JPH0741393A - Production of silicon sheet by continuous casting - Google Patents
Production of silicon sheet by continuous castingInfo
- Publication number
- JPH0741393A JPH0741393A JP18623693A JP18623693A JPH0741393A JP H0741393 A JPH0741393 A JP H0741393A JP 18623693 A JP18623693 A JP 18623693A JP 18623693 A JP18623693 A JP 18623693A JP H0741393 A JPH0741393 A JP H0741393A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- silicon
- plate
- molten
- horizontal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 26
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 239000010703 silicon Substances 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000009749 continuous casting Methods 0.000 title claims description 4
- 229910052582 BN Inorganic materials 0.000 claims abstract description 16
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 17
- 238000005266 casting Methods 0.000 abstract description 9
- 230000004927 fusion Effects 0.000 abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005231 Edge Defined Film Fed Growth Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体、太陽電池等に
用いられるシリコン(Si)板の鋳造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting a silicon (Si) plate used for semiconductors, solar cells and the like.
【0002】[0002]
【従来の技術】Si板は、通常単結晶、多結晶ともにS
iインゴットをスライスして造られている。しかし、コ
スト低減のため、スライス工程を省略して、溶融Siか
ら直接にSi板を造る技術が望まれており、過去におい
て、EFG(Edge−Defined,Film−F
ed Growth)法、HRG(Horizonta
l Ribbon Growth)法、キャストリボン
法等が検討されてきた。2. Description of the Related Art Si plates are usually single crystal or polycrystal S.
It is made by slicing an i ingot. However, in order to reduce the cost, there is a demand for a technique of directly producing a Si plate from molten Si by omitting the slicing step, and in the past, EFG (Edge-Defined, Film-F) has been demanded.
ed Growth) method, HRG (Horizonta)
The Ribbon Growth method, the cast ribbon method, and the like have been studied.
【0003】EFG法においては、図3に示すように、
高周波加熱コイル110でサセプタ112内の石英ルツ
ボ116を加熱し、この石英ルツボ116においてSi
を溶融させる。溶融Si14は、石英ルツボ116内に
垂設された黒鉛ダイ118の材料流路を通って引き上げ
られ、サセプタ112の外に出てSi板20となる。し
かし、このEFG法においては、溶融Siと濡れ性が良
い黒鉛をダイ材料に用いているため、ダイ材料の黒鉛が
結晶Siに混入し、Si板の高純度化が望めないという
欠点や、Si板の平坦性が悪いため、連続生産における
安定性に乏しいという欠点等があった。In the EFG method, as shown in FIG.
The quartz crucible 116 in the susceptor 112 is heated by the high-frequency heating coil 110, and Si is heated in the quartz crucible 116.
To melt. The molten Si 14 is pulled up through the material flow path of the graphite die 118 vertically provided in the quartz crucible 116, and then comes out of the susceptor 112 to become the Si plate 20. However, in this EFG method, since graphite having a good wettability with molten Si is used as the die material, graphite of the die material is mixed with crystalline Si, and it is not possible to expect high purification of the Si plate. Since the flatness of the plate is poor, there is a drawback such as poor stability in continuous production.
【0004】HRG法においては、図4に示すように、
発熱体122で加熱された溶融槽124に溶融Si14
を満たし、この溶融槽124の上方に設けた冷却装置1
26から冷却ガスを吹き付けて、溶融Si14の湯面を
冷却して結晶化させる。結晶化したSi板20は、ガイ
ドロール128によって水平方向に連続的に引き出さ
れ、鋳型ロール130によって板厚が調整される。しか
し、このHRG法においては、Si結晶が溶融Si14
の湯面の垂直下方に成長して行くため、Si板の厚さの
制御が非常に難しい。In the HRG method, as shown in FIG.
The molten Si 14 is melted in the melting tank 124 heated by the heating element 122.
And a cooling device 1 provided above the melting tank 124.
A cooling gas is blown from 26 to cool and crystallize the molten metal surface of the molten Si 14. The crystallized Si plate 20 is continuously drawn out in the horizontal direction by the guide roll 128, and the plate thickness is adjusted by the mold roll 130. However, in this HRG method, the Si crystal is molten Si14.
