JPH0741325A - Optical element forming die - Google Patents

Optical element forming die

Info

Publication number
JPH0741325A
JPH0741325A JP20890593A JP20890593A JPH0741325A JP H0741325 A JPH0741325 A JP H0741325A JP 20890593 A JP20890593 A JP 20890593A JP 20890593 A JP20890593 A JP 20890593A JP H0741325 A JPH0741325 A JP H0741325A
Authority
JP
Japan
Prior art keywords
aln
glass
optical element
die
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20890593A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
俊明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP20890593A priority Critical patent/JPH0741325A/en
Publication of JPH0741325A publication Critical patent/JPH0741325A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials
    • C03B2215/12Ceramics or cermets, e.g. cemented WC, Al2O3 or TiC
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent the fusion of glass to an optical element forming die, improve the durability and increase the die strength by implanting a specified amt. of nitrogen ion in the forming surface of the die made of AlN. CONSTITUTION:An assistant such as Y2 O3 is added to an AlN powder, water or alcohol is added and kneaded, and the kneaded material is formed into a desired shape, dried and sintered to produce an optical element forming die blank 1. Nitrogen ion is then implanted in the forming surface 2 of the blank 1 at >=1X10<6> ion/cm2 to prevent the fusion due to an aluminum compd. except AlN contained as impurities, hence the aluminum compd. is nitrided, and an AlN film is formed. Consequently, the fusion of glass to the die is prevented when an optical element is formed, and the hardness and bending strength of AlN are improved by the implanted nitrogen ion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子成形用型に関
し、特に加熱軟化させたガラスを成形型にてプレスする
ことにより光学素子を得る際に用いる成形用型に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical element molding die, and more particularly to a molding die used for obtaining an optical element by pressing heat-softened glass with a molding die.

【0002】[0002]

【従来の技術】従来、ガラスを加熱軟化させてプレスす
ることにより光学素子を製造する際に使用される成形用
型は一般に耐熱性やガラスとの離型性が要求される。そ
のため、成形用型には耐熱性セラミックスや耐熱性コー
ト剤が使用されている。しかしながら、前記セラミック
ス材料は助剤を介して粉末を焼結させて製造するため、
加熱により粒子間の結合に変化が生じたり、粒子が成長
したりする。また、耐熱性コート材は基材との密着性が
低く、薄利する問題が生じる。
2. Description of the Related Art Conventionally, a molding die used for manufacturing an optical element by heating and softening glass is generally required to have heat resistance and releasability from glass. Therefore, heat-resistant ceramics and heat-resistant coating agents are used in the molding die. However, since the ceramic material is produced by sintering powder through an auxiliary agent,
The heating causes changes in the bonds between the particles and the particles grow. Further, the heat-resistant coating material has low adhesion to the base material, which causes a problem of thin profit.

【0003】そこで、上記問題点を解決すべく、例えば
特開平3−83825号公報記載の発明においては、イ
ットリウムおよび/またはトリウムを助剤としたAlN
を焼結もしくは蒸着することにより、粒子変化を防止し
たり、密着性を向上させることが開示されている。ま
た、特開平3−208821号公報記載の発明において
は、アルミニウムのハロゲン化物とガスとをマイクロ波
で反応させて蒸着する方法が開示されている。
Therefore, in order to solve the above problems, for example, in the invention described in Japanese Patent Laid-Open No. 3-83825, AlN using yttrium and / or thorium as an auxiliary agent.
It is disclosed that the particles are prevented from changing and the adhesiveness is improved by sintering or vapor-depositing. Further, the invention described in Japanese Patent Laid-Open No. 3-208821 discloses a method in which a halide of aluminum and a gas are reacted with each other in a microwave to perform vapor deposition.

【0004】[0004]

【発明が解決しようとする課題】しかるに、前記各従来
技術には以下の様な問題がある。すなわち、前記特開平
3−83825号公報に記載される発明のように、助剤
を添加すると焼結では粒子間に助剤とAlNの化合物が
生成する。また、蒸着ではAlNとの化合物として膜が
形成される。さらに、特開平3−208821号公報に
記載される発明のように、ガスとの反応でAlNを形成
させるとガスに混入している不純物との化合物が形成さ
れる。また、未反応のアルミニウムがそのまま膜として
形成される。
However, the above-mentioned respective prior arts have the following problems. That is, as in the invention described in JP-A-3-83825, when an auxiliary agent is added, a compound of the auxiliary agent and AlN is produced between particles during sintering. In addition, a film is formed as a compound with AlN by vapor deposition. Further, as in the invention described in JP-A-3-208821, when AlN is formed by the reaction with a gas, a compound with an impurity mixed in the gas is formed. Further, unreacted aluminum is directly formed as a film.

