JPH0741252B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JPH0741252B2
JPH0741252B2 JP61182993A JP18299386A JPH0741252B2 JP H0741252 B2 JPH0741252 B2 JP H0741252B2 JP 61182993 A JP61182993 A JP 61182993A JP 18299386 A JP18299386 A JP 18299386A JP H0741252 B2 JPH0741252 B2 JP H0741252B2
Authority
JP
Japan
Prior art keywords
wastewater
microbial carrier
layer
filtration layer
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61182993A
Other languages
Japanese (ja)
Other versions
JPS6339697A (en
Inventor
千明 丹羽
照康 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP61182993A priority Critical patent/JPH0741252B2/en
Publication of JPS6339697A publication Critical patent/JPS6339697A/en
Publication of JPH0741252B2 publication Critical patent/JPH0741252B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、微生物担体を用いて廃水を浄化する廃水処
理方法に係り、特に廃水の濾過効率に優れかつ長期間に
亙って連続して廃水処理を行なうことのできる安価な廃
水処理方法に関する。
TECHNICAL FIELD The present invention relates to a wastewater treatment method for purifying wastewater by using a microbial carrier, and in particular, it has excellent filtration efficiency of wastewater and continuously for a long period of time. The present invention relates to an inexpensive wastewater treatment method capable of treating wastewater.

「従来技術とその問題点」 従来、廃水処理方法として、例えば廃水を濾過層中に通
過せしめて濾過する方法がある。この方法に用いられる
濾過層は、表面に廃水中の懸濁固形物(SS分)等の汚濁
物質を分解する微生物膜が付着せしめられた濾過材(以
下、微生物担体という。)から構成されている。そし
て、このような廃水処理方法には、比重が1以下の微生
物担体を用いた方法と比重が1を越える微生物担体を用
いた方法がそれぞれ知られている。
“Prior art and its problems” Conventionally, as a wastewater treatment method, for example, there is a method of passing wastewater through a filtration layer and filtering. The filter layer used in this method is composed of a filter material (hereinafter referred to as a microbial carrier) having a surface on which a microbial membrane that decomposes contaminants such as suspended solids (SS content) in wastewater is attached. There is. As such a wastewater treatment method, a method using a microbial carrier having a specific gravity of 1 or less and a method using a microbial carrier having a specific gravity of more than 1 are known.

前者の方法は、まず比重が1以下の微生物担体を処理槽
内に収容したのち、浮力により浮上する微生物担体の上
部を金網等のスクリーンで下方に押さえ込むことによっ
て稠密に充填された濾過層を形成し、次いでこの濾過層
上部からスクリーンを介して廃水を供給して廃水中の懸
濁固形物(SS分)等の汚濁物質を除去し、濾過層の下方
から処理水を得るものである。ところが、この方法で
は、濾過層に対する廃水の供給をスクリーンを介して行
なうため、廃水中の汚濁物質がスクリーンに捕捉されて
スクリーンの目詰まりが発生し易くなり、廃水に対する
濾過効率が悪くかつ廃水の連続処理が困難であるなどの
問題があった。
In the former method, first, a microbial carrier having a specific gravity of 1 or less is stored in a treatment tank, and then the upper part of the microbial carrier that floats by buoyancy is pressed downward by a screen such as a wire mesh to form a densely packed filtration layer. Then, waste water is supplied from the upper part of this filter layer through a screen to remove contaminants such as suspended solids (SS content) in the waste water, and treated water is obtained from below the filter layer. However, in this method, since the wastewater is supplied to the filtration layer through the screen, contaminants in the wastewater are easily trapped by the screen and the screen is easily clogged, resulting in poor filtration efficiency for the wastewater and wastewater. There were problems such as continuous processing being difficult.

また、後者の方法は、まず比重が1を越える微生物担体
を処理槽内に稠密に充填して処理槽内底部に濾過層を形
成し、例えばこの濾過層上部から廃水を供給して廃水中
のSS分等の汚濁物質を除去し、濾過層の下方から処理水
を得るものである。そして、この方法では、濾過層を処
理槽内底部に固定層として形成する必要から、微生物担
体として、比重が1よりはるかに大きくかつ外形寸法が
主に1mm以下程度と小さくて目の揃ったものが好適に用
いられる。しかしながら、この方法にあっては、微生物
担体が重く小径で目が揃っているために、濾過層の微生
物担体間の間隙が自重等により狭くなり、濾過流路の始
端である濾過層の上層において目詰まりが発生し易くな
り、圧損が高まって廃水の濾過速度が遅くなるととも
に、処理に要する時間が長くなるなど濾過効率の低下を
招く問題があった。
Further, in the latter method, first, a microorganism carrier having a specific gravity of more than 1 is densely packed in a treatment tank to form a filter layer at the bottom of the treatment tank. It removes pollutants such as SS and obtains treated water from below the filtration layer. In this method, since it is necessary to form the filtration layer as a fixed layer on the inner bottom of the treatment tank, a microorganism carrier having a specific gravity much larger than 1 and an outer dimension of mainly 1 mm or less and having a uniform grain size. Is preferably used. However, in this method, since the microbial carrier is heavy and small in diameter, the gap between the microbial carriers in the filtration layer becomes narrower due to its own weight, etc., and in the upper layer of the filtration layer, which is the starting end of the filtration channel. There is a problem that clogging easily occurs, pressure loss increases, the filtration speed of the wastewater decreases, and the filtration efficiency decreases, such as a longer processing time.

そこで、このような方法では、濾過層の目詰まりを解消
するために、濾過層中に水や空気を送って微生物担体表
面または微生物担体間の間隙に捕捉された汚濁物質を除
去して微生物担体を再生する逆洗操作を頻繁に行なう必
要があった。
Therefore, in such a method, in order to eliminate clogging of the filtration layer, water or air is sent into the filtration layer to remove contaminants trapped on the surface of the microorganism carrier or in the spaces between the microorganism carriers to remove the microorganism carrier. It was necessary to frequently carry out a backwash operation for regenerating.

しかしながら、上記のように微生物担体に対して逆洗操
作を頻繁に行なうと、担体表面に付着する微生物膜が汚
濁物質とともに剥離してしまい、そのため、微生物担体
の表面に担持された微生物膜による吸着濾過機能を全て
失ってしまうという問題があった。また、この逆洗操作
に際して、微生物担体の比重が大きいために、この微生
物担体を水流および空気流により処理槽内に流動逆洗さ
せるのに、多大なエネルギーを必要とし、運転コストが
かさむなどの問題もあった。またさらに、水洗用の洗浄
水を予め貯留しておかなければならず、そのため、洗浄
水用の貯水槽や処理槽内供給用の送水ポンプなどの諸設
備が必要となり、やはり建設コストや運転コストが高騰
する問題があった。
However, if the backwashing operation is frequently performed on the microbial carrier as described above, the microbial film adhering to the surface of the carrier will be peeled off together with the pollutants, and therefore, adsorption by the microbial film carried on the surface of the microbial carrier will occur. There was a problem of losing all filtering functions. Further, in this backwashing operation, since the specific gravity of the microbial carrier is large, in order to flow backwash the microbial carrier into the treatment tank by the water flow and the air flow, a large amount of energy is required and the operating cost is increased. There was also a problem. Furthermore, the wash water for washing must be stored in advance, so various facilities such as a water tank for wash water and a water pump for supplying water into the treatment tank are required, which also leads to construction costs and operating costs. There was a problem of rising prices.

「目的」 この発明は、上記の事情に鑑みてなされたもので、その
目的とするところは、廃水の濾過効率に優れかつ長期間
に亙って連続して廃水処理を行なうことのできる安価な
廃水処理方法を提供することにある。
"Object" The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an excellent wastewater filtration efficiency and an inexpensive wastewater treatment that can continuously perform wastewater treatment over a long period of time. To provide a wastewater treatment method.

「問題点を解決するための手段」 この発明の第1発明の特徴は、有底筒状の外筒とこの外
筒内に立設された筒状の内筒を有する処理槽内に、比重
1以下でかつ粒径0.5〜8.0mmの範囲の粒径分布を有する
微生物担体からなる濾過層をこの濾過層の上部が水位よ
り露出しかつ下部が処理槽の底部から離間するとともに
全体が稠密となるように形成し、次いで内筒内側の濾過
層内に直接廃水を供給するようにしたことにある。
"Means for Solving Problems" A feature of the first invention of the present invention is that a specific gravity is provided in a processing tank having a bottomed cylindrical outer cylinder and a cylindrical inner cylinder erected in the outer cylinder. A filtration layer composed of a microbial carrier having a particle size distribution of less than 1 and having a particle size in the range of 0.5 to 8.0 mm is formed such that the upper part of the filter layer is exposed from the water level and the lower part is separated from the bottom of the treatment tank and the whole is dense. Then, the waste water is directly supplied into the filtration layer inside the inner cylinder.

また、この発明の第2発明の特徴は、第1の発明を実施
したのち、処理層の底部より空気のみを供給することに
よって濾過層を形成する微生物担体を循環流動化して洗
浄するようにしたことにある。
Further, the second aspect of the present invention is characterized in that, after carrying out the first aspect, only the air is supplied from the bottom of the treatment layer to circulate and wash the microbial carrier forming the filtration layer. Especially.

さらに、この発明の第3発明の特徴は、第1の発明で用
いられる濾過層の下方にさらに比重1.05〜1.6の範囲で
かつ粒径0.5〜8.0mmの範囲の粒径分布を有する微生物担
体からなる堆積層を形成し、この堆積層を濾過層ととも
に廃水処理に用いることにある。
Furthermore, the feature of the third invention of the present invention is that a microbial carrier having a particle size distribution with a specific gravity of 1.05 to 1.6 and a particle size of 0.5 to 8.0 mm is provided below the filtration layer used in the first invention. To form a sedimentary layer and to use this sedimentary layer together with the filtration layer for wastewater treatment.

