JPH0741132B2 - Circulating water circuit for electronic parts processing - Google Patents

Circulating water circuit for electronic parts processing

Info

Publication number
JPH0741132B2
JPH0741132B2 JP61079510A JP7951086A JPH0741132B2 JP H0741132 B2 JPH0741132 B2 JP H0741132B2 JP 61079510 A JP61079510 A JP 61079510A JP 7951086 A JP7951086 A JP 7951086A JP H0741132 B2 JPH0741132 B2 JP H0741132B2
Authority
JP
Japan
Prior art keywords
water
magnetic
electronic parts
circulating water
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61079510A
Other languages
Japanese (ja)
Other versions
JPS62237991A (en
Inventor
総一郎 阪田
孝夫 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP61079510A priority Critical patent/JPH0741132B2/en
Publication of JPS62237991A publication Critical patent/JPS62237991A/en
Publication of JPH0741132B2 publication Critical patent/JPH0741132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,電子部品加工のさいに使用する高純度の水を
有利に循環使用するようにした電子部品加工用循環水回
路に関する。
Description: TECHNICAL FIELD The present invention relates to a circulating water circuit for processing electronic parts, which is used to advantageously circulate high-purity water used for processing electronic parts.

〔従来の技術〕[Conventional technology]

電子部品や素子の切削加工や研磨加工において最近では
その寸法精度が±0.05μmといった非常に精密な加工精
度が要求されるようになった。かような精密加工工程で
は洗浄水が一般に使用されるが,この洗浄水に対しても
厳密な温度管理および純度管理が必要とされる。温度管
理としては±0.5℃以内,純度管理としては1μm以上
の微粒子を含まないことが一応の目標である。
In the cutting and polishing of electronic parts and elements, recently, extremely precise processing accuracy of ± 0.05 μm has been required. Cleaning water is generally used in such precision processing steps, but strict temperature control and purity control are also required for this cleaning water. The primary goal is to keep the temperature within ± 0.5 ° C and to maintain the purity of fine particles of 1 μm or more.

加工工程を経た洗浄水には多量の微粒子が含有されてく
るので,これを排水する場合には公害の面から,更に進
んでこれを循環使用する場合にはなお一層,この微粒子
を除去しなければならない。この微粒子の除去法として
従来最も一般に使用されているのは濾過分離であった。
A large amount of fine particles are contained in the washing water that has undergone the processing process. Therefore, when draining this water, it is necessary to remove these fine particles from the viewpoint of pollution, and when it is recycled and used again. I have to. The most commonly used method for removing fine particles has been filtration separation.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

多量の微粒子を含有している加工工程を経たあとの洗浄
水は,温度の面から言えば必要温度近くにあるのでこれ
を循環使用すると熱経済が達成されることになり,また
節水の面で有利となる。しかし,従来の最も進んだ濾過
器例えば0.5μmカットのコットンフイルターを使用し
て微粒子を捕捉する場合には,すぐに目詰まりを起こし
てしまう。したがって,ふるい目の異なるフイルターを
多段に設置し,上流側から下流側に径の大きいものの順
に捕捉することも考えられるが,圧損が大きくなり大き
なポンプ動力を必要とする。そしていずれにしても頻繁
なフイルターの交換が必要であり,メインテナンスが怠
れないという問題がある。
In terms of temperature, the wash water that has passed through the processing process containing a large amount of fine particles is close to the required temperature, so recycling this will achieve a thermal economy, and in terms of saving water. Be advantageous. However, when fine particles are captured by using the most advanced conventional filter, for example, a 0.5 μm-cut cotton filter, clogging occurs immediately. Therefore, it is conceivable to install filters with different sieves in multiple stages and capture the larger diameters in order from the upstream side to the downstream side, but the pressure loss increases and a large pump power is required. In any case, it is necessary to change the filters frequently, and there is a problem that maintenance is negligible.

また,微粒子の捕集効率を高めるためには凝集剤の添加
が有益であるが,凝集剤を使用すると洗浄水自身を汚染
するので,これを電子部品の精密加工工程に循環するに
は問題がある。
Also, it is beneficial to add a coagulant in order to improve the collection efficiency of fine particles, but the use of a coagulant contaminates the cleaning water itself, which is a problem in circulating this in the precision machining process of electronic parts. is there.