【0005】これらの化合物は高温で反応しやすい特性
のため、高温のガラスが接触すると反応して融着が生じ
やすい。前記発明の実施例においては、5000ショッ
トの耐久性が記載されているが、高軟化点ガラスや溶融
ガラスを成形すると耐久性が低く融着が生じる問題が発
生した。
Since these compounds are liable to react at a high temperature, they are likely to react with each other when hot glass comes into contact therewith to cause fusion. Although the durability of 5,000 shots is described in the examples of the invention, when the high softening point glass or the molten glass is molded, the durability is low and the problem of fusion occurs.

【0006】因って、本発明は上記問題点に鑑みてなさ
れたものであり、高軟化点ガラスや溶融ガラスの成形に
おいてもガラスとの融着が生じず、かつ耐久性の高い光
学素子成形用型を提供することを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems, and even when molding a glass having a high softening point or a molten glass, fusion with the glass does not occur and a highly durable optical element molding is formed. The purpose is to provide a mold.

【0007】[0007]

【課題を解決するための手段】本発明は、少なくとも成
形面がAlNで形成されている光学素子成形用型におい
て、前記成形面に窒素イオンを1×106 ion/cm
2 以上注入して構成したものである。
The present invention provides an optical element molding die in which at least the molding surface is made of AlN, and nitrogen ions are added to the molding surface at 1 × 10 6 ion / cm 2.
It is composed of two or more injections.

【0008】[0008]

【作用】一般に、AlNの焼結体はAlN粒界に助剤が
液層焼結されている。助剤がY2 3 の場合、その粒界
にはアルミニウムとイットリアと酸素との化合物が生成
される。また、蒸着の場合はターゲットに助剤を混入さ
せた場合、アルミニウムと助剤との化合物が生成され
る。さらに、ガス反応による蒸着の場合は導入ガスに含
む不純物によりAlN以外の化合物が生成される。これ
らのAlN以外のアルミニウム化合物がガラスとの融着
の原因となる。
In general, in the sintered body of AlN, the auxiliary agent is liquid-layer sintered at the AlN grain boundary. When the auxiliary agent is Y 2 O 3 , a compound of aluminum, yttria and oxygen is formed at the grain boundary. Further, in the case of vapor deposition, when an auxiliary agent is mixed in the target, a compound of aluminum and the auxiliary agent is generated. Furthermore, in the case of vapor deposition by gas reaction, compounds other than AlN are generated due to impurities contained in the introduced gas. These aluminum compounds other than AlN cause fusion with glass.

【0009】そこで、前記アルミニウム化合物を窒化
し、AlNを形成させる手段として窒素イオンを注入す
る。図1はAlN基板をターゲットとしてPVD法によ
りAlN膜を形成させた面へ窒素イオンを注入したとき
のXRDパターンを示すグラフである。図1中の(a)
はイオン注入前であり、(b)は窒素イオンを2×10
17ion/cm2 注入したときのパターンである。この
図から窒素イオンを注入することによりAlNの(00
2)軸が成長していることが確認できる。この結果よ
り、蒸着で生成されたアルミ化合物が窒素イオンを注入
することによりAlNを形成させることが確認された。
Therefore, nitrogen ions are implanted as a means for nitriding the aluminum compound and forming AlN. FIG. 1 is a graph showing an XRD pattern when nitrogen ions are implanted into a surface on which an AlN film is formed by a PVD method using an AlN substrate as a target. (A) in FIG.
Is before ion implantation, and (b) is nitrogen ion 2 × 10
This is a pattern when 17 ion / cm 2 was injected. From this figure, by implanting nitrogen ions, (00
2) It can be confirmed that the axis is growing. From this result, it was confirmed that the aluminum compound produced by vapor deposition forms AlN by implanting nitrogen ions.

