spindle bearing outer peripheral temperature.

【0012】CPU31には、更に、工作機械の機械制
御装置MTC33からの主軸起動停止信号及び主軸回転
数を示す8ビットのSコード信号や、ベッドの温度(基
準温度)を検出するベッド温度検出器35からの温度デ
ータ等が入力される。また、図4に示される主軸回転数
と主軸の発熱仕事率との関係が、テーブル又は関数の形
で予め記憶される。なお、CPUは、本明細書でいう
「フィードバック制御手段」及び「フィードフォワード
制御手段」の主要部を構成し得る。
The CPU 31 further has a bed temperature detector for detecting a spindle start / stop signal from the machine controller MTC33 of the machine tool, an 8-bit S code signal indicating the spindle rotation speed, and a bed temperature (reference temperature). Temperature data and the like from 35 are input. Further, the relationship between the spindle rotation speed and the heat generation work rate of the spindle shown in FIG. 4 is stored in advance in the form of a table or a function. The CPU can form a main part of the "feedback control means" and the "feedforward control means" in this specification.

【0013】以上の構成を有する本実施例の特徴的な作
動について説明する前に、先ずその前提となる計算式を
簡単に解説する。この計算式は、発熱と冷却の仕事量を
等価にするための仕事率及び動作時間を算出するもので
ある。ここで、図3は、主軸の発熱仕事率(点線)と冷
却器21の冷却仕事率(実線)の絶対値を横軸に時間を
とってグラフに示したものである。主軸の発熱は早く、
冷却の開始はT1 だけ遅れることがわかる。図3を参照
すると、Q1 は、発熱に対する不足仕事量(ワット・
秒)、Q2 は、追加仕事量(ワット・秒)を示し、両者
を等しいものとする(Q1 =Q2 )。要するに図3にお
いて2つの斜線面積は等しい。
Before explaining the characteristic operation of the present embodiment having the above-mentioned structure, the calculation formulas on the premise will be briefly explained first. This calculation formula calculates the work rate and the operating time for making the work of heat generation and the work of cooling equal. Here, FIG. 3 is a graph showing the absolute values of the heating power of the main shaft (dotted line) and the cooling power of the cooler 21 (solid line), with the horizontal axis representing time. The spindle heats up quickly,
It can be seen that the start of cooling is delayed by T 1 . Referring to FIG. 3, Q 1 is the shortage work (Watt ·
Sec) and Q 2 indicate additional work (watt · second), and both are equal (Q 1 = Q 2 ). In short, the two shaded areas in FIG. 3 are equal.

【0014】仕事量とは、仕事率に時間を乗じたもので
あり、仕事率とは、単位時間当たりの熱量である。W2
は、Q1 =Q2 とするための仕事率(ワット)、W
1 は、主軸の発熱仕事率(ワット)、を示し、W2 >W
1 であり、W1 と主軸回転数Sとは、図4に示すような
2次曲線的な関係を有する。また、T1 は、冷却を開始
するまでの無駄時間(固有の値)、T3 は、冷却器21
の仕事率がW1 に到達するまでの時間(これは、W1
1次関数となる)、T5 は、冷却器21が仕事率W2
動作する時間を示す。
The work amount is the work rate multiplied by time, and the work rate is the amount of heat per unit time. W 2
Is the power (W) for setting Q 1 = Q 2 , W
1 indicates the heat generation work rate (Watt) of the spindle, and W 2 > W
1 , and W 1 and the spindle rotational speed S have a quadratic curve-like relationship as shown in FIG. Further, T 1 is a dead time (a unique value) until the cooling is started, and T 3 is a cooler 21.
Until the work efficiency of W reaches W 1 (this is a linear function of W 1 ), T 5 indicates the time during which the cooler 21 operates at the work power W 2 .