〔問題点を解決する手段〕[Means for solving problems]

本発明は前記の問題点を解決することを目的としてなさ
れたもので,電子部品や素子の切削または研磨工程で使
用された水を再び該工程に循環する水循環路に,上流側
から順に高勾配磁気分離機,濾過器および水温調整器を
設置し,凝集剤無添加のままこれらの機器類に通水する
ようにした電子部品加工用循環水回路を提供するもので
ある。
The present invention has been made for the purpose of solving the above-mentioned problems, and a water circulation path for circulating water used in the cutting or polishing process of electronic parts and elements to the process again has a high gradient from the upstream side. It is intended to provide a circulating water circuit for processing electronic parts, which is equipped with a magnetic separator, a filter, and a water temperature controller so that water can be passed through these devices without adding a flocculant.

本発明で使用する高勾配磁気分離機は,その原理はよく
知られているように,磁極間の均一な磁場内に,曲率半
径の極めて小さな部分をもつ磁性媒体(マトリックス)
を挿入することによって,曲率半径の小さな部分の表面
近傍に局部的な磁場の疎密を形成させ,これによって大
きな磁場勾配を発生させるものである。このマトリック
スとしては,磁性体からばるスパイラル線,メッシュ,
凹凸のある波板積層体などが使用される。そして磁極間
に置かれた水透過性のマトリックス中に被処理液を通液
することにより,被処理液中の磁性粒子がこのマトリッ
クスに磁着されるものである。
As is well known in principle, the high gradient magnetic separator used in the present invention is a magnetic medium (matrix) having an extremely small radius of curvature in a uniform magnetic field between magnetic poles.
By inserting, a local magnetic field density is formed near the surface of the part with a small radius of curvature, and a large magnetic field gradient is generated. As this matrix, spiral wire, mesh,
A corrugated sheet laminate having irregularities is used. Then, the liquid to be treated is passed through a water-permeable matrix placed between the magnetic poles, whereby magnetic particles in the liquid to be treated are magnetically adhered to this matrix.

本発明者らは,このような高勾配磁気分離機に電子部品
や素子の加工洗浄水を通液した場合に,凝集剤を使用し
なくても,磁性粒子はもとより,微細な非磁性粒子の大
部分がこの高勾配磁気分離機で分離除去できることを見
出した。
The inventors of the present invention have found that, when water for processing and cleaning electronic components and elements is passed through such a high gradient magnetic separator, magnetic particles as well as fine non-magnetic particles can be obtained without using an aggregating agent. It was found that most of them can be separated and removed by this high gradient magnetic separator.

高勾配磁気分離機の形式としては,固定式,回転式およ
び往復式のものが知られており,いずれの形式のものも
本発明に使用できるが,往復式のものが特に好適であ
る。これは,固定した磁極間にマトリックスを往復運動
させるものであり,具体的には,マトリックスをその中
に装填した細長い上下面開口のトラフを,対向配置した
N極とS極の間に往復運動させ(水平方向に往復移動さ
せる),磁極間にあるマトリックスに被処理液を上下に
通液し,磁極を離れたマトリックスに磁着物洗い出し用
の高圧水を上下に通水するものである。これによると,
磁着物が洗い出されたマトリックスが常に磁極間に往復
移動し,これに被処理液が接触して効率的な連続処理が
できる。なお,固定式は磁極もマトリックスも固定さ
れ,被処理液と洗浄水の流れを切換えるものであり,回
転式は固定した磁極間にリング状のマトリックスを回動
させるものである。
As the type of high gradient magnetic separator, a fixed type, a rotary type and a reciprocating type are known, and any type can be used in the present invention, but the reciprocating type is particularly preferable. This is to reciprocate a matrix between fixed magnetic poles. Specifically, a trough having an elongated upper and lower surface opening in which the matrix is loaded reciprocates between an N pole and an S pole which are arranged opposite to each other. Then, the liquid to be treated is vertically passed through the matrix between the magnetic poles, and the high pressure water for washing out the magnetic substance is vertically passed through the matrix apart from the magnetic poles. according to this,
The matrix from which the magnetic substance has been washed out always moves back and forth between the magnetic poles, and the liquid to be treated comes into contact with it, enabling efficient continuous treatment. The fixed type has a fixed magnetic pole and matrix, and switches the flow of the liquid to be treated and the washing water, and the rotary type rotates a ring-shaped matrix between the fixed magnetic poles.

