JPH0740391A - Manufacture of base for small electronic parts whose warp is reduced - Google Patents

Manufacture of base for small electronic parts whose warp is reduced

Info

Publication number
JPH0740391A
JPH0740391A JP5188221A JP18822193A JPH0740391A JP H0740391 A JPH0740391 A JP H0740391A JP 5188221 A JP5188221 A JP 5188221A JP 18822193 A JP18822193 A JP 18822193A JP H0740391 A JPH0740391 A JP H0740391A
Authority
JP
Japan
Prior art keywords
small electronic
liquid crystal
crystal polymer
film gate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5188221A
Other languages
Japanese (ja)
Inventor
Norio Narasaki
則雄 奈良崎
Yutaka Shiraishi
豊 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5188221A priority Critical patent/JPH0740391A/en
Publication of JPH0740391A publication Critical patent/JPH0740391A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • B29C2045/2714Gates elongated, e.g. film-like, annular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal Substances (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a manufacture enabling a reduction of a warp to be generated at the time of manufacturing of a base for small electronic parts of a thin flat plate molded product. CONSTITUTION:To obtain a manufacture of a base plate which has reduced a warp and is for small electronic parts wherein the base plate is manufactured by making use of a film gate by injection-molding a liquid crystal polymer and a mold possessing a runner which is allowed to branch off into two pieces or not less than that is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄肉平板成形品である小
型電子部品用基板を製造する際に発生する反りを低減さ
せる事を可能とする成造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method capable of reducing warpage that occurs when manufacturing a substrate for a small electronic component which is a thin flat plate molded product.

【0002】[0002]

【従来の技術】従来、薄肉平板成形品をポリカーボネー
ト樹脂等のエンジニヤリングプラスチックスで製造する
場合、反りを低減するよう1本のランナを有するフィル
ムゲートによって樹脂をキャビティ内に注入し製造して
いた。この方法で製造すると、フィルムゲートからほぼ
同時に樹脂が流れ出すためキャビティ内で温度分布及び
圧力分布が一様となるため反り量を減少させる事が可能
となる。
2. Description of the Related Art Conventionally, when a thin flat plate molded article is manufactured from an engineering plastic such as a polycarbonate resin, the resin is injected into a cavity by a film gate having one runner so as to reduce the warp. . When manufactured by this method, the resin flows out from the film gate almost at the same time, so that the temperature distribution and the pressure distribution are uniform in the cavity, so that the amount of warpage can be reduced.

【0003】上記と同様の方法で小型電子部品用基板は
製造されている。従来の小型電子部品用基板製造技術を
図4に基づいて説明する。小型電子部品用基板を液晶高
分子や強化材含有液晶高分子を用いて製造する際、上記
温度分布及び圧力分布の均一化の他に、分子の配向方
向、補強材の配向方向を考慮する必要がある。これは、
液晶高分子の場合、分子の配向方向及び補強材の配向方
向によって収縮率が大きく異なるため、分子の配向方向
及び補強材の配向方向が不均一になると最大収縮方向が
小型電子部品用基板上の各点で異なり、成形品が相似形
に収縮せず、その結果反り量が大きくなるためである。
Substrates for small electronic components are manufactured by the same method as described above. A conventional technique for manufacturing a substrate for a small electronic component will be described with reference to FIG. When manufacturing a substrate for small electronic parts using liquid crystal polymer or liquid crystal polymer containing reinforcing material, it is necessary to consider the orientation direction of molecules and the orientation direction of reinforcing material in addition to the uniform temperature distribution and pressure distribution. There is. this is,
In the case of a liquid crystal polymer, the shrinkage rate varies greatly depending on the orientation direction of the molecule and the orientation direction of the reinforcing material. Therefore, if the orientation direction of the molecule and the orientation direction of the reinforcing material become non-uniform, the maximum shrinkage direction is This is because the molded product does not shrink in a similar shape and the amount of warpage increases as a result.