【0010】また、前記窒素イオンを注入した型と従来
の型とを成形して比較したところ、従来の型材では50
00ショットでガラスの融着が生じたが、窒素イオンを
注入した型では10000ショット成形してもガラスの
融着は生じなかった。
Further, when the nitrogen ion-implanted mold and the conventional mold were molded and compared, it was found that the conventional mold material was 50.
Fusion of glass occurred at 00 shots, but fusion of glass did not occur even when 10,000 shots were formed in the mold into which nitrogen ions were injected.

【0011】[0011]

【実施例1】図2〜図4は本実施例を示し、図2は型ブ
ランクの側面図、図3はイオン注入に用いた装置の概略
構成図、図4は成形に用いた装置の概略構成図である。
Embodiment 1 FIGS. 2 to 4 show the present embodiment, FIG. 2 is a side view of a mold blank, FIG. 3 is a schematic configuration diagram of an apparatus used for ion implantation, and FIG. 4 is an outline of an apparatus used for molding. It is a block diagram.

【0012】以下に、AlN焼結体の製造を説明する。
本実施例では助剤にY2 3 を使用した。不純物酸素量
0.9%以下で平均粒径1.5μmのAlN粉末にY2
3 粉末4wt%添加し、水もしくはアルコールを加え
て5時間混練する。混練後、図2に示される形状のBN
材の型に鋳込み成形する。約200℃で水分を蒸発させ
たのち焼結炉にて焼結させる。焼結雰囲気は窒素雰囲気
中にて行った。焼結させた型ブランク1の外周部を研削
加工により形状を仕上げる。また、成形面2は成形レン
ズ形状と近似した形状まで研削加工し、研削後ダイヤモ
ンドパウダーにて研磨加工する。研磨により表面形状精
度PV0.2μm以下、表面粗さRmax0.08μm
以下まで仕上げる。
The production of the AlN sintered body will be described below.
In this example, Y 2 O 3 was used as an auxiliary agent. Y 2 was added to AlN powder with an impurity oxygen content of 0.9% or less and an average particle size of 1.5 μm.
Add 4 wt% of O 3 powder, add water or alcohol, and knead for 5 hours. After kneading, BN having the shape shown in FIG.
Cast into a material mold. Moisture is evaporated at about 200 ° C. and then sintered in a sintering furnace. The sintering atmosphere was a nitrogen atmosphere. The outer shape of the sintered mold blank 1 is finished by grinding. Further, the molding surface 2 is ground to a shape close to the shape of the molded lens, and after grinding, it is polished with diamond powder. Polished surface shape accuracy PV 0.2μm or less, surface roughness Rmax 0.08μm
Finish to the following.

【0013】次に、イオン注入方法を説明する。前記型
ブランク1を図3に示す装置にて窒素イオンを注入し
た。前記型ブランク1を保持台3の上にセットし、装置
内を2×10-6Torrまで真空排気した。続いて、装
置ガス導入口6からN2 ガスを導入してフィラメント
7,コイル8および引出し電極9から構成されるイオン
発生部10でイオン化し、マグネット11およびスリッ
ト12等から構成される質量分析部13を通過させ、加
速管4およびXY走査電極5から構成される加速部14
にて加速し、Nイオンを加速電圧650keV,注入量
1×1016ion/cm2 で型ブランク1の成形面2に
注入した。この方法により、イオン注入した型ブランク
1の成形面2をXRDにて分析した結果、表面部はほぼ
AlNのピークが確認された。しかしながら、イオン注
入していないAlN材には他の化合物のピークが確認さ
れた。
Next, the ion implantation method will be described. Nitrogen ions were implanted into the mold blank 1 by the apparatus shown in FIG. The mold blank 1 was set on the holding table 3, and the inside of the apparatus was evacuated to 2 × 10 −6 Torr. Subsequently, N 2 gas is introduced from the apparatus gas introduction port 6 to ionize it in the ion generation unit 10 including the filament 7, the coil 8 and the extraction electrode 9, and the mass analysis unit including the magnet 11 and the slit 12 and the like. An accelerating portion 14 that passes through 13 and includes an accelerating tube 4 and an XY scanning electrode
Then, N ions were injected into the molding surface 2 of the mold blank 1 at an acceleration voltage of 650 keV and an injection amount of 1 × 10 16 ions / cm 2 . By this method, the molding surface 2 of the ion-implanted mold blank 1 was analyzed by XRD, and as a result, a peak of AlN was confirmed on the surface portion. However, peaks of other compounds were confirmed in the AlN material that was not ion-implanted.