本発明においては,この高勾配磁気分離機の後に濾過器
を設置する。これは,高性能フイルター例えば0.5μm
カットのコットンフイルターを使用する。高勾配磁気分
離機を通過する段階で,微粒子を含め,また磁性粒子の
もならず大部分の非磁性粒子もそのほとんどが除去され
るが,若干の微粒子は高勾配磁気分離機通過後の水中に
同伴してくる。本発明ではこの少量の微粒子を高性能フ
イルターを使用して除去するのである。
In the present invention, a filter is installed after this high gradient magnetic separator. This is a high performance filter, eg 0.5 μm
Use a cut cotton filter. At the stage of passing through the high-gradient magnetic separator, most of non-magnetic particles including magnetic particles are removed, but some of the non-magnetic particles are removed in the water after passing through the high-gradient magnetic separator. Will accompany you. In the present invention, this small amount of fine particles is removed by using a high performance filter.

このようにして微粒子が除去された循環水を次に温度調
整する。温度調整機器としては,加工工場に余分な熱源
がある場合にはその熱を利用した熱交換器を使用し,ま
た,最終温度調整のためにヒーターを使用する。本発明
では温度管理されて加工工程に入った水を再び加工工程
に戻すのであるから,循環水に付与する熱は循環路中で
の放熱分だけでよく,新しい水を使用する場合に比べて
温度調整機器の容量は小さくて済む。
The temperature of the circulating water from which the fine particles have been removed is adjusted next. If there is an extra heat source in the processing plant, a heat exchanger that uses the heat is used as the temperature control device, and a heater is used to adjust the final temperature. In the present invention, since the temperature-controlled water that has entered the working process is returned to the working process again, the heat applied to the circulating water is only the amount of heat radiated in the circulating path, and compared with the case of using new water. The capacity of the temperature control device can be small.

以下に,VTR用ヘッドの加工洗浄水の循環使用の例を述べ
る。
The following is an example of the circulating use of processing cleaning water for the VTR head.

制御分解能0.1μmでストローク100mmの割り出し制御を
1μm以下の精度で実現するVTR用ヘッドの加工工程の
冷却切削水(洗浄水)は±0.5℃以下の変動幅内に温度
管理されねばならず,1μm以上の粒子が含まれてはなら
ない。加工後の洗浄水中には,ワーク(Mn,Znフェライ
ト)の切削粉,ワークテーブル(カーボン製)からの切
削粉,ブレードから剥離したダイヤモンド砥粒,瞬間接
着剤の粉等が混入してくる。従って,この洗浄水を循環
使用する場合には1μm以下の粒子が含まれないように
濾過しなければならない。
Cooling water (washing water) in the VTR head machining process that achieves a control resolution of 0.1 μm and a stroke of 100 mm with an accuracy of 1 μm or less must be temperature-controlled within a fluctuation range of ± 0.5 ° C, 1 μm Should not contain any of the above particles. After processing, the cutting water of the work (Mn, Zn ferrite), the cutting powder from the work table (made of carbon), the diamond abrasive grains peeled from the blade, the powder of the instant adhesive, etc. are mixed in the cleaning water after processing. Therefore, when this wash water is circulated and used, it must be filtered so that particles of 1 μm or less are not contained.

第1図は前記のVTR用ヘッドの冷却切削水を循環使用す
る場合の比較例の工程図を,そして第2図は本発明例の
工程図を示す。
FIG. 1 is a process diagram of a comparative example in which the cooling cutting water of the VTR head is circulated and used, and FIG. 2 is a process diagram of an example of the present invention.