Since it grows vertically below the molten metal surface, it is very difficult to control the thickness of the Si plate.
【0005】キャストリボン法においては、図5に示す
ように、溶融Si14をアルゴン(Ar)ガスで鋳型1
32内に押入し、キャビティー134内で結晶化したS
i板20を引き出し治具136を用いて水平方向に引き
出す。しかし、このキャストリボン法においては、溶融
Siの凝固時の体積膨張により、キャビティー134内
で凝固Siが引っかかってしまい、連続的に引き出すこ
とができない等の欠点がある。In the cast ribbon method, as shown in FIG. 5, molten Si 14 is cast with argon (Ar) gas into the mold 1.
S that was pressed into 32 and crystallized in cavity 134
The i-plate 20 is pulled out in the horizontal direction using the pull-out jig 136. However, this cast ribbon method has a defect that the solidified Si is caught in the cavity 134 due to the volume expansion of the molten Si at the time of solidification, and the solid Si cannot be continuously drawn out.
【0006】[0006]
【発明が解決しようとする課題】そこで、本発明者等
は、上面が開放された水平加熱鋳型に溶融シリコンを供
給し、鋳型の水平面端部上において前記溶融シリコンを
冷却結晶化してシリコン板を形成し、このシリコン板を
水平方向に連続的に引き出すことにより、シリコン板を
製造する上面開放水平加熱鋳型式連続鋳造法(以下、O
SC(Ohno Strip Casting)法と略
す)に注目した。この方法においては、Si結晶の成長
面が鋳型と接していないために表面が非常に平坦なSi
板が連続的に形成され、さらには鋳型の水平面の上の溶
湯(溶融Si)の深さで板厚が容易に制御でき、しかも
上面開放型の鋳型を用いるために凝固時のSiの体積膨
張にも問題なく対応できる。しかしながら、通常に用い
られるセラミックス製の鋳型、すなわち黒鉛、炭化珪
素、窒化珪素、アルミナ、マグネシア、ムライト等の材
料で形成された鋳型を用いると、溶融Siと反応を生じ
て融着してしまうため、鋳型側からSiの結晶化が進行
し、その結果として、板状のSiが連続的に鋳造できな
いという欠点があった。また、窒化硼素の焼結体を鋳型
に用いると、Siとの融着の程度は低下するが、鋳型と
しての機械的強度に劣るため、実用には好ましくなかっ
た。Therefore, the inventors of the present invention supply molten silicon to a horizontal heating mold having an open upper surface, and cool and crystallize the molten silicon on the horizontal end of the mold to form a silicon plate. Forming and continuously pulling out the silicon plate in the horizontal direction to manufacture the silicon plate.
Attention was paid to SC (Ohno Strip Casting) method. In this method, since the growth surface of the Si crystal is not in contact with the mold, the Si surface is very flat.
The plate is continuously formed, and the plate thickness can be easily controlled by the depth of the molten metal (molten Si) on the horizontal surface of the mold, and since the mold with the open top is used, the volume expansion of Si during solidification I can handle it without any problems. However, when a commonly used ceramic mold, that is, a mold made of a material such as graphite, silicon carbide, silicon nitride, alumina, magnesia, or mullite is used, it reacts with molten Si and causes fusion. The crystallization of Si proceeds from the mold side, and as a result, plate-shaped Si cannot be continuously cast. Further, when a sintered body of boron nitride is used as a mold, the degree of fusion bonding with Si is reduced, but the mechanical strength as a mold is poor, which is not preferable for practical use.
【0007】[0007]
【課題を解決するための手段】本発明者等は、鋭意研究
の結果、鋳型の材料として窒化珪素と窒化硼素の混合焼
結体を用いることにより、上述の問題点を一挙に解決で
きることを見い出し、本発明を完成するに至った。As a result of earnest research, the inventors of the present invention have found that the above problems can be solved all at once by using a mixed sintered body of silicon nitride and boron nitride as a material for a mold. The present invention has been completed.