またさらに、この発明の第4発明の特徴は、第3の発明
を実施したのち、処理槽の底部より空気のみを供給する
ことによって濾過層および堆積層を形成する微生物担体
を循環流動化して洗浄するようにしたことにある。
Furthermore, the feature of the fourth invention of the present invention is that after carrying out the third invention, only the air is supplied from the bottom of the treatment tank to circulate and wash the microbial carrier that forms the filtration layer and the deposition layer. I have tried to do it.

以下、図面を参照してこの発明を詳しく説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、この発明の第1および第2の発明を実施する
上で好適に用いられる処理槽の一例を示すものであっ
て、図中符号1は、処理槽である。この処理槽1は、概
略、外筒2とこの外筒2の内部に同軸的に立設された内
筒3から構成されている。
FIG. 1 shows an example of a processing tank suitably used for carrying out the first and second inventions of the present invention, and reference numeral 1 in the drawing is a processing tank. The processing tank 1 is generally composed of an outer cylinder 2 and an inner cylinder 3 which is erected coaxially inside the outer cylinder 2.

外筒2は、有底筒状の処理槽であって、この外筒2の底
部には、内筒3の下方に逆洗用の散気装置4が配設さ
れ、さらにこの散気装置4の外側には、同様の散気装置
5、6がそれぞれ配設されている。そして、これらの散
気装置4〜6は、逆洗用のブロアー7に連結されてお
り、ブロアー7は、これら散気装置4〜6を介して処理
槽1内に所定の流量で空気等のガスを供給するようにな
っている。また、外筒2の上部側壁には、この処理槽1
で処理された処理水を排出しかつ処理水の排出量を調整
するための電磁弁8を有する排出パイプ9が取り付けら
れ、この排出パイプ9の排出口9aには、処理水と微生物
担体とを分離するスクリーン9bが設けられている。また
さらに、外筒2の底部には、電磁弁10を有する排出パイ
プ11と、電磁弁12を有する排出パイプ13がそれぞれ設け
られている。この排出パイプ11は、内筒3の上端部と同
じ高さまで揚げられており、処理水が次工程に送られた
際に位置エネルギーを確保できるようになっている。
The outer cylinder 2 is a processing tank having a bottomed cylindrical shape, and an air diffuser 4 for backwashing is arranged below the inner cylinder 3 at the bottom of the outer cylinder 2, and further this air diffuser 4 Similar diffusers 5 and 6 are provided on the outer sides of, respectively. And these air diffusers 4-6 are connected to the blower 7 for backwash, and the blower 7 blows air etc. at a predetermined flow rate in the processing tank 1 through these air diffusers 4-6. It is designed to supply gas. Further, on the upper side wall of the outer cylinder 2, the processing tank 1
A discharge pipe 9 having a solenoid valve 8 for discharging the treated water treated in 1. and adjusting the discharge amount of the treated water is attached, and the discharge port 9a of the discharge pipe 9 is provided with the treated water and the microorganism carrier. A separating screen 9b is provided. Furthermore, a discharge pipe 11 having a solenoid valve 10 and a discharge pipe 13 having a solenoid valve 12 are provided at the bottom of the outer cylinder 2. The discharge pipe 11 is fried to the same height as the upper end portion of the inner cylinder 3 so that potential energy can be secured when the treated water is sent to the next process.

このような外筒2の内部には、この外筒2と同軸でかつ
円筒状の内筒3が設けられている。この内筒3の上端部
は、外筒2の排出口9aより上方に位置され、その下端部
は、外筒2の散気装置4〜6の上部近傍まで延ばされ、
内筒3内を流下する廃水が外筒2の底部においてその流
動方向を反転し易いように、内筒3の半径方向斜め外方
に折り曲げられている。また、この内筒3の上部内側に
は、廃水をこの処理槽1内に供給するための廃水供給パ
イプ14が垂下されている。この廃水供給パイプ14の下端
部14aは、内筒3の上端部から外筒2の排出口9aの下方
の位置まで延ばされ、廃水供給パイプ14の下端部14aと
内筒3の上端との離間寸法は、内筒3の上下方向の長さ
寸法の約20%程度とされるが、これに限定されるもので
はない。またさらに、内筒3の上部内側には、処理槽1
内の水位を測定するための水位計15が配設されている。
この水位計15は、上記の電磁弁8、10および12に連動し
ており、水位計15により測定された水位により適宜開閉
するようになっている。
Inside such an outer cylinder 2, a cylindrical inner cylinder 3 coaxial with the outer cylinder 2 is provided. The upper end of the inner cylinder 3 is located above the discharge port 9a of the outer cylinder 2, and the lower end of the inner cylinder 3 extends near the upper portions of the air diffusers 4 to 6 of the outer cylinder 2,
The waste water flowing down in the inner cylinder 3 is bent obliquely outward in the radial direction of the inner cylinder 3 so that the flow direction of the waste water can be easily reversed at the bottom of the outer cylinder 2. Inside the upper part of the inner cylinder 3, a waste water supply pipe 14 for supplying waste water into the treatment tank 1 is suspended. The lower end portion 14a of the waste water supply pipe 14 extends from the upper end portion of the inner cylinder 3 to a position below the discharge port 9a of the outer cylinder 2, and connects the lower end portion 14a of the waste water supply pipe 14 and the upper end of the inner cylinder 3 to each other. The distance is about 20% of the length of the inner cylinder 3 in the up-down direction, but is not limited to this. Furthermore, inside the upper part of the inner cylinder 3, the processing tank 1
A water level gauge 15 is provided for measuring the water level inside.
The water level gauge 15 is interlocked with the solenoid valves 8, 10 and 12 and is opened / closed as appropriate according to the water level measured by the water level gauge 15.

次に、このような構成からなる処理槽1を用いて廃水処
理方法の一例を説明する。まず、この廃水処理方法に
は、前述したように、廃水中のSS分、コロイド状物質を
捕捉し、かつ一部溶解性有機物、SS分起因のBOD、一部
溶解性BODなどの汚濁物質を分解する微生物担体が用い
られる。この微生物担体は、微生物を微生物膜として担
持する例えば粒子状の濾過材であって、その比重が1以
下とされ、好ましくは0.5〜0.95程度の範囲とされる。
また、この微生物担体は、その粒径が0.5〜8.0mm程度の
分布を有するものとされ、望ましくは1.5〜5.0mm程度の
分布範囲とされる。そして、ここで用いられる微生物担
体の担体は、微生物膜の付着性に優れたものであって、
この担体の形状は、球状の粒子状に限定されず、例えば
円柱、角柱、円筒、角筒などの長形状、星状、楕円状な
どの異形状であってもよい。
Next, an example of a wastewater treatment method using the treatment tank 1 having such a configuration will be described. First, as described above, this wastewater treatment method captures SS components in the wastewater, colloidal substances, and partially pollutants such as partially soluble organic substances, BOD due to SS components, and partially soluble BOD. A microbial carrier that decomposes is used. This microbial carrier is, for example, a particulate filter material that carries microorganisms as a microbial membrane, and its specific gravity is 1 or less, preferably in the range of about 0.5 to 0.95.
The microbial carrier has a particle size distribution of about 0.5 to 8.0 mm, preferably about 1.5 to 5.0 mm. And, the carrier of the microbial carrier used here has excellent adhesion to the microbial membrane,
The shape of the carrier is not limited to spherical particles, and may be, for example, a long shape such as a cylinder, a prism, a cylinder, or a cylinder, or an irregular shape such as a star or an ellipse.

そして、このような微生物担体は、第1図に示す処理槽
1内の外筒2および内筒3に所定量充填されて濾過層16
となる。この濾過層16は、比重が1以下の微生物担体か
らなるものであるので、浮力により、その上部が処理槽
1内に運転前に貯留される水の水面から一部露出しかつ
下部が外筒2の底部から離間するとともに、全体が稠密
となるように形成される。そして、この濾過層16の厚さ
寸法は、上記の外筒2の深さ寸法の60〜90%程度の範囲
とされる。60%未満では、外筒2の大きさに比べて濾過
層16が小さ過ぎて、外筒2等の諸設備が不経済となると
ともに、濾過層16が保持する微生物量が少なく、したが
って廃水処理能力が低いものとなるなどの不都合が生じ
る。90%を越えると、廃水中の汚濁物質の除去には問題
ないものの、濾過層16が大き過ぎて濾過層16に対する逆
洗操作に際して微生物担体を十分流動化させることがで
きず、そのため微生物担体の表面または微生物担体間の
間隙に捕捉されている汚濁物質を排除させることができ
ず、微生物担体の微生物膜による吸着濾過機能が低下す
る不都合が生じる。また、この濾過層16は、この濾過層
16を形成する微生物担体が粒径分布を有することから、
処理層1内への収容時あるいは後述する逆洗時に粒径分
布の違いによる浮上速度の差により、濾過層16の上層か
ら下層に向けてその粒径が小さくなるように充填されて
いる。またさらに、この濾過層16において、微生物担体
は、その充填が稠密であることから、廃水処理時におい
て処理層1内に供給される廃水により流動したりあるい
は浮遊したりすることがなく、不動状態となる。
Then, such a microbial carrier is filled in a predetermined amount in the outer cylinder 2 and the inner cylinder 3 in the treatment tank 1 shown in FIG.
Becomes Since the filtration layer 16 is composed of a microbial carrier having a specific gravity of 1 or less, its upper part is partially exposed from the water surface of the water stored in the treatment tank 1 before operation and its lower part is an outer cylinder due to buoyancy. It is formed so as to be spaced apart from the bottom portion of 2 and be dense as a whole. The thickness of the filtration layer 16 is in the range of about 60 to 90% of the depth of the outer cylinder 2. If it is less than 60%, the filtration layer 16 is too small compared to the size of the outer cylinder 2, making the facilities such as the outer cylinder 2 uneconomical, and the amount of microorganisms retained by the filtration layer 16 is small, and therefore the wastewater treatment It causes inconvenience such as low ability. If it exceeds 90%, although there is no problem in removing pollutants in the wastewater, the filtration layer 16 is too large to sufficiently fluidize the microbial carrier during the backwashing operation on the filtration layer 16, and therefore the microbial carrier The contaminants trapped on the surface or in the gaps between the microbial carriers cannot be removed, which causes a problem that the adsorptive filtration function of the microbial carrier by the microbial membrane is deteriorated. In addition, this filter layer 16 is
Since the microbial carrier forming 16 has a particle size distribution,
The filtration layer 16 is filled so that the particle size becomes smaller from the upper layer to the lower layer due to the difference in the floating speed due to the difference in the particle size distribution during the accommodation in the treatment layer 1 or the backwashing described later. Furthermore, in the filtration layer 16, since the microorganism carrier is densely packed, it does not flow or float due to the waste water supplied into the treatment layer 1 during the treatment of the waste water, and the microorganism carrier does not move. Becomes