【0014】次に、成形方法を説明する。ガラスを溶融
ルツボ15にてガラス粘度で102 ポアズに加熱溶融さ
せる。溶融後、プランジャー17を上昇させて定量の溶
融ガラス16をノズルより排出させる。排出後、切断用
シャー18で溶融ガラス16を切断し、搬送皿20上に
ガラスゴブ19を落下させる。落下後、ヒーター21に
て表面を加熱し、前記切断工程で生じたシャーマークを
除去する。シャーマーク除去後、搬送アーム22にて搬
送皿20を上下成形型24,23間に搬送し、且つ搬送
アーム22が180°回転することによりガラスゴブ1
9を下型23上に落下させる。ガラスゴブ19の落下
後、搬送アーム22は更に後退し、下型23が上昇して
上型24とで、始めはプレス圧5kg/cm2 ,プレス
時間5秒、その後プレス圧55kg/cm2 ,プレス時
間20秒間プレス成形した。なお前記上型24および下
型23はガラス粘度で1010〜1013ポアズに相当する
温度に加熱保持されている。
Next, the molding method will be described. The glass is heated and melted in the melting crucible 15 to a glass viscosity of 10 2 poise. After melting, the plunger 17 is raised to discharge a fixed amount of the molten glass 16 from the nozzle. After discharging, the molten glass 16 is cut by the shearing shear 18, and the glass gob 19 is dropped on the transport tray 20. After dropping, the surface is heated by the heater 21 to remove the shear mark generated in the cutting step. After the shear mark is removed, the transfer tray 22 is transferred by the transfer arm 22 between the upper and lower molds 24 and 23, and the transfer arm 22 is rotated by 180 °, whereby the glass gob 1 is moved.
9 is dropped onto the lower mold 23. After the glass gob 19 is dropped, the transfer arm 22 is further retracted, and the lower die 23 is moved up to the upper die 24, so that the pressing pressure is 5 kg / cm 2 , the pressing time is 5 seconds, and then the pressing pressure is 55 kg / cm 2 , the pressing pressure is 55 kg / cm 2 . Press molding was performed for 20 seconds. The upper mold 24 and the lower mold 23 are heated and held at a temperature corresponding to a glass viscosity of 10 10 to 10 13 poise.

【0015】本実施例の成形型で連続成形を行ったとこ
ろ、ガラスとの融着も無く高精度の光学素子を1500
0ショット連続可能であった。しかしながら、イオン注
入していない成形型では5000ショットにて融着が生
じた。また、AlN焼結体に窒素イオンを注入すること
により、注入された表面部の強度が初期曲げ強度値で3
5kgf/mm2 であったものが42kgf/mm2
で上昇し、強度を向上させる効果もあることが確認され
た。
When continuous molding was carried out with the molding die of this embodiment, 1500 high precision optical elements without fusion with glass were obtained.
It was possible to continue 0 shots. However, in the mold without ion implantation, fusion occurred after 5000 shots. Further, by implanting nitrogen ions into the AlN sintered body, the intensity of the implanted surface portion is 3 at the initial bending strength value.
Those was 5 kgf / mm 2 is increased to 42kgf / mm 2, it is also effective to improve the strength was confirmed.

【0016】尚、本実施例では溶融ガラスを滴下する成
形方法を記載したが、ガラスを近似形状に研磨加工した
プリフォームを用いた成形方法でも同様な効果がある。
また、イオン注入量を1×1016ion/cm2 とした
が、1×106 ion/cm2 まで減少させても同様な
効果がある。しかしそれ以下にすると、Al化合物がA
lNに完全に変化しないため効果が低下する。逆に、1
×1016ion/cm2 以上注入してもガラスとの融着
効果は得られるが、スパッタ減少により表面粗さが低下
する。よって、表面が荒れた場合は注入層が無くならな
い程度に成形面を再研磨する。これにより同様な効果が
得られる。
In this embodiment, the molding method in which the molten glass is dropped is described, but a molding method using a preform obtained by polishing the glass into an approximate shape has the same effect.
Although the ion implantation amount is set to 1 × 10 16 ions / cm 2 , the same effect can be obtained even if the ion implantation amount is reduced to 1 × 10 6 ions / cm 2 . However, if it is less than that, the Al compound becomes A
The effect decreases because it is not completely changed to 1N. Conversely, 1
Although a fusion effect with glass can be obtained even by injecting at a dose of × 10 16 ions / cm 2 or more, the surface roughness is lowered due to the reduction of spatter. Therefore, when the surface is rough, the molding surface is re-polished so that the injection layer is not lost. Thereby, the same effect can be obtained.