【0008】すなわち、本発明は、上面が開放された水
平加熱鋳型に溶融シリコンを供給し、鋳型の水平面端部
上において前記溶融シリコンを冷却結晶化してシリコン
板を形成し、このシリコン板を水平方向に連続的に引き
出すことにより、長尺状のシリコン板を製造する連続鋳
造法であって、前記鋳型の材料として窒化珪素と窒化硼
素の混合焼結体を用いることを特徴とする。That is, according to the present invention, molten silicon is supplied to a horizontal heating mold having an open upper surface, and the molten silicon is cooled and crystallized on a horizontal end portion of the mold to form a silicon plate. A continuous casting method for producing a long silicon plate by continuously pulling out in a direction, characterized by using a mixed sintered body of silicon nitride and boron nitride as a material of the mold.
【0009】この窒化珪素と窒化硼素の混合焼結体にお
いては、窒化硼素の含有量が、10重量%未満では、溶
融Siとの反応が生じ、融着しやすくなるので好ましく
ない。また、80重量%を超えると、焼結体の機械的強
度が極端に低下してしまうため、鋳型材料として好まし
くない。従って、窒化硼素の含有量は、10〜80重量
%が好ましく、20〜60重量%がより好ましい。In the mixed sintered body of silicon nitride and boron nitride, if the content of boron nitride is less than 10% by weight, a reaction with molten Si occurs, and fusion is apt to occur, which is not preferable. On the other hand, if it exceeds 80% by weight, the mechanical strength of the sintered body is extremely lowered, which is not preferable as a mold material. Therefore, the content of boron nitride is preferably 10 to 80% by weight, more preferably 20 to 60% by weight.
【0010】また、窒化珪素と窒化硼素の混合焼結体の
鋳型を成形する際、イットリア、アルミナ、窒化アルミ
ニウム等の焼結助材を、10重量%以下の範囲で添加し
てもよい。Further, when molding a mold of a mixed sintered body of silicon nitride and boron nitride, a sintering aid such as yttria, alumina or aluminum nitride may be added within a range of 10% by weight or less.
【0011】シリコン板を形成しながら水平方向に連続
的に引き出すには、例えば、水平加熱鋳型の出口からダ
ミープレートを鋳型内部に水平方向に挿入し、鋳型内に
供給された溶融Siとダミープレートの挿入端を接触さ
せ、この接触部分から溶融Siを水平方向に凝固させな
がら、ダミープレートを鋳型から水平方向に引き出す。
これにより、ダミープレートの挿入端に付着形成された
部分から水平方向に順次凝固形成されて長尺状のSi板
が形成される。In order to continuously draw out the silicon plate in the horizontal direction while forming the silicon plate, for example, a dummy plate is horizontally inserted into the mold from the outlet of the horizontal heating mold, and the molten Si supplied into the mold and the dummy plate are supplied. The dummy end is pulled out from the mold in a horizontal direction while the molten Si is horizontally solidified from the contact portion by contacting the insertion ends thereof.
As a result, a long Si plate is formed by sequentially solidifying and forming in the horizontal direction from the portion attached to the insertion end of the dummy plate.
【0012】鋳造雰囲気としては、溶融Siの表面酸化
を防止するために、通常は、例えばアルゴン、ヘリウ
ム、窒素あるいはそれらの混合ガス等の不活性ガスが用
いられるが、酸化をより一層防止するためには、水素、
一酸化炭素等の還元ガス、もしくはそれらの混合ガス、
または、これらの還元ガスを用いても良い。As a casting atmosphere, an inert gas such as argon, helium, nitrogen or a mixed gas thereof is usually used in order to prevent the surface oxidation of the molten Si, but to further prevent the oxidation. Is hydrogen,
A reducing gas such as carbon monoxide, or a mixed gas thereof,
Alternatively, these reducing gases may be used.
【0013】[0013]
【実施例】以下、本発明を、図面に基づいて詳細に説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.