【0004】上記理由により、従来の小型電子部品用基
板は一本のランナを有するフィルムゲートを用いて製造
を行う事により温度分布及び圧力分布を一様にし、分子
配向方向及び強化材配向方向を一様にしようとしてい
た。即ち、小型電子部品用基板1に、ランナ21及び肉厚
部3からフィルムゲート4を介して液晶高分子を注入し
ていた。しかし、液晶高分子を一本のランナ21を有する
フィルムゲート4から注入させるという従来技術で薄肉
平板成形品である小型電子部品用基板を製造した場合、
反りが大きくなってしまう事が問題となっていた。
For the above reasons, the conventional substrate for small electronic components is manufactured by using the film gate having one runner to make the temperature distribution and the pressure distribution uniform, and the molecular orientation direction and the reinforcing material orientation direction are made uniform. I was trying to make it uniform. That is, the liquid crystal polymer is injected into the small electronic component substrate 1 from the runner 21 and the thick portion 3 through the film gate 4. However, when a substrate for small electronic components, which is a thin flat plate molded product, is manufactured by the conventional technique of injecting a liquid crystal polymer from the film gate 4 having one runner 21,
The problem is that the warp becomes large.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、従来
技術における上記した課題を解決し、反り量を低減させ
た小型電子部品用基板を提供する事にある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art and to provide a substrate for a small electronic component in which the amount of warpage is reduced.

【0006】[0006]

【課題を解決するための手段】本発明者らは、小型電子
部品用基板の製造法について鋭意研究を重ねた結果、キ
ャビティに液晶高分子を注入する手段として、2本また
はそれ以上のランナを有するフィルムゲートを用いれ
ば、反り量を低減出来る事を見出し本発明を完成させ
た。すなわち、本発明は、液晶高分子を射出成形してフ
ィルムゲートを用いて基板を製造する方法であって、2
本またはそれ以上に分岐させたランナを有する金型を用
いる事を特徴とする小型電子部品用基板の製造法であ
る。また、本発明においては、該フィルムゲートの厚さ
が 0.1〜3.0mm である金型を用いること、該分岐された
ランナの長さ及び対応する同一流動距離における断面形
状が全て同一である金型を用いることからなる小型電子
部品用基板の製造法である。
The inventors of the present invention have conducted extensive studies on a method of manufacturing a substrate for a small electronic component, and as a result, as a means for injecting a liquid crystal polymer into a cavity, two or more runners are used. The present invention has been completed by finding that the amount of warpage can be reduced by using the film gate that the present invention has. That is, the present invention is a method of manufacturing a substrate using a film gate by injection molding a liquid crystal polymer.
A method for manufacturing a substrate for a small electronic component, characterized in that a die having a book or a runner branched into more than two is used. Further, in the present invention, a die having a thickness of the film gate of 0.1 to 3.0 mm is used, and a die having the same branch length and the corresponding cross-sectional shape at the same flow distance is used. Is a method of manufacturing a substrate for a small electronic component.

【0007】本発明の理解を容易とするために、添付の
図を用いて説明する。図1は、液晶高分子で製造して得
られた小型電子部品用基板及びランナ部である。小型電
子部品用基板1にはフィルムゲート4が設けられ、2本
のランナ21、22及び肉厚部3よりフィルムゲート4を介
して液晶高分子を注入するような構造となっている。図
2は、図1のA−A断面図である。図3は4本のランナ
21、22、23、24を有するフィルムゲート4から液晶高分
子を注入して得られる小型電子部品用基板及びランナ部
である。図4は、従来法であり、1本のランナを有する
ファイルゲートから液晶高分子を注入して得られる小型
電子部品用基板及びランナ部である。
To facilitate understanding of the present invention, description will be given with reference to the accompanying drawings. FIG. 1 shows a substrate and a runner portion for a small electronic component obtained by manufacturing a liquid crystal polymer. A film gate 4 is provided on the substrate 1 for small electronic components, and liquid crystal polymer is injected from the two runners 21 and 22 and the thick portion 3 through the film gate 4. FIG. 2 is a sectional view taken along line AA of FIG. Figure 3 shows four runners
A small electronic component substrate and a runner portion obtained by injecting a liquid crystal polymer from a film gate 4 having 21, 22, 23, and 24. FIG. 4 shows a conventional method, which is a small electronic component substrate and a runner portion obtained by injecting a liquid crystal polymer from a file gate having one runner.