このような濾過層16が形成された処理槽1内には、廃水
供給パイプ14を通じて廃水が供給される。この廃水は、
第1図の実線矢印で示すように、まず濾過層16の内側ま
で垂下した廃水供給パイプ14の下端部14aから濾過層16
の下方に向けて流下せしめられ、続いて外筒2の底部で
その流れが反転して内外筒3、2間の濾過層16を上昇せ
しめられる。そして、この内外筒3、2間の濾過層16を
上昇した廃水は、濾過層16を形成する微生物担体の表面
または微生物担体間にその吸着濾過機能によりSS分等の
汚濁物質が捕捉され浄化されて処理水となり、次いで電
磁弁8の開放により、スクリーン9bを介して排出パイプ
9を通じて次工程等に送られる。ここで、処理中の処理
槽1の水位は、第1図に示すように、排出パイプ9の排
出口9aの高さと同じ水位Aとされる。また、廃水の処理
槽1への供給量は、濾過層16の処理能力などを考慮して
決められ、通常1時間当たりの供給量が濾過層16の容量
の6倍以内程度とされる。この供給量が濾過層16の容量
の6倍を遥かに越えると、供給量が多過ぎて廃水に対す
る濾過処理が不十分となるとともに、濾過層16の一部が
崩壊するなどの不都合が生じる。そして、廃水の処理槽
1への供給は、廃水中の汚濁物質濃度や処理槽1の処理
能力などに応じて適宜連続的にあるいは間欠的に行なわ
れる。
Waste water is supplied through the waste water supply pipe 14 into the treatment tank 1 in which the filter layer 16 is formed. This wastewater is
As shown by the solid line arrow in FIG. 1, first, from the lower end portion 14a of the wastewater supply pipe 14 hanging down to the inside of the filtration layer 16 to the filtration layer 16
The flow is reversed at the bottom of the outer cylinder 2, and the filtration layer 16 between the inner and outer cylinders 3 and 2 is raised. The wastewater that has risen in the filtration layer 16 between the inner and outer cylinders 3 and 2 is purified by trapping contaminants such as SS by the adsorption filtration function on the surface of the microbial carrier forming the filtration layer 16 or between the microbial carriers. The treated water becomes treated water, which is then sent to the next process or the like through the discharge pipe 9 through the screen 9b by opening the solenoid valve 8. Here, as shown in FIG. 1, the water level of the treatment tank 1 during treatment is set to the same water level A as the height of the discharge port 9a of the discharge pipe 9. The amount of waste water supplied to the treatment tank 1 is determined in consideration of the treatment capacity of the filtration layer 16 and the like, and the amount of supply per hour is usually within about 6 times the capacity of the filtration layer 16. When this supply amount exceeds 6 times the capacity of the filtration layer 16, the supply amount becomes so large that the filtration treatment of the wastewater becomes insufficient and a part of the filtration layer 16 collapses. Then, the supply of the waste water to the treatment tank 1 is appropriately continuously or intermittently performed depending on the concentration of pollutants in the waste water, the treatment capacity of the treatment tank 1, and the like.

このようにして処理槽1内において廃水に対する微生物
的な処理が行なわれ続けると、廃水供給パイプ14の下端
部14aの下方の内筒3内の濾過層16が次第に目詰まりし
てこの部分の圧損が高まり廃水の流れが制限される。こ
の場合においても、廃水の供給を続けることが可能であ
り、この場合、廃水は、第1図の破線矢印に示すよう
に、水位Bにおいて内筒3の上端部を越流せしめられた
のち、さらに水位Bより上昇して濾過層16の上部の水面
から露出した部分を経て内外筒3、2間を流下せしめら
れる。ここで、濾過層16のうち、内筒3上方の水面から
露出した部分は、廃水の水位の上昇に伴い、浮力等によ
り上方に押し上げられることから、この部分の微生物担
体間の間隙は、適度に拡げられてこの部分における廃水
中の汚濁物質に対する捕捉許容能力が増加されたものと
なる。
When the microbial treatment of the wastewater is continuously performed in the treatment tank 1 in this manner, the filter layer 16 in the inner cylinder 3 below the lower end portion 14a of the wastewater supply pipe 14 is gradually clogged and the pressure loss of this portion is lost. And the flow of wastewater is restricted. Even in this case, it is possible to continue the supply of the waste water, and in this case, the waste water is allowed to flow over the upper end portion of the inner cylinder 3 at the water level B as shown by the broken line arrow in FIG. Further, it rises above the water level B and is made to flow down between the inner and outer cylinders 3 and 2 through the portion exposed from the water surface above the filtration layer 16. Here, the portion of the filter layer 16 exposed from the water surface above the inner cylinder 3 is pushed upward by buoyancy and the like as the water level of the wastewater rises, so the gap between the microbial carriers in this portion is appropriate. The capacity for capturing pollutants in wastewater in this part has been increased.

次いで、廃水に対する濾過処理操作を続けると、次第に
内外筒3、2間の濾過槽16が目詰まりして廃水の水位が
水位Bよりも上昇する。この際に、上記露出部分の濾過
層16は、微生物担体の微生物膜とこの微生物膜に捕捉さ
れた汚濁物質との粘着力、浮力および粒子にかかる重力
の3力が平衡状態とされるとともに、浮上せしめられな
がら濾過処理に供される。
Then, when the filtering operation for the waste water is continued, the filtration tank 16 between the inner and outer cylinders 3 and 2 is gradually clogged, and the water level of the waste water rises above the water level B. At this time, in the exposed filtration layer 16, the three forces of adhesive force between the microbial membrane of the microbial carrier and the contaminants captured by the microbial membrane, buoyancy, and gravity applied to the particles are in an equilibrium state, It is subjected to a filtration treatment while being floated.

このような濾過層16の目詰まりによる水位の上昇および
内筒3の上端部からの越流は、水位計15により監視され
ており、これらの水位の変化に伴って水位計15からの電
気信号により電磁弁8が閉じられるとともに、電磁弁10
が開放される。このときの処理水の排出は、電磁弁10が
開放された排出パイプ11から行なわれる。
The rise of the water level due to the clogging of the filter layer 16 and the overflow of water from the upper end of the inner cylinder 3 are monitored by the water level gauge 15, and an electric signal from the water level gauge 15 is accompanied by the change of the water level. Solenoid valve 8 is closed by solenoid valve 10
Is released. At this time, the treated water is discharged from the discharge pipe 11 in which the solenoid valve 10 is opened.