【0014】図1、2は、本発明の製造方法を実施する
ための装置の一実施例を示す一部省略断面斜視図であ
る。この装置は、Siを溶融するルツボ10、Si板を
鋳造する水平加熱鋳型12、ルツボ10と水平加熱鋳型
12とを接続してルツボ10から水平加熱鋳型12に溶
融Si14を供給するための給湯管16、水平加熱鋳型
12の上方に設けた冷却装置18、および鋳造されたS
i板20を連続的に水平方向に引き出すためのピンチロ
ール22からなる。1 and 2 are partially omitted sectional perspective views showing an embodiment of an apparatus for carrying out the manufacturing method of the present invention. This apparatus is a crucible 10 for melting Si, a horizontal heating mold 12 for casting a Si plate, a hot water supply pipe for connecting the crucible 10 and the horizontal heating mold 12 and supplying molten Si 14 from the crucible 10 to the horizontal heating mold 12. 16, a cooling device 18 provided above the horizontal heating mold 12, and the cast S
It comprises a pinch roll 22 for continuously pulling out the i-plate 20 in the horizontal direction.
【0015】ルツボ10および給湯管16は、それぞ
れ、その外周に設けた発熱体24,26によってSiの
溶融温度以上に加熱されている。ルツボ10の中には、
ルツボ10の内径より若干小さな外径を有する制御棒2
8が挿入されており、この制御棒28によりルツボ10
内の溶融Si14の湯面が一定に保たれている。The crucible 10 and the hot water supply pipe 16 are heated to a temperature equal to or higher than the melting temperature of Si by heating elements 24 and 26 provided on the outer circumferences thereof. In the crucible 10,
Control rod 2 having an outer diameter slightly smaller than the inner diameter of the crucible 10.
8 is inserted, and the control rod 28 allows the crucible 10 to be inserted.
The molten metal surface of the molten Si 14 inside is kept constant.
【0016】水平加熱鋳型12は、窒化硼素の含有量が
20重量%である窒化珪素と窒化硼素の混合焼結体(川
崎炉材株式会社製)により形成されており、鋳型温度
は、この水平加熱鋳型12の下に設けた発熱体30に供
給される電流量を制御して、Siの凝固温度以上に調整
される。この水平加熱鋳型12の底は、溶融Siの入口
32において最も深くなっており、出口34に向かうに
したがって徐々に浅くなり、途中から水平面36になっ
ている。The horizontal heating mold 12 is formed of a mixed sintered body of silicon nitride and boron nitride (manufactured by Kawasaki Furnace Co., Ltd.) having a boron nitride content of 20% by weight. The amount of current supplied to the heating element 30 provided below the heating mold 12 is controlled to adjust the temperature to the solidification temperature of Si or higher. The bottom of the horizontal heating mold 12 is deepest at the inlet 32 of the molten Si, becomes gradually shallower toward the outlet 34, and becomes a horizontal surface 36 from the middle.
【0017】Si板を製造するには、水平加熱鋳型12
をSiの凝固温度以上に維持した状態で、図1に示すよ
うに、黒鉛製のダミープレート38を水平加熱鋳型12
の出口34から内部に向かって水平面36の途中まで挿
入するとともに、ルツボ10から溶融Si14を給湯管
16を介して水平加熱鋳型12に供給する。そして、黒
鉛製ダミープレートの先端(挿入端)40に、水平加熱
鋳型の入口32から流入してきた溶融Si14を接触さ
せる。冷却装置18のガス吹出し管42から、黒鉛製ダ
ミープレート38の上面に、水素を5%含有するアルゴ
ンガスを吹付けて冷却しているので、水平加熱鋳型12
の内壁面を避けて、溶融Si14は、黒鉛製ダミープレ
ートの先端40と接触した部分から水平方向に凝固し始
める。次いで、図2に示すように、黒鉛製ダミープレー
ト38をピンチロール22を用いて図面において右側に
引き出すことにより、ダミープレートの先端40に付着
した部分から水平方向に順次形成されたSi板20は、
ガス吹出し管42から吹付けられたガスにより冷却さ
れ、連続的に長尺状のSi板が製造される。In order to manufacture a Si plate, the horizontal heating mold 12 is used.
While maintaining the temperature above the solidification temperature of Si, as shown in FIG.