【0008】本発明において、フィルムゲートへ液晶高
分子を注入するランナの本数は2本以上である。ここ
で、ランナ数はフィルムゲート幅及び厚みに依存してい
る。例えば、図1に示した場合において、フィルムゲー
ト長 150mm、ゲート厚 1.0mmでは、ランナ数は2から4
が好ましい。ランナ数は多いほど反りを減少させる事が
可能となる。
In the present invention, the number of runners for injecting the liquid crystal polymer into the film gate is two or more. Here, the number of runners depends on the film gate width and thickness. For example, in the case shown in Fig. 1, when the film gate length is 150 mm and the gate thickness is 1.0 mm, the number of runners is 2 to 4
Is preferred. As the number of runners increases, the warp can be reduced.

【0009】図4に示した一本のランナを有するフィル
ムゲートで、通常のエンジニヤリングプラスチックスを
用いて薄肉平板成形品を製造すると反りを低減する事が
可能であるにも関わらず、同様の方法で液晶高分子製小
型電子部品用基板を製造しても反り量が大きくなる原因
は、液晶高分子特有の性質によると考えられる。溶融成
形時の温度に於いて液晶高分子は、通常のエンジニヤリ
ングプラスチックスに比べ粘度の剪断速度依存性が高
く、剪断速度の低下にともない急激に粘度が増加する。
また、液晶高分子は通常のエンジニヤリングプラスティ
ックスに比べ比熱が小さく、熱伝導率が高いため冷却速
度が速い。上記の性質により、液晶高分子は、一旦、キ
ャビティ内において流速が低下すると、温度低下が無く
とも粘度が急激に増加し、流れ難くなってしまう。この
液晶高分子の特有の性質により、一本のランナを有する
フィルムゲートから液晶高分子を注入するという従来技
術を用いて製造しても反りが大きかったものと考察され
る。
In the film gate having one runner shown in FIG. 4, when a thin flat plate molded article is manufactured by using ordinary engineering plastics, it is possible to reduce the warpage, though it is possible to reduce the warpage. It is considered that the reason why the amount of warp becomes large even if the substrate for a small electronic component made of a liquid crystal polymer is produced by the method is due to the characteristic property of the liquid crystal polymer. At the temperature at the time of melt molding, the liquid crystal polymer has a higher shear rate dependence of the viscosity than ordinary engineering plastics, and the viscosity rapidly increases as the shear rate decreases.
Further, the liquid crystal polymer has a smaller specific heat and a higher thermal conductivity than ordinary engineering plastics, and therefore has a high cooling rate. Due to the above properties, once the liquid crystal polymer has a reduced flow velocity in the cavity, the viscosity of the liquid crystal polymer increases rapidly even if there is no temperature decrease, making it difficult to flow. Due to the peculiar properties of this liquid crystal polymer, it is considered that the warpage was large even if it was manufactured using the conventional technique of injecting the liquid crystal polymer from a film gate having one runner.