そして、上記の廃水の濾過流路において、廃水が第1図
の破線矢印で示す流路を流れる期間は、実線矢印で示す
流路を流れる期間の2〜3倍程度長くなる。すなわち、
破線矢印で示す流路は、内筒3上方の水面から露出した
部分の濾過層16から内外筒3、2間の濾過層16に向けて
この濾過層16を形成する微生物担体がその粒径が漸次に
小さくなるように充填されていることから、この流路に
例えば汚濁物質の大きさにバラツキがある廃水を流した
場合、廃水中の汚濁物質のうち、小さいものが微生物担
体間の間隙の大きい上層を通過して間隙の小さい下層で
捕捉され、大きいものが上層で捕捉される。また、汚濁
物質の大きさが均一である廃水を流した場合において
も、濾過層始端部で極度に目詰まりして圧損がもたらさ
れることなく、廃水中の汚濁物質が全濾過層16により効
率良く濾過される。またさらに、いかなる廃水を対象と
する場合においても共通していえることであるが、これ
に上部ほど微生物担体間の間隙が大きく、濾過層始端部
で汚濁物質が捕捉されてしまわず、また逆に微生物膜の
付着吸着力、さらには濾過された汚濁物質自体の捕捉力
により、粒径からいえば物理的には通過する汚濁物質も
ある程度上部で捕捉されること(いわゆる濾滓濾過)に
起因している。このように、この流路における廃水処理
は、粒径分布を有する微生物担体により濾過層16が厚生
されているので、後述の逆洗操作により上層から下層に
かけ徐々に大粒径のものから小粒径のものへと成層をな
しているので、点線流路の始端部で目詰まりすることが
少なく、かつそれに加えて濾過始端部、すなわち濾過層
16のうち水面から露出した部分において目詰まりするこ
とが少なく、よってこの部分での圧損がたちにくいの
で、長期間に亙って連続的に行なうことが可能となる。
Then, in the above-mentioned wastewater filtration channel, the period during which the wastewater flows through the channel indicated by the broken line arrow in FIG. 1 is about 2 to 3 times longer than the period during which it flows through the channel indicated by the solid line arrow. That is,
The flow path indicated by the broken line arrow has a particle size of a microbial carrier forming the filter layer 16 from the part exposed from the water surface above the inner cylinder 3 toward the filter layer 16 between the inner and outer cylinders 3, 2. Since it is filled so as to become gradually smaller, when, for example, wastewater with variations in the size of pollutants is flowed through this flow path, among the pollutants in the wastewater, the smallest one is the gap between the microbial carriers. It passes through a large upper layer and is captured by a lower layer having a small gap, and a large one is captured by an upper layer. Further, even when a wastewater having a uniform size of the pollutant is flowed, the pollutant in the wastewater is efficiently transferred to the entire filtration layer 16 without causing pressure loss due to extreme clogging at the beginning of the filtration layer. Filtered. Furthermore, the same can be said in common when any wastewater is targeted.However, the gap between the microbial carriers is larger toward the top, and pollutants are not captured at the beginning of the filtration layer, and vice versa. Due to the adsorbing power of the microbial membrane and the trapping power of the filtered pollutant itself, the pollutant that physically passes is also trapped at the upper part to some extent (so-called filter cake filtration) in terms of particle size. ing. In this way, in the wastewater treatment in this flow path, since the filtration layer 16 is welted by the microbial carrier having a particle size distribution, the backwashing operation described below gradually increases the particle size from large particles to small particles. Since it is stratified to have a diameter, it is less likely to be clogged at the beginning of the dotted flow path, and in addition to that, the beginning of filtration, that is, the filtration layer
Of the 16 parts, the part exposed from the water surface is less likely to be clogged, and pressure loss at this part is less likely to occur, so that continuous operation can be performed over a long period of time.

これに対して実線矢印で示す流路は、上層の微生物担体
の間隙が下層に比べて大きい部分、すなわち濾過性に優
れた部分が廃水供給パイプ14の下端部14aの下方の濾過
層16のみで短いので、破線矢印で示す流路に比べて廃水
処理期間も短くなる。
On the other hand, the flow path indicated by the solid arrow is a portion where the gap of the upper layer microbial carrier is larger than that of the lower layer, that is, the portion having excellent filterability is only the filtration layer 16 below the lower end portion 14a of the wastewater supply pipe 14. Since it is short, the wastewater treatment period is shorter than that of the flow path indicated by the dashed arrow.

次いで、さらに濾過処理操作を続けると、濾過層16全体
が次第に目詰まりしてくる。この場合には、濾過層16を
形成する微生物担体の表面または微生物担体間の間隙に
捕捉されたSS分等の汚濁物質を除去するために、逆洗
(洗浄)操作を行なう。この逆洗操作に際して、まず、
処理槽1内の水位が水位Bより上側になるように処理槽
1内の水を足し、次いで、ブロアー7により外筒2の底
部に設けた散気装置5、6を介して処理槽1内に空気等
のガスを所定時間供給し、このガスにより内外筒3、2
間の濾過層16を崩壊させる。続けて、ブロアー7からの
ガス供給を散気装置4のみを介して所定時間行なうこと
により、内筒3内の濾過層16を崩壊させ、これを循環流
動化させる。次に、外筒2の底部の排出パイプ13の電磁
弁12を開放して処理槽1内の洗浄水およびこの洗浄水中
に懸濁しているSS分等の汚濁物質を外部に排出する。次
いで、処理槽1内に水位Aに達するまで上部から洗浄水
を供給して再度、上記の散気装置4〜6を用いて逆洗操
作を繰り返す。この逆洗操作は、排水中のSS分等の汚濁
物質濃度や微生物担体が担持する微生物の濃度などに応
じて多少異なるが、例えば一般生活廃水の二次処理程度
の汚濁物質濃度であれば、最初の1回を含め2回程度で
十分な効果が得られる。また、この逆洗操作において、
処理槽1内の処理水を処理槽1の底部から排出しなが
ら、処理槽1内に処理槽1の上部から洗浄水を供給する
ようにしてもよい。この場合、洗浄水により処理槽1内
の処理水を効率良く押し出すことができるなどの効果が
得られる。
Then, when the filtering operation is further continued, the entire filter layer 16 gradually becomes clogged. In this case, a backwashing (washing) operation is performed in order to remove contaminants such as SS components trapped on the surface of the microbial carrier forming the filtration layer 16 or in the spaces between the microbial carriers. In this backwash operation, first,
The water in the treatment tank 1 is added so that the water level in the treatment tank 1 is above the water level B, and then the inside of the treatment tank 1 is blown by the blower 7 through the air diffusers 5 and 6 provided at the bottom of the outer cylinder 2. A gas such as air is supplied to the inner and outer cylinders 3, 2 by this gas for a predetermined time.
The filter layer 16 in between is collapsed. Subsequently, the gas is supplied from the blower 7 through the air diffuser 4 only for a predetermined time to collapse the filter layer 16 in the inner cylinder 3 and circulate and fluidize it. Next, the electromagnetic valve 12 of the discharge pipe 13 at the bottom of the outer cylinder 2 is opened to discharge the cleaning water in the processing tank 1 and the pollutants such as SS suspended in the cleaning water to the outside. Next, washing water is supplied from the upper part into the treatment tank 1 until the water level A is reached, and the backwashing operation is repeated again using the above-mentioned air diffusers 4 to 6. This backwashing operation is slightly different depending on the concentration of pollutants such as SS in wastewater and the concentration of microorganisms carried by the microbial carrier, but for example, if the pollutant concentration is about the secondary treatment of general domestic wastewater, Sufficient effect can be obtained about twice including the first time. Also, in this backwash operation,
The treatment water in the treatment tank 1 may be discharged from the bottom of the treatment tank 1, while the cleaning water may be supplied into the treatment tank 1 from the upper portion of the treatment tank 1. In this case, the effect that the treated water in the treatment tank 1 can be efficiently pushed out by the wash water is obtained.

この第1の発明によれば、次のような優れた実施例効果
が得られる。
According to the first aspect of the invention, the following excellent effects of the embodiment can be obtained.

〔1〕濾過層16を形成する微生物担体の粒径を0.5〜8.0
mm程度、好ましくは1.5〜5.0mm程度の分布範囲としたこ
とにより、洗浄時、粒径分布の違いによる浮上速度の差
により、濾過層16が上部に粒径の大きい微生物担体、下
部に粒径の小さい微生物担体がそれぞれ分布するように
構成されるので、濾過層16の上層が下層に比べて微生物
担体間の間隙が大きくなる。この分布効果は、大粒径な
ものほど小さい比重の材質で構成することにより一層助
長される。したがって、このような濾過層16において
は、汚濁物質の大きさにバラツキがある廃水を処理する
場合、SS分等の汚濁物質の小さいものが濾過層16の上層
を通過して下層で捕捉され、大きいものが上層で捕捉さ
れ、また汚濁物質の大きさが均一である廃水を処理する
場合においても、汚濁物質が濾過層16全体で効率良く捕
捉されるので、濾過の始端部で圧損がたちにくく、目詰
まりの発生が少なく、長期間に亙って連続的に廃水処理
を実施することができる。
[1] The particle size of the microbial carrier forming the filtration layer 16 is 0.5 to 8.0.
By setting the distribution range of about mm, preferably about 1.5 to 5.0 mm, during cleaning, due to the difference in the floating speed due to the difference in the particle size distribution, the filtration layer 16 has a large microbial carrier in the upper part and a particle size in the lower part. Since the microbial carriers having a small size are distributed respectively, the upper layer of the filtration layer 16 has a larger gap between the microbial carriers than the lower layer. This distribution effect is further promoted by using a material having a smaller specific gravity as the particle size becomes larger. Therefore, in such a filter layer 16, when treating wastewater having variations in the size of pollutants, small pollutants such as SS components pass through the upper layer of the filter layer 16 and are captured in the lower layer, Even when treating a wastewater in which large ones are trapped in the upper layer and the size of the pollutants is uniform, the pollutants are efficiently trapped in the entire filtration layer 16, so pressure loss at the beginning of filtration is less likely to occur. The occurrence of clogging is small, and wastewater treatment can be continuously performed over a long period of time.

〔2〕処理槽1内に濾過層16を、その上部が水面から一
部露出しかつ下部が処理槽1の底部から離間するととに
全体が稠密に充填した状態で形成できる物性の微生物担
体からなるものとしたので、この微生物担体が廃水の供
給により流動化することなく、処理槽1内に固定するこ
とができるとともに、逆洗時に微生物担体を少ないエネ
ルギーで容易に流動化させることができる。
[2] From a microbial carrier having physical properties that can form the filtration layer 16 in the treatment tank 1 in a state where the upper portion is partially exposed from the water surface and the lower portion is separated from the bottom portion of the treatment tank 1 and the whole is densely packed. Since the microbial carrier can be fixed in the treatment tank 1 without being fluidized by the supply of waste water, the microbial carrier can be easily fluidized with a small amount of energy during backwashing.