The molten Si 14 is supplied to the horizontal heating mold 12 from the crucible 10 through the hot water supply pipe 16 while being inserted into the horizontal plane 36 from the outlet 34 to the inside. Then, the molten Si 14 flowing in from the inlet 32 of the horizontal heating mold is brought into contact with the tip (insertion end) 40 of the graphite dummy plate. Since the argon gas containing 5% of hydrogen is blown onto the upper surface of the graphite dummy plate 38 from the gas blowing pipe 42 of the cooling device 18 to cool the horizontal heating mold 12,
The molten Si 14 begins to solidify in the horizontal direction from the portion in contact with the tip 40 of the dummy plate made of graphite, avoiding the inner wall surface. Then, as shown in FIG. 2, by pulling the graphite dummy plate 38 to the right side in the drawing using the pinch roll 22, the Si plates 20 sequentially formed in the horizontal direction from the portion attached to the tip 40 of the dummy plate are removed. ,
Cooled by the gas blown from the gas blowing pipe 42, a long Si plate is continuously manufactured.
【0018】この際、溶融Si14の湯面44から水平
面36までの深さによりSi板20の厚さが規定される
ことになる。従って、制御棒28のルツボ10への挿入
程度を変えて湯面44を調整することにより、Si板2
0の厚さを変えることもできる。At this time, the thickness of the Si plate 20 is defined by the depth of the molten Si 14 from the molten metal surface 44 to the horizontal surface 36. Therefore, by changing the degree of insertion of the control rod 28 into the crucible 10 and adjusting the molten metal surface 44, the Si plate 2
The thickness of 0 can be changed.
【0019】なお、本実施例においては、Siを溶融す
るルツボ10と水平加熱鋳型12とは給湯管16によっ
て接続されているが、これらのルツボ10と水平加熱鋳
型12とを、窒化珪素と窒化硼素の混合焼結体を用いて
一体に成形してもよい。In this embodiment, the crucible 10 for melting Si and the horizontal heating mold 12 are connected to each other by the hot water supply pipe 16. However, these crucible 10 and the horizontal heating mold 12 are nitrided with silicon nitride. It may be integrally formed by using a mixed sintered body of boron.
【0020】また、ダミープレート38として黒鉛板を
用いているが、より高品質のSi結晶板を鋳造するため
には、Si単結晶を黒鉛製ダミープレートの先端(挿入
端)に付着したり、Si単結晶板自身をダミープレート
として用いることが好ましい。Although a graphite plate is used as the dummy plate 38, in order to cast a higher quality Si crystal plate, a Si single crystal is attached to the tip (insertion end) of the graphite dummy plate, It is preferable to use the Si single crystal plate itself as a dummy plate.
【0021】さらに、Si板の鋳造をより円滑に進める
ために、水平加熱鋳型12の水平面36に窒化硼素等の
離型剤を塗布し、鋳造開始時における水平加熱鋳型12
からの離型性をより高めてもよい。Further, in order to promote the casting of the Si plate more smoothly, a mold release agent such as boron nitride is applied to the horizontal surface 36 of the horizontal heating mold 12 and the horizontal heating mold 12 at the start of casting.
The releasability from can be increased.
【0022】[0022]
【発明の効果】窒化珪素と窒化硼素の混合焼結体を鋳型
材料として用いることにより、溶融Siと鋳型との融着
が回避でき、OSC法によるSi板の連続鋳造が可能に
なる。By using the mixed sintered body of silicon nitride and boron nitride as the mold material, fusion between molten Si and the mold can be avoided, and continuous casting of a Si plate by the OSC method becomes possible.
【図1】本発明の製造方法を実施するための装置の一実
施例を示す一部省略断面斜視図である。FIG. 1 is a partially omitted sectional perspective view showing an embodiment of an apparatus for carrying out a manufacturing method of the present invention.
【図2】本発明の製造方法を実施するための装置の一実
施例を示す一部省略断面斜視図である。FIG. 2 is a partially omitted sectional perspective view showing an embodiment of an apparatus for carrying out the manufacturing method of the present invention.
【図3】EFG法を説明する概略断面斜視図である。FIG. 3 is a schematic cross-sectional perspective view illustrating an EFG method.