第1図の比較例ではVTR加工工程から出る洗浄水1を第
一タンク2に集水し,ポンプ3によって第二タンク4に
送水する管路5に,5μm以上の大きさの粒子を捕捉でき
る粗コットンフイルター6およびその下流側に0.5μm
以上の粒子を捕捉できる高性能コットンフイルター7を
直列に介装し,そして,第二タンク4に集水された水を
ポンプ8によって熱交換器9およびヒーター10を経て±
0.5℃の変動幅に温度制御したうえでVTR加工工程に戻し
た例である。VTR加工工程から出る洗浄水1の粒子濃度
(第一タンク内の粒子濃度)は1.3〜3.6ppmの範囲,平
均で2.6ppmであった。循環開始時におけるフイルター6
の差圧およびフイルター7の差圧はそれぞれ0.35kgf/cm
2であり,合計で0.7kgf/cm2であったが,すぐに目詰ま
りを起こした。交換直前の目詰まり状態でのフイルター
6の差圧およびフイルター7の差圧を測定したところ,
それぞれ2.5kgf/cm2および2.2kgf/cm2,合計で4.7kgf/c
m2であった。
In the comparative example shown in FIG. 1, the cleaning water 1 from the VTR processing step is collected in the first tank 2 and the pipe 5 for supplying water to the second tank 4 by the pump 3 can capture particles having a size of 5 μm or more. Coarse cotton filter 6 and 0.5 μm downstream
A high-performance cotton filter 7 capable of capturing the above particles is interposed in series, and the water collected in the second tank 4 is pumped by a pump 8 through a heat exchanger 9 and a heater 10.
This is an example of returning to the VTR processing step after controlling the temperature within a fluctuation range of 0.5 ° C. The particle concentration of cleaning water 1 (particle concentration in the first tank) discharged from the VTR processing step was in the range of 1.3 to 3.6 ppm, and was 2.6 ppm on average. Filter 6 at the start of circulation
The differential pressure of each and the differential pressure of the filter 7 are 0.35kgf / cm
2 , which was 0.7 kgf / cm 2 in total, but immediately clogged. When the differential pressure of the filter 6 and the differential pressure of the filter 7 in the clogging state immediately before replacement were measured,
2.5kgf / cm 2 and 2.2kgf / cm 2 , respectively, total 4.7kgf / c
It was m 2 .

第2図は,第1図の工程から粗コットンフイルター6を
除去し,洗浄水1の経路に高勾配磁気分離機11を挿入し
た以外は第1図の工程と実質上同じ工程の本発明例を示
している。高勾配磁気分離機11としては往復式のものを
使用した。これは,磁極13によって形成される均一な磁
場内(N極とS極とを対向配置した間隙)を,マトリッ
クス14を装填したトラフ15を往復運動させるものであ
り,磁極13にあるマトリックス14に対して洗浄水1が通
液され,マトリックス14を通過後は第一タンク2に集水
される。一方,往復運動により磁極13を出たマトリック
ス14に対してノズル16,17から高圧水が供給され,マト
リックス14に付着した物質を洗い出され,その洗い出し
水はタンク18に集水される。マトリックス14には線径1.
0mmのSUS410ステンレス鋼線を使用し,これを充填率13.
2%,流れ方向の厚み15cmでトラフ15に装填した。磁極1
3での外部印加磁界は2KOe,マトリックス14への洗浄水1
の平均濾過流速は10cm/s以下として,第1図の比較例の
場合と同じ濃度の加工工程から出る洗浄水を対象として
処理した。
FIG. 2 is an example of the present invention which is substantially the same as the process of FIG. 1 except that the coarse cotton filter 6 is removed from the process of FIG. 1 and the high gradient magnetic separator 11 is inserted in the path of the washing water 1. Is shown. A reciprocating type was used as the high gradient magnetic separator 11. This is to reciprocate the trough 15 loaded with the matrix 14 in the uniform magnetic field formed by the magnetic pole 13 (gap in which the N pole and the S pole are opposed to each other). On the other hand, the wash water 1 is passed through, and after passing through the matrix 14, the water is collected in the first tank 2. On the other hand, high-pressure water is supplied from the nozzles 16 and 17 to the matrix 14 that has exited the magnetic pole 13 by the reciprocating motion, the substances adhering to the matrix 14 are washed out, and the washed water is collected in the tank 18. The matrix 14 has a wire diameter of 1.
A 0 mm SUS410 stainless steel wire is used with a filling rate of 13.
The trough 15 was loaded with 2% and a thickness of 15 cm in the flow direction. Magnetic pole 1
Externally applied magnetic field at 3 is 2KOe, washing water to matrix 14 is 1
The average filtration flow rate was 10 cm / s or less, and the washing water from the processing step having the same concentration as in the comparative example of FIG. 1 was treated.