〔3〕処理槽1内の廃水の供給位置を内筒3内側の濾過
層16内としたことにより、内筒3内の濾過層16を流下
し、外筒2の底部で反転し、内外筒3、2間を上昇する
流路(第1図の実線矢印で示す)と、内筒3内の濾過層
16が目詰まりしたのち、廃水の供給位置から内筒3内の
濾過層16を上昇し、濾過層16の水面から一部露出した部
分を経て内外筒3、2間を流下する流路(第1図の破線
矢印で示す)の二つの濾過流路をとることができる。こ
のような流路の濾過層16のうち、特に水面から一部露出
した部分は、廃水の水位の上昇に伴い、浮力等により上
方に押し上げられることから、微生物担体間の間隙が適
度に拡げられてこの部分における汚濁物質の捕捉許容能
力が増加されたものとなる。したがって、このような二
つの濾過流路を利用することにより、長期間に亙って連
続的に廃水処理を行なうことができるので、逆洗操作の
実施間隔を長くすることができ、よって逆洗操作によっ
て発生する微生物担体表面からの微生物膜の剥離を抑制
して微生物担体の微生物膜による吸着濾過機能を保持継
続させることができる。また、逆洗操作を実施する回数
が減少するので、逆洗操作で消費されるブロアー等の動
力エネルギーや戻り水を大幅に削減することができると
ともに、従来の逆洗操作に微生物担体を循環流動化させ
るのに用いられる水(処理水)を不要とすることができ
る。
[3] By setting the supply position of the waste water in the treatment tank 1 inside the filtration layer 16 inside the inner cylinder 3, the filtration layer 16 inside the inner cylinder 3 flows down and is inverted at the bottom of the outer cylinder 2, A flow path (indicated by a solid arrow in FIG. 1) rising between 3 and 2, and a filtration layer in the inner cylinder 3.
After the clog 16 is clogged, the filter layer 16 in the inner cylinder 3 is raised from the waste water supply position, and flows down between the inner and outer cylinders 3 and 2 through a part of the filter layer 16 that is partially exposed from the water surface. 2) (shown by the broken line arrow in FIG. 1). Of the filtration layer 16 of such a flow path, the part that is partially exposed from the water surface in particular is pushed upward by buoyancy and the like as the water level of the wastewater rises, so that the gap between the microbial carriers can be appropriately expanded. The capability of capturing pollutants in the lever area is increased. Therefore, by using such two filtration channels, it is possible to continuously perform wastewater treatment for a long period of time, and therefore it is possible to prolong the interval between backwashing operations, and thus backwashing. It is possible to suppress the peeling of the microbial membrane from the surface of the microbial carrier caused by the operation, and to keep the adsorption filtration function of the microbial carrier by the microbial membrane. In addition, since the number of backwash operations is reduced, it is possible to significantly reduce power energy such as blower consumed in the backwash operation and return water, and circulate the microbial carrier in the conventional backwash operation. It is possible to eliminate the need for the water (treated water) used for the conversion.

また、第2の発明によれば、濾過層16を、粒径0.5〜8.0
mm程度、好ましくは1.5〜5.0mm程度の分布範囲を有する
微生物担体から構成して、濾過層自体を軽くしたので、
逆洗操作において処理槽の底部からの空気のみの供給で
濾過層を少ないエネルギーで容易に崩壊させ、これを循
環流動化させて洗浄することができ、かつその循環流動
化に伴う運転コストを低く抑えることができる。
According to the second invention, the filtration layer 16 has a particle size of 0.5 to 8.0.
mm, preferably composed of a microbial carrier having a distribution range of about 1.5 to 5.0 mm, to lighten the filtration layer itself,
In the backwash operation, only the air from the bottom of the treatment tank can be used to easily collapse the filter bed with a small amount of energy, and it can be circulated and fluidized for cleaning, and the operating cost associated with the circulatory fluidization is low. Can be suppressed.

第2図は、この発明の第3および第4の発明を実施する
上で好適に用いられる処理槽の一例を示すものである。
第3の発明にあっては、比重1以下でかつ粒径0.5〜8.0
mmの範囲で粒径分布を有する微生物担体からなる濾過層
16に加え、この濾過層16の下方に比重1.05〜1.6の範囲
で、好ましくは比重1.05〜1.3の範囲でかつ粒径0.5〜8.
0mmの範囲で、好ましくは1.5〜5.0mmの範囲で粒径分布
を有する微生物担体からなる堆積層17を形成し、廃水を
内筒内の濾過槽16内に直接供給する点に特徴がある。し
たがって、処理槽1の外筒2底部近傍でかつ散気装置4
〜6の下側には、比重1.05〜1.6の範囲で、好ましくは
比重1.05〜1.3の範囲でかつ粒径0.5〜8.0mmの範囲で、
好ましくは1.5〜5.0mmの範囲で粒径分布を有する微生物
担体がスクリーン18上に沈降し堆積して堆積層17が形成
されている。
FIG. 2 shows an example of a processing tank which is preferably used for carrying out the third and fourth inventions of the present invention.
In the third invention, the specific gravity is 1 or less and the particle size is 0.5 to 8.0.
Filtration layer consisting of microbial carrier with particle size distribution in mm range
In addition to 16, below the filtration layer 16 in a specific gravity range of 1.05 to 1.6, preferably in a specific gravity range of 1.05 to 1.3 and a particle size of 0.5 to 8.
It is characterized in that a sediment layer 17 made of a microbial carrier having a particle size distribution in the range of 0 mm, preferably in the range of 1.5 to 5.0 mm is formed, and the waste water is directly supplied into the filtration tank 16 in the inner cylinder. Therefore, in the vicinity of the bottom of the outer cylinder 2 of the processing tank 1 and the air diffuser 4
On the lower side of ~ 6, the specific gravity is in the range of 1.05 to 1.6, preferably in the range of 1.05 to 1.3 and the particle size is in the range of 0.5 to 8.0 mm,
Preferably, a microbial carrier having a particle size distribution in the range of 1.5 to 5.0 mm is settled and deposited on the screen 18 to form a deposition layer 17.

このような第3の発明によれば、外筒2の底部に堆積層
17を設けたことから、内筒3内の濾過層16内を流下した
廃水が外筒2の底部に形成された堆積層17内を通過して
さらにここでも廃水中のSS分等の汚濁物質が濾過される
ので、廃水中から汚濁物質を高い効率で除去でき、さら
に濾過継続期間を長くとることができるなど優れた効果
が得られる。
According to such a third invention, the deposition layer is formed on the bottom of the outer cylinder 2.
Since 17 is provided, the wastewater flowing down in the filtration layer 16 in the inner cylinder 3 passes through the sedimentary layer 17 formed at the bottom of the outer cylinder 2, and again, the pollutants such as SS components in the wastewater are also present. Since it is filtered, pollutants can be removed from the wastewater with high efficiency, and further, an excellent effect such as a long filtration duration can be obtained.

また、第4の発明にあっては、第3の発明を実施したの
ち、処理槽1の底部には設けられた散気装置4〜6を介
してブロアー7により処理槽1内に空気を供給すること
によって濾過槽16および堆積槽17を形成する微生物担体
を循環流動化して微生物担体の洗浄を行なう点において
特徴がある。
In addition, in the fourth invention, after carrying out the third invention, air is supplied into the processing tank 1 by the blower 7 via the air diffusers 4 to 6 provided at the bottom of the processing tank 1. By doing so, the microbial carrier forming the filtration tank 16 and the deposition tank 17 is circulated and fluidized to wash the microbial carrier.

そして、この第4の発明によれば、堆積層17を形成する
微生物担体の比重を1.05〜1.6の範囲で、好ましくは1.0
5〜1.3の範囲としたことから、堆積層17を濾過層16と同
様に比較的軽くすることができ、よって逆洗操作に際し
て濾過層16および堆積層17の微生物担体を少ないエネル
ギーで容易に循環流動化させることができるとともに、
その循環流動化に伴う運転コストを低く抑えることがで
きる。
And according to this 4th invention, the specific gravity of the microorganisms carrier which forms the sedimentary layer 17 is 1.05 to 1.6, Preferably it is 1.0.
Since the range of 5 to 1.3 is set, the sedimentary layer 17 can be made relatively light like the filtration layer 16, so that the microorganism carriers of the filtration layer 16 and the sedimentary layer 17 can be easily circulated with a small amount of energy during the backwash operation. Can be fluidized,
The operating cost associated with the circulation and fluidization can be kept low.

以下、実施例を示してこの発明の作用効果を明確にす
る。
Hereinafter, the working effects of the present invention will be clarified by showing examples.

(実施例1) 第1図に示すような内部に内筒が立設されかつ有効水深
が約1mで内径10cmの処理槽1内に、粒径0.5〜3.0mmの範
囲の粒径分布を有し、かつ比重0.5〜0.95の微生物担体
を厚さ寸法が約90cmとなるように稠密に充填して濾過層
16を形成した。次いで、この濾過層16内に廃水供給パイ
プ14を用いて一般生活廃水の二次処理を下記SV値が3と
なるように供給した。
(Embodiment 1) An inner cylinder is erected inside as shown in FIG. 1, the effective water depth is about 1 m, and the treatment tank 1 having an inner diameter of 10 cm has a particle size distribution in the range of 0.5 to 3.0 mm. In addition, a microbial carrier having a specific gravity of 0.5 to 0.95 is densely packed to a thickness of about 90 cm and the filtration layer
16 formed. Then, the secondary treatment of general domestic wastewater was supplied into the filtration layer 16 using the wastewater supply pipe 14 so that the following SV value became 3.