【図4】HRG法を説明する概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating the HRG method.
【図5】キャストリボン法を説明する概略断面図であ
る。FIG. 5 is a schematic sectional view illustrating a cast ribbon method.
10 ルツボ 12 水平加熱鋳型 14 溶融Si 16 給湯管 18 冷却装置 20 Si板 22 ピンチロール 24 発熱体 26 発熱体 28 制御棒 30 発熱体 32 水平加熱鋳型の入口 34 水平加熱鋳型の出口 36 水平加熱鋳型の水平面 38 ダミープレート 40 ダミープレートの先端 42 ガス吹出し管 44 溶融Siの湯面 10 crucible 12 horizontal heating mold 14 molten Si 16 hot water supply pipe 18 cooling device 20 Si plate 22 pinch roll 24 heating element 26 heating element 28 control rod 30 heating element 32 inlet of horizontal heating mold 34 outlet of horizontal heating mold 36 of horizontal heating mold Horizontal surface 38 Dummy plate 40 Tip of dummy plate 42 Gas blowing pipe 44 Molten Si molten metal surface
Claims (2)
リコンを供給し、鋳型の水平面端部上において前記溶融
シリコンを冷却結晶化してシリコン板を形成し、このシ
リコン板を水平方向に連続的に引き出すことにより、長
尺状のシリコン板を製造する連続鋳造法であって、前記
鋳型の材料として窒化珪素と窒化硼素の混合焼結体を用
いることを特徴とするシリコン板の製造方法。1. Molten silicon is supplied to a horizontal heating mold having an open upper surface, and the molten silicon is cooled and crystallized on a horizontal end of the mold to form a silicon plate, and the silicon plate is continuously continuous in the horizontal direction. A continuous casting method for producing a long-sized silicon plate by using the above-mentioned method, wherein a mixed sintered body of silicon nitride and boron nitride is used as a material for the mold, the method for manufacturing a silicon plate.
て、窒化硼素の含有量が10〜80重量%であることを
特徴とする請求項1記載の製造方法。2. The method according to claim 1, wherein the content of boron nitride in the mixed sintered body of silicon nitride and boron nitride is 10 to 80% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18623693A JPH0741393A (en) | 1993-07-28 | 1993-07-28 | Production of silicon sheet by continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18623693A JPH0741393A (en) | 1993-07-28 | 1993-07-28 | Production of silicon sheet by continuous casting |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0741393A true JPH0741393A (en) | 1995-02-10 |
Family
ID=16184742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18623693A Pending JPH0741393A (en) | 1993-07-28 | 1993-07-28 | Production of silicon sheet by continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741393A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086465A1 (en) * | 2007-01-25 | 2010-04-08 | Gen Kojima | Apparatus and method for manufacturing silicon substrate, and silicon substrate |
KR101194846B1 (en) * | 2010-06-14 | 2012-10-25 | 한국에너지기술연구원 | Apparatus and method for manufacturing silicon thin plate using continuous casting |
KR101396478B1 (en) * | 2012-04-05 | 2014-05-19 | 한국에너지기술연구원 | Poly Silicon Manufacturing Apparatus Using Sloped One-Way Coagulation Part |
KR101406784B1 (en) * | 2012-04-05 | 2014-06-18 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
KR101483693B1 (en) * | 2012-04-05 | 2015-01-19 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
KR101524070B1 (en) * | 2013-03-29 | 2015-05-29 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
CN107217296A (en) * | 2017-04-28 | 2017-09-29 | 常州大学 | A kind of silicon wafer horizontal growth apparatus and method |
CN107812901A (en) * | 2017-09-19 | 2018-03-20 | 安徽工程大学 | A kind of automation feeding device of copper coin horizontal casting |
CN109778307A (en) * | 2019-02-15 | 2019-05-21 | 江苏大学 | A kind of Process Control System suitable for monocrystalline silicon horizontal growth mechanism |
EP4107313A4 (en) * | 2020-02-19 | 2024-03-06 | Leading Edge Equipment Technologies, Inc. | Controlling the thickness and width of a crystalline sheet formed on the surface of a melt using combined surface cooling and melt heating |
-
1993