【0010】すなわち、図4に示した従来技術を用いて
製造すると、液晶高分子はランナ21から肉厚部3へ注
入された後は、肉厚部3の方がフィルムゲート4に比べ
圧力損失が少なくても進展する事が可能であるため肉厚
部3の横方向に優先的に進展する。この時ランナ21先
端のフィルムゲート4近傍の液晶高分子の流速は低下
し、粘度が著しく増加する。これに対して、ランナ21か
ら離れたフィルムゲート4の左右端では液晶高分子の流
速は速いまま維持され、粘度の低下が極めてすくない。
液晶高分子は、ランナ21から離れた部分からキャビティ
内に多く注入され、ランナ21の先端にあたる部分からの
注入は少なくなる。言い換えれば、液晶高分子のキャビ
ティ内における進展方向は、フィルムゲートに対して中
央部は遅く、両端部は早くなる。この結果、分子の配向
方向及び強化材の配向方向が一様ではなくなる。更に、
ランナ21先端にあたる中央部のフィルムゲート4近傍で
流速が低下するため成形品中央部では剪断発熱が減少し
てしまい、一旦、冷却された状態で液晶高分子が流れる
ため温度は低くなり、小型電子部品用基板上の温度分布
が不均一となる。上記理由から、反り量が大きくなると
考えられる。
That is, when manufactured by using the conventional technique shown in FIG. 4, after the liquid crystal polymer is injected from the runner 21 into the thick portion 3, the thick portion 3 has a higher pressure loss than the film gate 4. Since it can progress even if there is little, it preferentially progresses in the lateral direction of the thick portion 3. At this time, the flow velocity of the liquid crystal polymer near the film gate 4 at the tip of the runner 21 decreases, and the viscosity remarkably increases. On the other hand, at the left and right ends of the film gate 4 which are separated from the runner 21, the flow velocity of the liquid crystal polymer is kept high, and the decrease in viscosity is extremely small.
A large amount of the liquid crystal polymer is injected into the cavity from a portion distant from the runner 21, and less is injected from a portion corresponding to the tip of the runner 21. In other words, the progress direction of the liquid crystal polymer in the cavity is slower in the central part and faster in both ends with respect to the film gate. As a result, the molecular orientation direction and the reinforcing material orientation direction are not uniform. Furthermore,
Since the flow velocity is reduced in the vicinity of the film gate 4 in the central portion, which is the tip of the runner 21, the shear heat generation is reduced in the central portion of the molded product, and the liquid crystal polymer flows once in the cooled state, so the temperature becomes low and the small electronic The temperature distribution on the component board becomes non-uniform. From the above reason, it is considered that the warp amount becomes large.

【0011】一方、添付図面の図1、図2に示す本発明
のフィルムゲートへ液晶高分子を供給するランナの数が
2本となると、液晶高分子はランナ21、22を出てフィル
ムゲート4に近づくにつれ厚みが減少するため、ランナ
21、22先端のフィルムゲート近傍の流速は減少し、肉厚
部に沿って左右に優先的に広がる。しかし、ランナの数
が2本であるためランナ間隔が短く、フィルムゲート直
前の肉厚部3を液晶高分子が充填するまでに要する時間
は短くなる。これにより、液晶高分子がフィルムゲート
近傍に近づく時間が短くなり、フィルムゲート各部の液
晶高分子到達時間差が小さくなる。この事はランナ近傍
の液晶高分子の剪断速度の低下を抑え、且つ冷却時間差
分の温度低下による粘度の増加を防ぐ事が出来、その結
果フィルムゲート全体の粘度が一様となる。従って、キ
ャビティ内において液晶高分子の流動先端形状はフィル
ムゲートに対し平行となるため、分子の配向方向及び補
強材の配向方向は一様となり、温度分布及び圧力分布も
一様となるため反り量を小さくする事が可能となる事が
分かった。
On the other hand, when the number of runners supplying the liquid crystal polymer to the film gate of the present invention shown in FIGS. 1 and 2 of the accompanying drawings becomes two, the liquid crystal polymer exits the runners 21 and 22 and the film gate 4 As the thickness decreases as the
The flow velocity near the film gate at the tips of 21 and 22 decreases, and spreads preferentially left and right along the thick portion. However, since the number of runners is two, the runner interval is short and the time required for filling the thick portion 3 immediately before the film gate with the liquid crystal polymer is short. As a result, the time for the liquid crystal polymer to approach the vicinity of the film gate is shortened, and the difference in the arrival time of the liquid crystal polymer in each part of the film gate is reduced. This makes it possible to suppress a decrease in the shear rate of the liquid crystal polymer near the runner and prevent an increase in viscosity due to a decrease in temperature of the cooling time difference, and as a result, the viscosity of the entire film gate becomes uniform. Therefore, the flow front shape of the liquid crystal polymer in the cavity is parallel to the film gate, so the molecular orientation direction and the reinforcing material orientation direction are uniform, and the temperature distribution and pressure distribution are also uniform. It has been found that it is possible to reduce.