SV= (廃水供給量;m3/Hr)/(微生物担体充填量;m3) 上記の処理対象である廃水中のSS分濃度は、約15mg/lで
あり、BOD濃度は約14mg/lであった。
SV = (waste water supply amount; m 3 / Hr) / (microbial carrier filling amount; m 3 ) The SS concentration in the waste water to be treated above is about 15 mg / l, and the BOD concentration is about 14 mg / l Met.

そして、上記の処理槽1において、廃水が内筒3内の濾
過層16下部から外筒2の底部を経由して内外筒3、2間
の濾過層16を上昇する濾過流路をたどって得られた処理
水は、そのSS分濃度が1mg/l以下であり、またBODの平均
濃度が約5.5mg/lといずれも廃水中から汚濁物質が高率
で除去されていることがわかった。
Then, in the above treatment tank 1, the waste water is obtained by tracing the filtration flow path that rises from the lower part of the filter layer 16 in the inner cylinder 3 to the bottom of the outer cylinder 2 and ascends the filter layer 16 between the inner and outer cylinders 3 and 2. In the treated water, the SS concentration was less than 1 mg / l, and the average BOD concentration was about 5.5 mg / l, indicating that pollutants were removed from the wastewater at a high rate.

次いで、上記のように廃水の供給を3日間続けたとこ
ろ、内筒3内の濾過層16の下部に目詰まりが生じて廃水
が内筒3の上端部をオーバーフローした。この廃水の水
位の上昇は、水位計15により検知され、直ちにこの水位
計に連動する電磁弁8が閉じられるとともに、底部側の
電磁弁10が開放された。廃水は、水位Bから上昇して水
面から露出した部分を通過して内外筒3、2間の濾過層
16を徐々に流下したのち、処理水として排出パイプ11か
ら外部に排出された。この処理水のSS濃度を測定したと
ころ、1mg/l以下であり、またBODの平均濃度が約6.2mg/
lであるなど、いずれも廃水中から汚濁物質が高率で除
去されていることがわかった。
Then, when the waste water was continuously supplied for 3 days as described above, the lower part of the filtration layer 16 in the inner cylinder 3 was clogged and the waste water overflowed the upper end of the inner cylinder 3. This rise in the water level of the wastewater was detected by the water level gauge 15, and immediately the solenoid valve 8 linked to this water level gauge was closed and the bottom solenoid valve 10 was opened. The wastewater rises from the water level B, passes through the portion exposed from the water surface, and passes through the filtration layer between the inner and outer cylinders 3 and 2.
After gradually flowing down 16, the water was discharged to the outside through the discharge pipe 11 as treated water. When the SS concentration of this treated water was measured, it was 1 mg / l or less, and the average concentration of BOD was about 6.2 mg / l.
It was found that pollutants were removed from wastewater at a high rate in all cases such as l.

さらに、廃水の供給を12日間続けたところ、濾過層16全
体が目詰まりし始めたので、ここでこの濾過層16に対し
て逆洗操作を施した。まず、散気装置5、6を介してブ
ロアー7から処理槽1内に空気等のガスを約1分間供給
して濾過層16を崩壊させた。このときのブロアー7から
のガス供給量は、1分間当たり約0.5l程度で十分であっ
た。次いで、ブロアー7から散気装置4を介して上記と
同様にして約5分間処理槽1内に2l/分のガスを供給し
て上記と同様にして微生物担体を循環流動化させた。次
いで、電磁弁12を開放して排出パイプ13から処理槽1内
の洗浄水を排出した。そして、このような操作を2回繰
り返して、微生物担体に捕捉されている汚濁物質をほぼ
完全に排除した。この逆洗操作に要した時間は、約15分
間程度と従来の方法に比べてあまり変わらなかったが、
濾過運転継続期間が15日間と従来の方法(1日間)に比
べて約15倍と非常に長いことがわかった。
Further, when the supply of the waste water was continued for 12 days, the whole filter layer 16 began to be clogged, so the filter layer 16 was backwashed here. First, a gas such as air was supplied from the blower 7 into the processing tank 1 through the air diffusers 5 and 6 for about 1 minute to collapse the filtration layer 16. The amount of gas supplied from the blower 7 at this time was about 0.5 l per minute, which was sufficient. Then, 2 l / min of gas was supplied from the blower 7 through the air diffuser 4 into the treatment tank 1 for about 5 minutes in the same manner as described above to circulate and fluidize the microbial carrier in the same manner as described above. Then, the electromagnetic valve 12 was opened to discharge the cleaning water in the processing tank 1 through the discharge pipe 13. Then, such an operation was repeated twice to almost completely eliminate the contaminants trapped by the microbial carrier. The time required for this backwashing operation was about 15 minutes, which was not much different from the conventional method,
It was found that the duration of filtration operation was 15 days, which was about 15 times longer than that of the conventional method (1 day).

次に、径1.5mで、内部に濾過層を1.5mの厚さ寸法で形成
した実規模の処理槽を用いて、生活処理水の二次処理水
の処理を実施したところ、15日間連続運転することがで
き、また逆洗時の空気量が約3.5m3/hr.程度で十分であ
った。一方、同規模の処理槽を用いて、従来の砂粒子か
らなる濾過層による廃水処理(急速濾過処理)を行なっ
たところ、1日で目詰まりを生じ、また逆洗時の空気量
および水量が、いずれも約56m3/hr.程度必要であった。
そして、この結果から本法は、従来の方法に比べて、空
気量で約1/240[3.5/56)×(1/15)]と少なくするこ
とができた。また、本法の逆洗操作においては、微生物
担体を循環流動化させる水を必要とせず、排出後に処理
槽を満たすのに処理槽の内容積分と同量の約3m3(逆洗
時間は約15分間)の水が必要であった。これに対して従
来の方法では、逆洗時に、約14m3の水を必要とした。し
たがって、逆洗時の水量において、本法は、従来の方法
に比べて約1/70[3/14)×(1/15)]と少なくすること
ができた。
Next, when the secondary treated water of domestic treated water was treated using a full-scale treatment tank with a diameter of 1.5 m and a filtration layer formed inside with a thickness of 1.5 m, it was operated continuously for 15 days. The amount of air used during backwashing was about 3.5 m 3 / hr. On the other hand, when the wastewater treatment (rapid filtration treatment) with the conventional filter layer consisting of sand particles was performed using a treatment tank of the same scale, clogging occurred in one day, and the amount of air and water during backwashing was All required about 56 m 3 / hr.
From this result, this method was able to reduce the amount of air to about 1/240 [3.5 / 56] x (1/15)] compared to the conventional method. In addition, the backwashing operation of this method does not require water to circulate and fluidize the microbial carrier, and the amount of about 3 m 3 (the backwashing time is about the same as the content integral of the treatment tank to fill the treatment tank after discharge). 15 minutes) of water was needed. On the other hand, the conventional method required about 14 m 3 of water during backwashing. Therefore, the amount of water used during backwashing was reduced by about 1/70 [3/14] x (1/15)] compared with the conventional method.

このように、濾過運転継続期間を長くできたことは、逆
洗操作の実施回数を少なくすることにつながるので、逆
洗操作によって発生する微生物担体の微生物膜の剥離を
抑制して微生物担体の微生物膜による吸着濾過機能を保
持継続させることができるとともに、逆洗操作で消費さ
れるブロアー等の動力エネルギーや戻り水を大幅に削減
することができたことになる。また、微生物担体の再生
効率(逆洗後の圧損/初期圧損)については、約99%程
度と優れた結果が得られた。
In this way, the fact that the filtration operation duration can be lengthened leads to a reduction in the number of times of backwashing operation, so that the separation of the microbial membrane of the microbial carrier generated by the backwashing operation is suppressed and the microorganisms of the microbial carrier are suppressed. This means that the adsorption and filtration function of the membrane can be maintained and continued, and the kinetic energy such as the blower consumed in the backwash operation and the return water can be greatly reduced. Also, regarding the regeneration efficiency of the microbial carrier (pressure loss after backwashing / initial pressure loss), an excellent result of about 99% was obtained.

(比較例) 第1図に示す処理槽1内に比重1以下の微生物担体を充
填して厚さ寸法約90cmの濾過層を形成した。次いで、こ
の濾過層の上部から水位と同じ高さに濾過層全体を下方
に押し下げるようにして約2mm径のスクリーンを設け
た。このスクリーンによる下方への押圧力と微生物担体
にかかる浮力とにより、この濾過層は稠密に形成され
た。
Comparative Example A microbial carrier having a specific gravity of 1 or less was filled in the treatment tank 1 shown in FIG. 1 to form a filtration layer having a thickness of about 90 cm. Next, a screen having a diameter of about 2 mm was provided by pushing the entire filter layer downward from the top of the filter layer to the same height as the water level. Due to the downward pressing force of the screen and the buoyancy of the microorganism carrier, the filter layer was densely formed.

次いで、この濾過層を用いて生活廃水の二次処理水に対
して実施例1と同様の条件で処理を施したところ、僅か
1.2日でスクリーンに目詰まりを生じ、逆洗操作が必要
になり、この濾過層の連続運転は、ほとんど不可能であ
った。
Then, using this filter layer, the secondary treated water of domestic wastewater was treated under the same conditions as in Example 1, and it was found that
The screen was clogged in 1.2 days and a backwash operation was required, and continuous operation of this filter layer was almost impossible.