- 1993-07-28 JP JP18623693A patent/JPH0741393A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100086465A1 (en) * | 2007-01-25 | 2010-04-08 | Gen Kojima | Apparatus and method for manufacturing silicon substrate, and silicon substrate |
KR101194846B1 (en) * | 2010-06-14 | 2012-10-25 | 한국에너지기술연구원 | Apparatus and method for manufacturing silicon thin plate using continuous casting |
KR101396478B1 (en) * | 2012-04-05 | 2014-05-19 | 한국에너지기술연구원 | Poly Silicon Manufacturing Apparatus Using Sloped One-Way Coagulation Part |
KR101406784B1 (en) * | 2012-04-05 | 2014-06-18 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
KR101483693B1 (en) * | 2012-04-05 | 2015-01-19 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
KR101524070B1 (en) * | 2013-03-29 | 2015-05-29 | 한국에너지기술연구원 | Apparatus for Manufacturing Silicon Substrate |
CN107217296A (en) * | 2017-04-28 | 2017-09-29 | 常州大学 | A kind of silicon wafer horizontal growth apparatus and method |
EP3617351A4 (en) * | 2017-04-28 | 2020-12-30 | Changzhou University | Silicon wafer horizontal growth device and method |
CN107812901A (en) * | 2017-09-19 | 2018-03-20 | 安徽工程大学 | A kind of automation feeding device of copper coin horizontal casting |
CN107812901B (en) * | 2017-09-19 | 2023-06-16 | 安徽工程大学 | Automatic feeding device for horizontal continuous casting of copper plate |
CN109778307A (en) * | 2019-02-15 | 2019-05-21 | 江苏大学 | A kind of Process Control System suitable for monocrystalline silicon horizontal growth mechanism |
EP4107313A4 (en) * | 2020-02-19 | 2024-03-06 | Leading Edge Equipment Technologies, Inc. | Controlling the thickness and width of a crystalline sheet formed on the surface of a melt using combined surface cooling and melt heating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ohno | Continuous casting of single crystal ingots by the OCC process | |
TW554093B (en) | Method for preparing silicon single crystal and silicon single crystal | |
CA1215297A (en) | Method and apparatus for controlling the atmosphere surrounding a crystal growth zone | |
JPH09278590A (en) | Forming ingot by unidirectionally coagulating molten liquid consisting of silicon in bottomless type crystallization room and device therefor | |
JPS60261130A (en) | Method of producing foil of semiconductor and device therefor | |
JPH0741393A (en) | Production of silicon sheet by continuous casting | |
JPH03243247A (en) | Horizontal type continuous casting method for hoop cast metal and apparatus thereof | |
JPH051102B2 (en) | ||
JPS63166711A (en) | Production of polycrystalline silicon ingot | |
JPH07256624A (en) | Method and device for continuously casting silicon plate | |
JP3725620B2 (en) | Method and apparatus for producing high purity copper single crystal | |
JPS6272464A (en) | Directional solidification of molten metal | |
JPH07256398A (en) | Continuous casting equipment for silicon sheet of horizontally heated mold type | |
JPS58217419A (en) | Method and device for manufacturing polycrystal silicon rod | |
JPH1192284A (en) | Production of silicon ingot having polycrystal structure solidified in one direction | |
JPS6257418B2 (en) | ||
JP2001278613A (en) | Apparatus for unidirectional congelation of silicon | |
JP2004284892A (en) | Method of producing polycrystal silicon | |
JP2002066698A (en) | Manufacturing equipment for metal thin strip | |
JP2007045640A (en) | Forming method of semiconductor bulk crystal | |
JP3052158B2 (en) | Method of forming polycrystalline silicon sheet by cast ribbon method | |
JPS58217418A (en) | Method and device for manufacturing polycrystal silicon rod | |
JP4444095B2 (en) | Plate-shaped body manufacturing apparatus and plate-shaped body manufacturing method | |
JP2006272373A (en) | Mold and casting apparatus using the same, and method for producing polycrystalline silicon | |
JP3647964B2 (en) | Single crystal substrate manufacturing method and apparatus |