【0012】図3に示すように、ランナ数を4本に増加
させると、フィルムゲート直前の肉厚部を液晶高分子が
充填するまでに要する時間は更に短くなり、フィルムゲ
ート各部の液晶高分子到達時間差が小さくなるため、ラ
ンナ近傍の液晶高分子の剪断速度の低下を抑え、且つ冷
却時間差分の温度低下による粘度の増加を防ぐ事が出
来、その結果フィルムゲート全体の粘度が図1、図2に
比べ一層一様とする事が可能である。
As shown in FIG. 3, when the number of runners is increased to 4, the time required for filling the thick portion just before the film gate with the liquid crystal polymer is further shortened, and the liquid crystal polymer in each portion of the film gate is shortened. Since the arrival time difference is small, it is possible to suppress the decrease in the shear rate of the liquid crystal polymer near the runner and prevent the increase in the viscosity due to the decrease in the cooling time difference temperature. As a result, the viscosity of the entire film gate is It is possible to make it more uniform than 2.

【0013】[0013]

【実施例】以下、図面に基づき実施例を説明する。 実施例1 図1は、液晶高分子を本発明の製造法で製造して得られ
た小型電子部品用基板及びランナである。小型電子用部
品の形状は、 160mm×75mm×1.1mm である。図2は実施
例1の断面図である。フィルムゲート厚は 1.0mmであ
る。成形条件は、初期樹脂温度 380℃、金型温度 80
℃、充填時間 0.4秒である。本発明の製造法で製造する
と、 150℃中, 20分間アニールした後の基板長手方向の
反りは平均 2.1mmとなり、充分な精度であった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments will be described below with reference to the drawings. Example 1 FIG. 1 shows a small electronic component substrate and a runner obtained by producing a liquid crystal polymer by the production method of the present invention. The shape of small electronic components is 160 mm × 75 mm × 1.1 mm. FIG. 2 is a sectional view of the first embodiment. The film gate thickness is 1.0 mm. Molding conditions are: initial resin temperature 380 ℃, mold temperature 80
℃, filling time 0.4 seconds. When manufactured by the manufacturing method of the present invention, the warp in the longitudinal direction of the substrate after anneal at 150 ° C. for 20 minutes was 2.1 mm on average, which was sufficient accuracy.

【0014】比較例1 図4は、液晶高分子を従来技術の製造法で製造して得ら
れた小型電子部品用基板及びランナである。小型電子部
品用基板の形状及び成形条件は実施例1と同様である。
従来の方法で製造された小型電子部品用基板は、実施例
1と同様の条件で反りが平均 3.6mmであった。
Comparative Example 1 FIG. 4 shows a small electronic component substrate and runner obtained by manufacturing a liquid crystal polymer by a conventional manufacturing method. The shape and molding conditions of the substrate for a small electronic component are the same as in Example 1.
The substrate for a small electronic component manufactured by the conventional method had an average warpage of 3.6 mm under the same conditions as in Example 1.