(実施例2) 第2図に示すような有効水深が約1mで内径10cmの処理槽
1内に、粒径0.5〜3.0mm、比重0.5〜0.95の微生物担体
と粒径0.5〜3.0mm、比重1.3の微生物担体をそれぞれ稠
密に充填して、厚さ寸法が約60cmの濾過層16を形成する
とともに、深さ寸法が約20cmの堆積層17を形成した。次
いで、このような処理槽1内に実施例1と同様の一般生
活廃水の二次処理水を供給して、この廃水の処理を行な
った。
(Example 2) In a treatment tank 1 having an effective water depth of about 1 m and an inner diameter of 10 cm as shown in FIG. 2, a microbial carrier having a particle size of 0.5 to 3.0 mm and a specific gravity of 0.5 to 0.95 and a particle size of 0.5 to 3.0 mm and a specific gravity of Each of the 1.3 microbial carriers was densely packed to form a filtration layer 16 having a thickness dimension of about 60 cm and a deposition layer 17 having a depth dimension of about 20 cm. Then, the secondary treated water of the general domestic wastewater similar to that of Example 1 was supplied into the treatment tank 1 to treat the wastewater.

廃水の供給位置およびその後の廃水の流動方向について
は、実施例1と同様にしたところ、内筒3内の濾過層16
の下方が目詰まりする前の処理水と、目詰まり後の処理
水のSS濃度は、いずれも1mg/l以下であり、またそれぞ
れのBODの平均濃度は、約5.3mg/l以下であった。
The supply position of the waste water and the flow direction of the waste water after that were the same as in Example 1, and the filtration layer 16 in the inner cylinder 3
The SS concentration of the treated water before clogging the lower part of the and the treated water after clogging was 1 mg / l or less, and the average concentration of each BOD was about 5.3 mg / l or less. .

(実施例3) 比重1以下の微生物担体で、粒径が揃ったもの(粒径1.
8mm)と、粒径に分布を有するもの(粒径1.5〜4.0mm)
とをそれぞれ廃水処理に用いて、廃水中に含まれる汚濁
物質による目詰まりの度合について調べ、その結果を第
3図のグラフに示した。このグラフにおいて縦軸に目詰
まりの目安となる圧損をとり、横軸に廃水処理の継続日
数をとった。そして、粒径が揃ったものについて破線
(イ)で示し、粒径に分布を有するものについて実線
(ロ)で示した。なお、上記の両濾過層の厚さ寸法をい
ずれも90cmとし、廃水には、SS分濃度が7〜18mg/l程度
の二次処理水を用いた。
(Example 3) A microbial carrier having a specific gravity of 1 or less and having a uniform particle size (particle size 1.
8 mm) and those with a distribution in particle size (particle size 1.5 to 4.0 mm)
Was used for wastewater treatment, and the degree of clogging by pollutants contained in the wastewater was investigated, and the results are shown in the graph of FIG. In this graph, the vertical axis represents pressure loss, which is a measure of clogging, and the horizontal axis represents the number of days of wastewater treatment. Then, those having uniform particle diameters are shown by the broken line (a), and those having a distribution of particle diameters are shown by the solid line (b). The thickness of both of the above filtration layers was 90 cm, and the waste water used was secondary treated water having an SS concentration of about 7 to 18 mg / l.

第3図のグラフから明らかように、粒径に分布を有する
微生物担体からなる濾過層(実線)では、濾過層に部分
的に圧損の高い部分が生じることがなく、全体として圧
損の上昇傾向が小さく、したがって長期間に亙って目詰
まりが少ないことから、廃水処理を連続的に行なうこと
ができることがわかる。
As is clear from the graph of FIG. 3, in the filtration layer (solid line) made of a microbial carrier having a distribution in particle size, there is no part where the pressure loss is high in the filtration layer, and the pressure loss tends to increase as a whole. Since it is small and therefore has little clogging over a long period of time, it can be seen that wastewater treatment can be continuously performed.

「発明の効果」 以上説明したように、この発明の第1発明によれば、濾
過層を形成する微生物担体の粒径を0.5〜8.0mm程度、好
ましくは1.5〜5.0mm程度の粒径分布としたことにより、
濾過層が上層に粒径の大きい微生物担体、下層に粒径の
小さい微生物担体がそれぞれ分布するように構成される
ので、濾過層の上層が下層に比べて微生物担体間の間隙
が大きくなるので、部分的に圧損が高まることがなく、
長期間に亙って目詰まりをすることがなく、廃水処理を
連続的に行なうことができる また、この方法によれば、処理槽内に濾過層を、その上
部が水面から一部露出しかつ下部が処理槽の底部から離
間するとともに、全体が稠密に充填した状態で形成した
ので、濾過層を形成する微生物担体が廃水の供給により
流動化することなく、微生物担体を処理槽内の水中およ
び水上に固定することができるとともに、逆洗時に微生
物担体を少ないエネルギーで容易に流動化させることが
できる。またさらに、廃水の供給位置を内筒内側の濾過
層内としたことにより、内筒内の濾過層を流下し、外筒
の底部で反転し、内外筒間を上昇する流路と、内筒内の
濾過層下部が目詰まりしたのち、廃水の供給位置から上
昇し、濾過層の水面から露出した部分を経て内外筒間を
流下する流路の二つの濾過流路をとることができる。こ
のような流路の濾過層16のうち、特に水面から一部露出
した部分は、廃水の水位の上昇に伴い、浮力等により上
方に押し上げられることから、微生物担体間の間隙が適
度に拡げられてこの部分における汚濁物質の捕捉許容能
力が増加されたものとなる。したがって、この二つの濾
過流路を利用することにより、長期間に亙って連続的に
廃水処理を行なうことができるので、逆洗操作の実施間
隔を長くすることができ、よって逆洗操作によって発生
する微生物担体表面からの微生物膜の剥離を抑制して微
生物担体の微生物膜による吸着濾過機能を保持継続させ
ることができる。また、逆洗操作を実施する回数が減少
するので、逆洗操作で消費されるブロアー等の動力エネ
ルギーや戻り水を大幅に削減することができるととも
に、従来の逆洗操作に微生物担体を循環流動化させるの
に用いられる水(処理水)を不要とすることができる。
"Effect of the Invention" As described above, according to the first invention of the present invention, the particle size distribution of the microorganism carrier forming the filtration layer is about 0.5 to 8.0 mm, preferably about 1.5 to 5.0 mm. By doing
Since the filtration layer is configured such that the microbial carrier having a large particle size is distributed in the upper layer and the microbial carrier having a small particle size is distributed in the lower layer, the upper layer of the filtration layer has a larger gap between the microbial carriers than the lower layer. Pressure loss does not increase locally,
Wastewater treatment can be performed continuously without clogging for a long period of time. Further, according to this method, the filtration layer is partially exposed from the water surface in the treatment tank in the treatment tank. Since the lower part was separated from the bottom of the treatment tank and the whole was densely packed, the microbial carrier forming the filtration layer was not fluidized by the supply of the waste water, and the microbial carrier was treated in water in the treatment tank. It can be fixed on water, and the microorganism carrier can be easily fluidized with a small amount of energy during backwashing. Furthermore, since the waste water supply position is set inside the inner cylinder, the flow path inside the inner cylinder flows down, is reversed at the bottom of the outer cylinder, and rises between the inner and outer cylinders. After the lower part of the inner filter layer is clogged, it is possible to take two filter channels, that is, a channel that rises from the supply position of the waste water and flows down between the inner and outer cylinders through the portion exposed from the water surface of the filter layer. Of the filtration layer 16 of such a flow path, the part that is partially exposed from the water surface in particular is pushed upward by buoyancy and the like as the water level of the wastewater rises, so that the gap between the microbial carriers can be appropriately expanded. The capability of capturing pollutants in the lever area is increased. Therefore, by using these two filtration channels, it is possible to continuously perform wastewater treatment for a long period of time, so that it is possible to lengthen the interval between backwash operations, and thus the backwash operation can be performed. It is possible to suppress the peeling of the microbial membrane from the surface of the microbial carrier that occurs and to maintain the adsorption filtration function of the microbial carrier by the microbial membrane. In addition, since the number of backwash operations is reduced, it is possible to significantly reduce power energy such as blower consumed in the backwash operation and return water, and circulate the microbial carrier in the conventional backwash operation. It is possible to eliminate the need for the water (treated water) used for the conversion.

また、第2の発明によれば、濾過層を、粒径を0.5〜8.0
mm程度、好ましくは1.5〜5.0mm程度の粒径分布を有する
微生物担体から構成して、濾過層自体を軽くしたので、
逆洗操作において処理槽の底部からの空気のみの供給で
濾過層を少ないエネルギーで容易に崩壊させ、これを循
環流動化させて洗浄することができ、かつその循環流動
化に伴う運転コストを低く抑えることができる。
According to the second invention, the filtration layer has a particle size of 0.5 to 8.0.
mm, preferably composed of a microbial carrier having a particle size distribution of about 1.5-5.0 mm, because the filtration layer itself is lightened,
In the backwash operation, only the air from the bottom of the treatment tank can be used to easily collapse the filter bed with a small amount of energy, and it can be circulated and fluidized for cleaning, and the operating cost associated with the circulatory fluidization is low. Can be suppressed.

またさらに、第3の発明によれば、上記の第1発明の優
れた効果に加え、廃水を堆積層内にも通過させることに
より、廃水中の汚濁物質をさらに高い効率で除去するこ
とができ、さらに濾過継続期間を長くとることができる
など優れた効果を得ることができる。
Furthermore, according to the third invention, in addition to the excellent effect of the first invention, by passing the wastewater into the sedimentary layer, the pollutants in the wastewater can be removed with higher efficiency. Further, it is possible to obtain an excellent effect such as a longer filtration duration.