その結果,高勾配磁気分離機11で処理される前の水中の
微粒子濃度は1.3〜3.6ppmの範囲であったものが,処理
後においては0.2〜0.6ppmの範囲となり,高勾配磁気分
離機11の微粒子に対する捕捉効率は82%であった。また
高勾配磁気分離機11で除去された粒子(タンク18の捕集
水中の粒子)を分析した結果,磁性粒子(フエライト成
分)は70%,残りの30%は非磁性粒子であった。すなわ
ち,非磁性粒子の殆どもこの高勾配磁気分離機11で磁性
粒子に巻き込まれて除去された。また高勾配磁気分離機
11で除去された粒子の大きさは0.1〜8μmの範囲であ
り,重量基準の50%平均径は0.27μmであった。そし
て,0.5μmカットのコットンフイルター7の目詰まりす
るまでの処理時間は第1図の比較例の場合の約10倍にな
った。また,総合捕捉効率は比較例では85%以下であっ
たが,本発明例では97%以上となった。
As a result, the concentration of fine particles in the water before being processed by the high gradient magnetic separator 11 was 1.3 to 3.6 ppm, but was 0.2 to 0.6 ppm after the treatment. The capture efficiency for fine particles was 82%. Further, as a result of analyzing the particles removed by the high gradient magnetic separator 11 (particles in the collected water in the tank 18), 70% of magnetic particles (ferrite component) and the remaining 30% were non-magnetic particles. That is, most of the non-magnetic particles were also caught in the magnetic particles and removed by the high gradient magnetic separator 11. Also high gradient magnetic separator
The size of the particles removed in 11 was in the range of 0.1 to 8 μm, and the weight-based 50% average diameter was 0.27 μm. The processing time until the 0.5 μm-cut cotton filter 7 was clogged was about 10 times longer than that in the comparative example of FIG. The total capture efficiency was 85% or less in the comparative example, but was 97% or more in the inventive example.

【図面の簡単な説明】[Brief description of drawings]

第1図はVTR加工工程から出る洗浄水を循環使用する比
較例を示す工程図,第2図は同じ洗浄水を循環使用する
本発明例を示す工程図である。 1……VTR加工工程から出た洗浄水,2……第一集水タン
ク,6……5μmカットフイルター,7……0.5μmカット
フイルター,9……熱交換器,10……ヒーター,11……往復
式高勾配磁気分離機,13……磁極,14……磁性媒体(マト
リックス),15……トラフ,16,17……洗い出し用の高圧
水ノズル。
FIG. 1 is a process diagram showing a comparative example in which the cleaning water discharged from the VTR processing process is circulated and used, and FIG. 2 is a process diagram showing an example of the present invention in which the same cleaning water is circulated and used. 1 …… Wash water from VTR processing process, 2 …… First water collection tank, 6 …… 5μm cut filter, 7 …… 0.5μm cut filter, 9 …… Heat exchanger, 10 …… Heater, 11… … Reciprocating high gradient magnetic separator, 13 …… Magnetic pole, 14 …… Magnetic medium (matrix), 15 …… Trough, 16,17 …… High pressure water nozzle for washing out.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子部品または素子の切削または研磨工程
で使用された磁性微粒子と非磁性微粒子を含む水を再び
該工程に循環する電子部品加工用循環水回路において、
曲率半径の小さな表面部分を多数有した磁性媒体を磁極
間に配することにより該表面近傍に局部的な磁場の疎密
を形成させるようにした水透過性の高勾配磁気分離機を
該回路内に設置し、この高勾配磁気分離機で磁性微粒子
と非磁性微粒子の殆んどが分離された水を濾過器および
水温調整器を経て該工程に戻すことを特徴とする電子部
品加工用循環水回路。
1. A circulating water circuit for processing electronic parts, wherein water containing magnetic fine particles and non-magnetic fine particles used in a cutting or polishing step of electronic parts or elements is circulated again in the step,
A water-permeable high-gradient magnetic separator in which a magnetic medium having a large number of surface portions having a small radius of curvature is arranged between magnetic poles to form local magnetic field density near the surface is provided in the circuit. A circulating water circuit for processing electronic parts, which is installed and returns the water in which most of the magnetic fine particles and most of the non-magnetic fine particles are separated by this high gradient magnetic separator to the process through a filter and a water temperature regulator. .
【請求項2】循環水は、凝集剤無添加のまま高勾配磁気
分離機および濾過器に通水される特許請求の範囲第1項
記載の電子部品加工用循環水回路。
2. The circulating water circuit for processing electronic parts according to claim 1, wherein the circulating water is passed through a high gradient magnetic separator and a filter without adding a flocculant.
JP61079510A 1986-04-07 1986-04-07 Circulating water circuit for electronic parts processing Expired - Lifetime JPH0741132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61079510A JPH0741132B2 (en) 1986-04-07 1986-04-07 Circulating water circuit for electronic parts processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079510A JPH0741132B2 (en) 1986-04-07 1986-04-07 Circulating water circuit for electronic parts processing