【0015】図式的な解法から、 不足仕事量Q1 =W1 ×(T3 +T1 )/2 追加仕事量Q2 =(W2 −W1 )×(T5 +T5 +T4
+T6 )/2=(W2 −W1 )×T5 (すなわち、実際上、T4 ≒0、T6 ≒0であるので)
という式が求まり、これらと上記Q1 =Q2 から、 W2 =W1 +W1 ×(T3 +T1 )/2T5 ・・・・・・・・・・(1) あるいは、 T5 =W1 ×(T3 +T1 )/2(W2 −W1 )・・・・・・・・(2) という代入式が求まる。
From the graphical solution, the insufficient work Q 1 = W 1 × (T 3 + T 1 ) / 2 additional work Q 2 = (W 2 −W 1 ) × (T 5 + T 5 + T 4
+ T 6 ) / 2 = (W 2 −W 1 ) × T 5 (that is, T 4 ≈0 and T 6 ≈0 in practice)
From these and Q 1 = Q 2 above, W 2 = W 1 + W 1 × (T 3 + T 1 ) / 2T 5・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) or T 5 = The substitution formula W 1 × (T 3 + T 1 ) / 2 (W 2 −W 1 ) ... (2) is obtained.

【0016】以上を前提にして、本実施例装置の作動に
つき図2のフローチャートに基づいて以下説明する。先
ず、ステップ101において、予め記憶してある図4の
関係を用い、主軸回転数(Sコード)より主軸の発熱仕
事率W1 を求める。次いで、冷却器21の仕事率がこの
1 に到達するまでの時間T3 を演算する(ステップ1
03)。このとき冷却器の冷却速度(単位時間当りの冷
却仕事率)は予め求めてある。
Based on the above, the operation of the apparatus of this embodiment will be described below with reference to the flowchart of FIG. First, in step 101, the heat generation work rate W 1 of the spindle is obtained from the spindle rotation speed (S code) using the relationship of FIG. 4 stored in advance. Next, the time T 3 until the power of the cooler 21 reaches this W 1 is calculated (step 1
03). At this time, the cooling rate of the cooler (cooling power per unit time) is obtained in advance.

【0017】次いで、不足仕事量Q1=追加仕事量Q2
となるための仕事率W2 を、上記(1)式を用いて演算
する(ステップ105)。尚、このとき、T1 は予め求
めておき、また動作時間T5 を、ある特定の値A(実用
上、指定される値であって、例えば、60秒)として、
演算する。そして、ステップ107において、ステップ
105で得られた仕事率W2 が冷却器の最大冷却能力C
0 (予め決まっている固有の値)より大きいか否かの判
断を行う。
Then, the insufficient work amount Q1 = additional work amount Q2
The work rate W 2 for satisfying the above condition is calculated using the above equation (1) (step 105). At this time, T 1 is obtained in advance, and the operating time T 5 is set to a certain specific value A (practically specified value, for example, 60 seconds).
Calculate Then, in step 107, the power W 2 obtained in step 105 is the maximum cooling capacity C of the cooler.
It is determined whether it is greater than 0 (predetermined unique value).

【0018】Yes(W2 の値がC0 より大きい)の場
合、ステップ109に進み、最大冷却能力を上限として
冷却か行われるべきであるので、W2 =C0 としてこれ
を上記(2)式に代入し、必要な動作時間T5 を演算す
る。そして、この求まった動作時間の値T5 と仕事率C
0 とを充足するように冷却を行う(ステップ111)。
If Yes (the value of W 2 is larger than C 0 ), the process proceeds to step 109, and cooling should be performed with the maximum cooling capacity as the upper limit, so that W 2 = C 0 and this is set in the above (2). Substituting into the equation, the required operating time T 5 is calculated. Then, the calculated operation time value T 5 and the work rate C
Cooling is performed so as to satisfy 0 (step 111).

【0019】他方、ステップ107でNoの場合、ステ
ップ115に進み、冷却器21の動作時間を上記特定の
値A、仕事率をW2 として冷却を行う(ステップ11
5)。尚、ここで、供給液温度と時間との関係を示す図
5(C)を参照すると、以上のステップから成るフィー
ドフォワード制御、詳細には、常温状態の冷却液を急激
に定常状態における目標温度以下に過冷却してから目標
温度に短時間に戻すようにするこのフィードフォワード
制御により、主軸頭11からの回収液温度が極めて速く
(短時間のうちに)基準温度に収束することが理解され
よう。
On the other hand, in the case of No in step 107, the flow proceeds to step 115, and cooling is performed with the operating time of the cooler 21 as the above specific value A and the power W 2 (step 11).
5). Here, referring to FIG. 5 (C) showing the relationship between the supply liquid temperature and the time, the feedforward control consisting of the above steps, specifically, the cooling liquid in the normal temperature state is rapidly changed to the target temperature in the steady state. It is understood that the temperature of the recovered liquid from the spindle head 11 converges to the reference temperature extremely quickly (in a short time) by this feedforward control in which the temperature is returned to the target temperature in a short time after being supercooled. See.