【0017】[0017]

【実施例2】本実施例は、SiC基材にAlNをCVD
法により蒸着し、さらに窒素イオンを注入した例であ
る。SiC基材を前記実施例1における型ブランク1と
同様な形状に加工する。ここで、成形面は形状精度PV
0.5μm以下、表面粗さRmax0.3μm以下まで
仕上げる。基材加工後、AlN膜をCVD法により形成
した。SiC基材をCVD装置にセットし、3×10-6
Torrまで真空排気する。排気後、AlCl3 ガスと
NH3 ガスとを1:1の割合で、4×10-3Torrに
なるまで導入する。ガスを導入すると同時に、1200
〜1300℃に加熱する。加熱により前記導入ガスが反
応してAlNとHClが生成される。AlNはSiC基
材上に形成されて成長し、HClガスは排気される。約
15時間反応させて約20μmの膜を形成した。膜形成
後、成形面を再研磨し、形状制度PV0.2μm以下、
表面粗さRmax0.08μm以下まで仕上げた。
Example 2 In this example, AlN is deposited on a SiC substrate by CVD.
This is an example of vapor deposition by the method and further implantation of nitrogen ions. The SiC base material is processed into the same shape as the mold blank 1 in the first embodiment. Here, the molding surface has a shape accuracy PV.
Finish to 0.5 μm or less and surface roughness Rmax of 0.3 μm or less. After processing the substrate, an AlN film was formed by the CVD method. Set the SiC substrate in the CVD device and set it to 3 × 10 -6
Evacuate to Torr. After evacuation, AlCl 3 gas and NH 3 gas are introduced at a ratio of 1: 1 until the pressure becomes 4 × 10 −3 Torr. 1200 when gas is introduced
Heat to ~ 1300 ° C. Upon heating, the introduced gas reacts to generate AlN and HCl. AlN is formed and grown on the SiC substrate, and HCl gas is exhausted. The reaction was carried out for about 15 hours to form a film of about 20 μm. After forming the film, the molding surface is re-polished, and the shape accuracy PV is 0.2 μm or less,
Finished to a surface roughness Rmax of 0.08 μm or less.

【0018】イオン注入は前記実施例1と同条件で行っ
た。また、成形方法も前記実施例1と同方法で行った。
Ion implantation was performed under the same conditions as in Example 1 above. The molding method was the same as in Example 1 above.

【0019】本実施例の成形型で連続成形を行ったとこ
ろ、ガラスとの融着も無く高精度の光学素子を1000
0ショット連続可能であった。しかしながら、イオン注
入していない成形型では4000ショットにて融着が生
じた。また、AlN蒸着膜に窒素イオンを注入すること
により、注入された表面部の硬さが1050Hvであっ
たものが1300Hvまで上昇し、表面硬さを向上させ
る効果もあった。
When continuous molding was carried out with the molding die of this embodiment, 1000 high-precision optical elements were obtained without fusion with glass.
It was possible to continue 0 shots. However, in the mold without ion implantation, fusion occurred after 4000 shots. Further, by implanting nitrogen ions into the AlN vapor deposition film, the hardness of the implanted surface portion was 1050 Hv, but was increased to 1300 Hv, and there was also an effect of improving the surface hardness.

【0020】尚、本実施例では蒸着方法としてCVD法
を用いたが、AlN基板をターゲットとしたPVD法で
も同様な効果が得られる。また、成形方法は溶融ガラス
を滴下する成形方法であるが、ガラスを近似形状に研磨
加工したプリフォームを用いた成形方法でも同様な効果
がある。さらに、イオン注入量を1×1016ion/c
2 としたが、1×106 ion/cm2 まで減少させ
ても同様な効果がある。しかしそれ以下にすると、Al
化合物がAlNに完全に変化しないため効果が低下す
る。逆に、1×1016ion/cm2 以上注入してもガ
ラスとの融着効果は得られるが、スパッタ減少により表
面粗さが低下する。よって、表面が荒れた場合は注入層
が無くならない程度に成形面を再研磨する。これにより
同様な効果が得られる。
In this embodiment, the CVD method is used as the vapor deposition method, but the PVD method using the AlN substrate as a target can also obtain the same effect. Further, the molding method is a molding method in which molten glass is dropped, but a molding method using a preform obtained by polishing glass into an approximate shape has the same effect. Further, the ion implantation amount is 1 × 10 16 ion / c
Although m 2 is set, the same effect can be obtained even if the pressure is reduced to 1 × 10 6 ion / cm 2 . But below that, Al
The effect is reduced because the compound does not completely change to AlN. On the contrary, even if 1 × 10 16 ions / cm 2 or more is injected, the effect of fusing with glass can be obtained, but the surface roughness is lowered due to the reduction of sputtering. Therefore, when the surface is rough, the molding surface is re-polished so that the injection layer is not lost. Thereby, the same effect can be obtained.