Publications (2)

Publication Number Publication Date
JPS62237991A JPS62237991A (en) 1987-10-17
JPH0741132B2 true JPH0741132B2 (en) 1995-05-10

Family

ID=13691951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079510A Expired - Lifetime JPH0741132B2 (en) 1986-04-07 1986-04-07 Circulating water circuit for electronic parts processing

Country Status (1)

Country Link
JP (1) JPH0741132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173500B2 (en) * 2008-03-11 2013-04-03 大日本スクリーン製造株式会社 Processing liquid supply apparatus and substrate processing apparatus including the same
CN108706695A (en) * 2018-07-20 2018-10-26 苏州瑞沁精密机械有限公司 A kind of iron filings eliminating equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895580A (en) * 1981-12-02 1983-06-07 Hitachi Ltd Water processing method
JPS5939318A (en) * 1982-08-30 1984-03-03 Mitsubishi Seikou Jizai Kk Wet type magnetic separation apparatus
JPS6067069A (en) * 1983-09-19 1985-04-17 Nec Corp Lapping system

Also Published As

Publication number Publication date
JPS62237991A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US5746646A (en) Method of ultrasonically grinding workpiece
CN105413291A (en) Flow-divided cutting fluid filter unit
TWI377988B (en) Wiresaw apparatus and method for continuous removal of magnetic impurities during wiresaw cutting
US10493384B2 (en) Filtration system
CN209532882U (en) A kind of lathe chip removal device that coolant liquid can be recycled
JP2005028353A (en) Coolant cleaning apparatus
EP0318913A2 (en) Method of washing off magnetically separated particles
JPH0741132B2 (en) Circulating water circuit for electronic parts processing
JPH11314047A (en) Coolant cleaning device
CN212632035U (en) Cooling liquid recovery processing equipment for metal mesh processing
CN205218667U (en) Coolant liquid return water tank
CN217142610U (en) Wire feeding water tank in wire cutting
CN109437425A (en) The liquid waste treating apparatus of plasma polishing machine, device and method
CN218613133U (en) Water-cooled electric tapping device
JP2002036111A (en) Abrasive grains scavenging device
CN211302289U (en) High-efficient agitating unit is used in industrial waste water treatment
CN214264836U (en) Cooling liquid recovery device for metal processing
CN220736412U (en) Condensate water filtering and recycling device
JPH0746425Y2 (en) Electric discharge machining fluid purification device
KR100996360B1 (en) Cutting oil of metallic powder separator
JP4210505B2 (en) Coolant cleaning device
CN105290875A (en) Cooling liquid recovery water tank
JPH0790130B2 (en) Filter device
JPS61249272A (en) Grinding coolant recoverer
CA1319113C (en) Method for washing off magnetically separated particles