【0015】[0015]

【発明の効果】小型電子部品用基板を、異方性が大き
く、粘度の剪断速度依存性が高く、且つ比熱が小さく熱
伝導率が大きい性質を有する液晶高分子で製造する手段
として、一本のゲートを有するフィルムゲートから注入
する製造法を用いると分子の配向方向、補強材の配向方
向、温度分布及び圧力分布が薄肉平板成形品である小型
電子部品用基板上の各点で不均一となるため反り量が大
きいという問題があった。これに対し、本発明に係わる
製造法は、2本以上のランナを有するフィルムゲートか
ら液晶高分子を注入する製造法を用いる事により分子の
配向方向、補強材の配向方向、温度分布及び圧力分布を
一様とすることで反りを低減することを可能とするもの
である。
As a means for producing a substrate for a small electronic component with a liquid crystal polymer having a large anisotropy, a high shear rate dependence of viscosity, a small specific heat and a large thermal conductivity, When using the manufacturing method of injecting from the film gate having the gate of, the orientation direction of molecules, the orientation direction of the reinforcing material, the temperature distribution and the pressure distribution become uneven at each point on the small electronic component substrate which is a thin flat plate molded product. Therefore, there is a problem that the warp amount is large. On the other hand, the manufacturing method according to the present invention uses a manufacturing method in which a liquid crystal polymer is injected from a film gate having two or more runners, whereby a molecular orientation direction, a reinforcing material orientation direction, a temperature distribution and a pressure distribution are obtained. It is possible to reduce the warp by making uniform.

【0016】[0016]

【図面の簡単な説明】[Brief description of drawings]

【図1】 斜視図 実施例1のランナ数を2とした場合の小型電子部品用基
板及びランナを示す。
FIG. 1 is a perspective view showing a substrate and a runner for a small electronic component in the case where the number of runners is 2 in Embodiment 1. FIG.

【図2】 断面図 実施例1における小型電子部品用基板の断面を示す。FIG. 2 is a cross-sectional view showing a cross section of a substrate for a small electronic component according to a first embodiment.

【図3】 斜視図 ランナ数を4とした場合の小型電子部品用基板及びラン
ナを示す。
FIG. 3 is a perspective view showing a small electronic component substrate and a runner when the number of runners is four.

【図4】 斜視図 比較例1の従来技術による小型電子部品用基板及びラン
ナを示す。
FIG. 4 is a perspective view showing a conventional small-sized electronic component substrate and runner of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1:小型電子部品用基板 21、22、23、24:ランナ 3:肉厚部 4:フィルムゲート 1: Substrates for small electronic components 21, 22, 23, 24: Runner 3: Thick part 4: Film gate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液晶高分子を射出成形してフィルムゲー
トを用いて基板を製造する方法であって、2本またはそ
れ以上に分岐させたランナを有する金型を用いる事を特
徴とする反りの低減された小型電子部品用基板の製造法
1. A method of manufacturing a substrate using a film gate by injection-molding a liquid crystal polymer, wherein a mold having two or more branched runners is used. Reduced manufacturing method for substrates for small electronic components
【請求項2】 該フィルムゲートの厚さが 0.1〜3.0mm
である金型を用いる請求項1記載の小型電子部品用基板
の製造法
2. The thickness of the film gate is 0.1 to 3.0 mm
The method for manufacturing a substrate for a small electronic component according to claim 1, wherein a mold that is
【請求項3】 該分岐されたランナの長さ及び対応する
同一流動距離における断面形状が全て同一である金型を
用いる請求項1記載の小型電子部品用基板の製造法
3. The method for manufacturing a substrate for a small electronic component according to claim 1, wherein a mold having the same sectional shape at the same run length and the length of the branched runner is used.
JP5188221A 1993-07-29 1993-07-29 Manufacture of base for small electronic parts whose warp is reduced Pending JPH0740391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5188221A JPH0740391A (en) 1993-07-29 1993-07-29 Manufacture of base for small electronic parts whose warp is reduced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5188221A JPH0740391A (en) 1993-07-29 1993-07-29 Manufacture of base for small electronic parts whose warp is reduced