【0020】そして、次のステップ119においては、
このようなフィードフォワード制御から一転してフィー
ドバック制御に切り換える。すなわち、主軸頭からの回
収液温度とベッド温度(基準温度)との差が一定になる
ように冷却液温をフィードバック制御し、本ルーチンを
終了する。尚、このフィードバック制御の具体例とし
て、例えば、主軸頭11からの回収液温度とベッド温度
との比較によって目標とすべき供給液温度値をフィード
バック修正する外側ループと、この修正された目標とす
べき供給液温度値に実際の供給液温度が一致ないし近づ
くようにコンプレッサの電源周波数をフィードバック修
正する内側ループ、との2重ループ構造から成る制御系
が想到されよう。
Then, in the next step 119,
The feedforward control is changed to the feedback control. That is, the cooling liquid temperature is feedback-controlled so that the difference between the temperature of the liquid recovered from the spindle head and the bed temperature (reference temperature) becomes constant, and this routine is ended. As a specific example of this feedback control, for example, an outer loop for feedback-correcting the target supply liquid temperature value by comparing the temperature of the recovered liquid from the spindle head 11 with the bed temperature, and the corrected target are used. A control system consisting of a double loop structure with an inner loop for feedback-correcting the power supply frequency of the compressor so that the actual feed liquid temperature value matches or approaches the feed liquid temperature value to be expected is conceivable.

【0021】以上のように、フィードフォワード制御と
フィードバック制御とを巧みに併用する本実施例におい
ては、上記従来の装置による結果(図5(A),
(B),(C)における、)との比較から良好に理
解されるように、供給液温度が急速に降下し、主軸頭か
らの回収液温度及び主軸熱変位量が高上昇することなく
短時間に安定・収束することが実験的に認められた。こ
のような制御は工具変換毎あるいは主軸回転数が変速さ
れる毎に発生する主軸起動時に行われ、常に主軸温度は
可及的にベッド温度と同等の値に維持される。
As described above, in the present embodiment in which the feedforward control and the feedback control are skillfully used in combination, the result obtained by the above-mentioned conventional apparatus (FIG. 5 (A),
As is well understood from the comparison with () in (B) and (C), the temperature of the supply liquid drops rapidly, and the temperature of the recovered liquid from the spindle head and the amount of thermal displacement of the spindle do not rise to a high level, but are short. It was experimentally confirmed that the time is stable and converges. Such control is performed at the time of starting the spindle, which occurs every time the tool is changed or the spindle speed is changed, and the spindle temperature is always maintained at a value equivalent to the bed temperature.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、工
作機械の主軸起動時において主軸熱変位が安定するまで
の時間を著しく短くすることができ、かつ主軸の最大熱
変位量を小さく抑えることが可能となる。これにより、
工作機械の加工精度等が飛躍的に向上する。
As described above, according to the present invention, when the spindle of the machine tool is started, the time until the thermal displacement of the spindle stabilizes can be remarkably shortened, and the maximum thermal displacement of the spindle can be suppressed to a small value. It becomes possible. This allows
Machining accuracy of machine tools is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る工作機械の主軸温度制御
装置の一実施例の全体概略構成図である。
FIG. 1 is an overall schematic configuration diagram of an embodiment of a spindle temperature control device for a machine tool according to the present invention.

【図2】図2は、作動の一例を示すフローチャート図で
ある。
FIG. 2 is a flowchart showing an example of operation.

【図3】図3は、発熱仕事量と冷却仕事量との関係図で
ある。
FIG. 3 is a relationship diagram between heat generation work and cooling work.