そして、第4の発明によれば、堆積層を濾過層とほぼ同
様に軽く構成したので、逆洗操作において処理層の底部
からの空気のみの供給で濾過層および堆積層をやはり少
ないエネルギーで容易に崩壊させ、これらを循環流動化
させて洗浄することができ、かつその循環流動化に伴う
運転コストを低く抑えることができる。
According to the fourth aspect of the invention, since the deposition layer is configured to be almost the same as the filtration layer, it is possible to easily supply the filtration layer and the deposition layer with a small amount of energy by supplying only air from the bottom of the treatment layer in the backwashing operation. It is possible to disintegrate and circulate them to circulate and fluidize them for cleaning, and it is possible to reduce the operating cost associated with the circulatory fluidization.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の第1および第2の発明に用いられ
る処理槽を示す概略構成図、第2図は、この発明の第3
および第4の発明に用いられる処理槽を示す概略構成
図、第3図は、この発明の第1〜第4発明に用いられる
濾過層の圧損の経時変化を示すグラフである。
FIG. 1 is a schematic configuration diagram showing a processing tank used in the first and second inventions of the present invention, and FIG. 2 is a third diagram of the present invention.
And FIG. 3 is a schematic configuration diagram showing a treatment tank used in the fourth invention, and FIG. 3 is a graph showing changes over time in pressure loss of the filtration layer used in the first to fourth inventions of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】廃水を微生物担体からなる濾過層中に通過
せしめて濾過する廃水処理方法において、 有底筒状の外筒とこの外筒内に立設された筒状の内筒を
有する処理槽内に、比重1以下でかつ粒径0.5〜8.0mmの
範囲の粒径分布を有する微生物担体からなる濾過層をこ
の濾過層の上部が水位より露出しかつ下部が処理槽の底
部から離間するとともに全体が稠密となるように形成
し、次いで内筒内側の濾過層内に直接廃水を供給するこ
とを特徴とする廃水処理方法。
1. A method for treating wastewater, which comprises filtering wastewater by passing it through a filtration layer composed of a microbial carrier, which has a bottomed cylindrical outer cylinder and a cylindrical inner cylinder erected inside the outer cylinder. In the tank, a filter layer composed of a microbial carrier having a specific gravity of 1 or less and a particle size distribution in the range of 0.5 to 8.0 mm is provided. The upper part of the filter layer is exposed from the water level and the lower part is separated from the bottom of the processing tank. A method for treating wastewater, characterized in that the whole is formed to be dense together with the whole, and then the wastewater is directly supplied into the filtration layer inside the inner cylinder.
【請求項2】廃水を微生物担体からなる濾過層中に通過
せしめて濾過する廃水処理方法において、 有底筒状の外筒とこの外筒内に立設された筒状の内筒を
有する処理槽内に、比重1以下でかつ粒径0.5〜8.0mmの
範囲の粒径分布を有する微生物担体からなる濾過層をこ
の濾過層の上部が水位より露出しかつ下部が処理槽の底
部から離間するとともに全体が稠密となるように形成
し、次いで内筒内側の濾過層内に直接廃水を供給したの
ち、処理槽の底部より空気のみを供給することによって
濾過層を形成する微生物担体を循環流動化して洗浄する
ことを特徴とする廃水処理方法。
2. A method for treating wastewater, which comprises filtering wastewater by passing it through a filtration layer comprising a microbial carrier, which has a bottomed cylindrical outer cylinder and a cylindrical inner cylinder erected inside the outer cylinder. In the tank, a filter layer composed of a microbial carrier having a specific gravity of 1 or less and a particle size distribution in the range of 0.5 to 8.0 mm is provided. The upper part of the filter layer is exposed from the water level and the lower part is separated from the bottom of the processing tank. And then form a dense whole, and then directly supply the wastewater into the filter layer inside the inner cylinder, then circulate and fluidize the microbial carrier that forms the filter layer by supplying only air from the bottom of the treatment tank. A method for treating wastewater, which comprises:
【請求項3】廃水を微生物担体からなる濾過層中に通過
せしめて濾過する廃水処理方法において、 有底筒状の外筒とこの外筒内に立設された筒状の内筒を
有する処理槽内に、比重1以下でかつ粒径0.5〜8.0mmの
範囲の粒径分布を有する微生物担体からなる濾過層をこ
の濾過層の上部が水位より露出しかつ下部が処理槽の底
部から離間するとともに全体が稠密となるように形成す
るとともに、この濾過層の下方に、比重1.05〜1.6の範
囲でかつ粒径0.5〜8.0mmの範囲の粒径分布を有する微生
物担体からなる堆積層を形成し、次いで内筒内側の上記
濾過層内に直接廃水を供給することを特徴とする廃水処
理方法。
3. A method for treating wastewater, which comprises filtering wastewater by passing it through a filtration layer composed of a microbial carrier, which has a bottomed cylindrical outer cylinder and a cylindrical inner cylinder erected inside the outer cylinder. In the tank, a filter layer composed of a microbial carrier having a specific gravity of 1 or less and a particle size distribution in the range of 0.5 to 8.0 mm is provided. The upper part of the filter layer is exposed from the water level and the lower part is separated from the bottom of the processing tank. Along with this, it is formed so that the whole becomes dense, and below this filtration layer, a sedimentary layer consisting of a microbial carrier having a particle size distribution with a specific gravity of 1.05 to 1.6 and a particle size of 0.5 to 8.0 mm is formed. Then, the wastewater treatment method is characterized in that wastewater is directly supplied into the filtration layer inside the inner cylinder.
【請求項4】廃水を微生物担体からなる濾過層中に通過
せしめて濾過する廃水処理方法において、 有底筒状の外筒とこの外筒内に立設された筒状の内筒を
有する処理槽内に、比重1以下でかつ粒径0.5〜8.0mmの
範囲の粒径分布を有する微生物担体からなる濾過層をこ
の濾過層の上部が水位より露出しかつ下部が処理槽の底
部から離間するとともに全体が稠密となるように形成す
るとともに、この濾過層の下方に、比重1.05〜1.6の範
囲でかつ粒径0.5〜8.0mmの範囲の粒径分布を有する微生
物担体からなる堆積層を形成し、次いで内筒内側の上記
濾過層内に直接廃水を供給したのち、処理槽の底部より
空気のみを供給することによって濾過層を形成する微生
物担体を循環流動化して洗浄することを特徴とする廃水
処理方法。
4. A method for treating wastewater, which comprises filtering wastewater by passing it through a filtration layer composed of a microbial carrier, which comprises a bottomed cylindrical outer cylinder and a cylindrical inner cylinder erected inside the outer cylinder. In the tank, a filter layer composed of a microbial carrier having a specific gravity of 1 or less and a particle size distribution in the range of 0.5 to 8.0 mm is provided. The upper part of the filter layer is exposed from the water level and the lower part is separated from the bottom of the processing tank. Along with this, it is formed so that the whole becomes dense, and below this filtration layer, a sedimentary layer consisting of a microbial carrier having a particle size distribution with a specific gravity of 1.05 to 1.6 and a particle size of 0.5 to 8.0 mm is formed. Then, after supplying the waste water directly into the filtration layer inside the inner cylinder, the microbial carrier forming the filtration layer is circulated and fluidized by supplying only air from the bottom of the treatment tank to wash the waste water. Processing method.
JP61182993A 1986-08-04 1986-08-04 Wastewater treatment method Expired - Lifetime JPH0741252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61182993A JPH0741252B2 (en) 1986-08-04 1986-08-04 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61182993A JPH0741252B2 (en) 1986-08-04 1986-08-04 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS6339697A JPS6339697A (en) 1988-02-20
JPH0741252B2 true JPH0741252B2 (en) 1995-05-10

Family

ID=16127876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61182993A Expired - Lifetime JPH0741252B2 (en) 1986-08-04 1986-08-04 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0741252B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448788C (en) * 2006-11-08 2009-01-07 哈尔滨工业大学 Composite micro oxygen hydrolysis reaction device and its method of treating sewage
JP6912987B2 (en) * 2017-09-26 2021-08-04 メタウォーター株式会社 How to clean the watering filter and the watering filter

Also Published As

Publication number Publication date
JPS6339697A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
CA2576034C (en) Method and apparatus for increasing filter contaminant loading capacity
US5167840A (en) Systems and methods for clarifying liquids
US4229292A (en) Countercurrent liquid-solid contacting apparatus
US6039866A (en) Fluidized bed filtering apparatus
US4340485A (en) Countercurrent liquid-solid contacting apparatus
US3970555A (en) Gas removal from deep-bed filters
JP3652567B2 (en) Cleaning method for filtration equipment
JP2695624B2 (en) How to clean floating filter media
JPH0217908A (en) Method for washing solid-liquid separation apparatus
JPH0741252B2 (en) Wastewater treatment method
GB2124921A (en) Filtering method and apparatus
JP2003220305A (en) Mobile filter bed-type filter
GB1589600A (en) Separating solid particles from a liquid suspension
EP0280620B1 (en) Filtration apparatus and process for cleaning said apparatus
JPS59206022A (en) Liquid purifying method and apparatus
JPH0520126B2 (en)
RU2054300C1 (en) Method and apparatus for filtration of liquids
JPH0647526Y2 (en) Downflow clarification device
SU1114439A1 (en) Method of regenerating filtering layer made of elastic porous material
JPH02191511A (en) Filter and its back-washing method
SU1063432A1 (en) Filter for deironing water
SU936963A1 (en) Method of regenerating granular charge of pressure filters
JPH10305204A (en) Cleaning method of fiber filter material
JP2829993B2 (en) How to clean the filter
SU1180045A1 (en) Method of cleaning water