【0021】[0021]

【発明の効果】以上説明した様に、本発明に係る光学素
子成形用型によれば、成形面がAlNで形成されている
光学素子成形用型に窒素イオンを注入することにより、
ガラスとの融着を防止することが可能となり耐久性が向
上した。さらに、イオン注入することにより、AlNの
硬さおよび曲げ強度が向上するため、型強度の向上も可
能となった。
As described above, according to the optical element molding die of the present invention, by implanting nitrogen ions into the optical element molding die whose molding surface is made of AlN,
It is possible to prevent fusion with glass, and durability is improved. Furthermore, since the hardness and the bending strength of AlN are improved by the ion implantation, the mold strength can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示すグラフである。FIG. 1 is a graph showing the present invention.

【図2】実施例1を示す側面図である。FIG. 2 is a side view showing the first embodiment.

【図3】実施例1を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing a first embodiment.

【図4】実施例1を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a first embodiment.

【符号の説明】[Explanation of symbols]

1 型ブランク 2 成形面 1 type blank 2 molding surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも成形面がAlNで形成されて
いる光学素子成形用型において、前記成形面に窒素イオ
ンを1×106 ion/cm2 以上注入して構成したこ
とを特徴とする光学素子成形用型。
1. An optical element molding die having at least a molding surface formed of AlN, wherein the molding surface is formed by implanting nitrogen ions at 1 × 10 6 ion / cm 2 or more. Mold for molding.
JP20890593A 1993-07-30 1993-07-30 Optical element forming die Withdrawn JPH0741325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20890593A JPH0741325A (en) 1993-07-30 1993-07-30 Optical element forming die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20890593A JPH0741325A (en) 1993-07-30 1993-07-30 Optical element forming die

Publications (1)

Publication Number Publication Date
JPH0741325A true JPH0741325A (en) 1995-02-10

Family

ID=16564072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20890593A Withdrawn JPH0741325A (en) 1993-07-30 1993-07-30 Optical element forming die

Country Status (1)

Country Link
JP (1) JPH0741325A (en)

Similar Documents

Publication Publication Date Title
JPH0741325A (en) Optical element forming die
JP2555810B2 (en) Mold for press-molding optical glass element and method for manufacturing the same
JP3492005B2 (en) Glass optical element molding method
JP3841186B2 (en) Mold for optical element molding
JPH09110437A (en) Member for forming optical element
JP3772357B2 (en) Sputtering target and manufacturing method thereof
JP2997357B2 (en) Glass optical element molding die and manufacturing method thereof
JP3288187B2 (en) Optical element molding method
JPH10259029A (en) Mold for forming optical element
JPH10324530A (en) Die for forming glass
JP2661345B2 (en) Mold for optical glass element
JP2830969B2 (en) Optical element molding die and method of manufacturing the same
JP2962905B2 (en) Method for manufacturing glass optical element molding die
JP2971226B2 (en) Method for manufacturing glass optical element molding die
JPH0329012B2 (en)
JPH10203833A (en) Mold for forming optical element and its production
JPH09188537A (en) Mold for forming optical element and its production
JP3313167B2 (en) Optical element molding member
JP2740607B2 (en) Glass forming mold and manufacturing method thereof
JPH0930819A (en) Production of molded member for optical element
JP2000351636A (en) Method for forming optical glass element
JP2000044258A (en) Holding die of optical element and its production
JPH08333123A (en) Mold for molding optical element and its production
JPH06293526A (en) Molding die for optical element
JPH0710557A (en) Method for molding optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003