【図4】図4は、主軸回転数と主軸の発熱仕事率との関
係を実験的に求めた図である。
FIG. 4 is a diagram obtained by experimentally determining the relationship between the spindle rotation speed and the heat generation work rate of the spindle.

【図5】図5は、本実施例の効果を示す図である。FIG. 5 is a diagram showing effects of the present embodiment.

【符号の説明】[Explanation of symbols]

11…主軸頭 12…主軸 14…軸受部 17…ポンプ 19…冷却配管系 21…冷却器 23…インバータ 24…コンプレッサ 27…回収液温度検出器 29…供給液温度検出器 31…CPU 33…MTC(機械制御装置) 35…ベッド温度検出器 11 ... Spindle head 12 ... Spindle 14 ... Bearing part 17 ... Pump 19 ... Cooling piping system 21 ... Cooler 23 ... Inverter 24 ... Compressor 27 ... Collected liquid temperature detector 29 ... Supply liquid temperature detector 31 ... CPU 33 ... MTC ( Machine controller) 35 ... Bed temperature detector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却器で冷却された冷却液を主軸装置内
に循環して主軸温度を所定値に維持する工作機械の主軸
温度制御方法において、主軸回転数に対応した主軸の発
熱仕事率を予め求め、主軸が指定回転数で回転したとき
その指定回転数に対応した前記予め求めた発熱仕事率と
等しい冷却仕事率になるまで前記冷却器を駆動するフィ
ードフォワード制御を開始し、 前記冷却器の冷却仕事率
が前記予め求めた発熱仕事率に到達するまでの遅れ時間
を求め、 前記求めた遅れ時間と前記冷却器の冷却仕事率
とからこの時間遅れに起因する不足冷却仕事量を演算
し、 前記演算した不足冷却仕事量とほぼ等しい仕事量を
追加の仕事として前記冷却器に引き続き行わせ、その
後、前記主軸温度が前記所定値になるようにフィードバ
ック制御を行うようにしたことを特徴とする工作機械の
主軸温度制御方法。
1. A spindle temperature control method for a machine tool, wherein a cooling liquid cooled by a cooler is circulated in a spindle device to maintain a spindle temperature at a predetermined value. Obtained in advance, when the spindle rotates at the specified rotation speed
The heat generation power obtained in advance corresponding to the designated rotation speed and
The drive that drives the cooler until the cooling power is equal.
Start the forward control, and the cooling power of the cooler
Delay time until the heat generation power calculated in advance is reached
And the calculated delay time and the cooling power of the cooler
Calculate the insufficient cooling work due to this time delay from
And, subsequently to perform the cooler approximately equal amount of work and shortage cooling workload that the calculation as additional work, the
Then, the feed bar is adjusted so that the spindle temperature reaches the predetermined value.
A method for controlling the spindle temperature of a machine tool, which is characterized in that the temperature control is performed.
【請求項2】 冷却器で冷却された冷却液を主軸装置内
に循環して主軸温度を所定値に維持する工作機械の主軸
温度制御装置において、冷却液を冷却する冷却器と、予
め求めた主軸回転数に対応した主軸の発熱仕事率を記憶
する記憶手段と、主軸が指定回転数で回転したときその
指定回転数に対応した前記記憶手段に記憶されている発
熱仕事率と等しい冷却仕事率になるまで前記冷却器の駆
動を開始し、前記冷却器の冷却仕事率が前記記憶手段に
記憶されている発熱仕事率に到達するまでの遅れ時間を
求め、前記求めた遅れ時間と前記冷却器の冷却仕事率と
からこの時間遅れに起因する不足冷却仕事量を演算し、
前記演算した不足冷却仕事量とほぼ等しい仕事量を追加
の仕事として前記冷却器に引き続き行わせるように前記
冷却器を駆動するフィードフォワード制御手段と、前記
追加の仕事量が前記演算した不足冷却仕事量とほぼ等し
くなった後は、前記主軸温度が前記所定値になるように
フィードバック制御を行うフィードバック制御手段と、
を具備して構成したことを特徴とする工作機械の主軸温
度制御装置。
2. A spindle temperature control device for a machine tool, which circulates a cooling liquid cooled by a cooling device in a spindle device to maintain a spindle temperature at a predetermined value, and a cooling device for cooling the cooling liquid, and a preliminarily determined cooling device. A storage means for storing the heat generation rate of the spindle corresponding to the spindle rotation speed, and a storage means for storing the spindle rotation speed at a specified rotation speed.
The engine number stored in the storage means corresponding to the specified rotation speed
Drive the cooler until the cooling power equal to the heat power is reached.
The cooling power of the cooler is stored in the storage means.
The delay time to reach the stored heat power
Obtained, the obtained delay time and the cooling power of the cooler
From this, calculate the insufficient cooling work due to this time delay,
A feedforward control means for driving the cooler to continue to perform in the cooler approximately equal amount of work and insufficient cooling workload that the calculation as an additional work, the
The additional work is approximately equal to the calculated undercooling work
After the temperature becomes low, make sure that the spindle temperature reaches the specified value.
Feedback control means for performing feedback control,
A spindle temperature control device for a machine tool, comprising:
JP13859892A 1992-05-29 1992-05-29 Method and device for controlling spindle temperature of machine tool Expired - Fee Related JPH0741513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13859892A JPH0741513B2 (en) 1992-05-29 1992-05-29 Method and device for controlling spindle temperature of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13859892A JPH0741513B2 (en) 1992-05-29 1992-05-29 Method and device for controlling spindle temperature of machine tool

Publications (2)

Publication Number Publication Date
JPH05329743A JPH05329743A (en) 1993-12-14
JPH0741513B2 true JPH0741513B2 (en) 1995-05-10

Family

ID=15225838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13859892A Expired - Fee Related JPH0741513B2 (en) 1992-05-29 1992-05-29 Method and device for controlling spindle temperature of machine tool

Country Status (1)

Country Link
JP (1) JPH0741513B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488564B2 (en) * 1999-11-17 2010-06-23 関東精機株式会社 Method for suppressing thermal deformation of machine tool and temperature control device
WO2011132314A1 (en) * 2010-04-23 2011-10-27 三菱重工業株式会社 Structure for suppressing column heat deformation in machine tools
JP6375175B2 (en) * 2014-08-11 2018-08-15 エルテック株式会社 Oil cooler and control method of motor operated valve in oil cooler
TWI656939B (en) * 2018-08-15 2019-04-21 財團法人工業技術研究院 Temperature control system and method thereof
CN115070503B (en) * 2022-06-09 2023-09-05 江西佳时特精密机械有限责任公司 Method for reducing thermal elongation of main shaft of five-axis machine tool

Also Published As

Publication number Publication date
JPH05329743A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JP2005090480A (en) Vehicle engine cooling system control device and its method
JP6349276B2 (en) Machine tool spindle cooling method and machine tool
JP2007315717A (en) Operation control method for cold/hot water pump in air conditioning facility
JPH0741513B2 (en) Method and device for controlling spindle temperature of machine tool
JP2008128616A (en) Hot water supply system
JP2002188859A (en) Heat pump water heater
JPH024166A (en) Temperature control device for liquid cooler
JP2007225226A (en) Control method of cooling device
JP2003267065A (en) Control device for vehicular cooling system
JP2749755B2 (en) Motor control device
JP2595232B2 (en) Optimal operation method of heat recovery equipment
JP6690036B1 (en) Cooling device control method
JP2004251495A (en) Hot water supply device
JPH0337204B2 (en)
JPH0516978B2 (en)
JP4829169B2 (en) Gas laser apparatus and laser gas pressure control method
KR101326565B1 (en) Method for controlling cooling apparatus of machine tool
JP6690035B1 (en) Cooling device control method
JP2001027118A (en) Waste heat recovering device for internal combustion engine
JPH024165A (en) Temperature control device for liquid cooler
JPH11211193A (en) Controller for outdoor fan
JP2004036957A (en) Method of controlling flow rate of cooling water in absorption chiller and heater
JP2955383B2 (en) Water supply control device for combined cycle power plant
JP4976240B2 (en) Compressor starting method for cooling device
JP2001074318A (en) Control method for cooling system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20120510

LAPS Cancellation because of no payment of annual fees