Publications (1)

Publication Number Publication Date
JPH0740391A true JPH0740391A (en) 1995-02-10

Family

ID=16219894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5188221A Pending JPH0740391A (en) 1993-07-29 1993-07-29 Manufacture of base for small electronic parts whose warp is reduced

Country Status (1)

Country Link
JP (1) JPH0740391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882680A1 (en) * 2005-03-03 2006-09-08 Seropa Technology Sa Production of an thin object by molding, comprises injecting a thermoplastic material through a slit in a cavity
WO2014147008A1 (en) * 2013-03-22 2014-09-25 BSH Bosch und Siemens Hausgeräte GmbH Melt conducting system with film gate for in-mould decoration (imd) or in-mould labelling (iml) processes for injection moulding
CN110167737A (en) * 2016-12-15 2019-08-23 住友化学株式会社 Manufacturing method, mold and the runner of plate formed body
CN110446592A (en) * 2017-03-22 2019-11-12 住友化学株式会社 The manufacturing method and resin-formed body of resin-formed body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2882680A1 (en) * 2005-03-03 2006-09-08 Seropa Technology Sa Production of an thin object by molding, comprises injecting a thermoplastic material through a slit in a cavity
WO2014147008A1 (en) * 2013-03-22 2014-09-25 BSH Bosch und Siemens Hausgeräte GmbH Melt conducting system with film gate for in-mould decoration (imd) or in-mould labelling (iml) processes for injection moulding
CN105050789A (en) * 2013-03-22 2015-11-11 Bsh家用电器有限公司 Melt conducting system with film gate for in-mould decoration (imd) or in-mould labelling (iml) processes for injection moulding
CN110167737A (en) * 2016-12-15 2019-08-23 住友化学株式会社 Manufacturing method, mold and the runner of plate formed body
JPWO2018110646A1 (en) * 2016-12-15 2019-10-24 住友化学株式会社 Method for manufacturing plate-shaped body, mold and runner
EP3556533A4 (en) * 2016-12-15 2020-07-15 Sumitomo Chemical Company, Limited Plate-shaped molded body manufacturing method, mold, and runner
CN110446592A (en) * 2017-03-22 2019-11-12 住友化学株式会社 The manufacturing method and resin-formed body of resin-formed body

Similar Documents

Publication Publication Date Title
CN104903026B (en) Metal alloy injection is molded overfall
CN104870123A (en) Metal alloy injection molding protrusions
JPS5849170B2 (en) Injection mold with coat hanger type gate
EP2908972B1 (en) Metal alloy injection molding
JPH0740391A (en) Manufacture of base for small electronic parts whose warp is reduced
US4908178A (en) Method of molding a semiconductor device
CN1051272C (en) Injection mold
JP3225974B2 (en) Mold for injection molding
JPH0379317A (en) Plastic molded product
US5244378A (en) Apparatus for dynamic gating of polymers for producing molded articles with isotropic properties
JP3299428B2 (en) Injection molded article molding method and molding die
US20220126538A1 (en) Injection molding method
US20030185931A1 (en) Cold runner system for injection molding thermotropic liquid crystal polymer resins
JP2002086515A (en) Method and mold for injection-molding thermoplastic resin
JPH09296053A (en) Fiber-reinforced thermoplastic resin molding
JPH10211635A (en) Injection molding method
JP2002036309A (en) Molding die and method for producing plastic moldings
JP2002187177A (en) Method for manufacturing injection compression molded article
JPS63296912A (en) Injection molding device
KR20080010049A (en) Method for manufacturing mold and the mold
CN104918730B (en) Metal alloy injection forming method and equipment
JPS59232836A (en) Metallic mold for film insert injection molding
JP2003211499A (en) Mold for molding thin substrate and injection molding machine using the same and method for molding
JP2945145B2 (en) Liquid crystal polymer injection molding
JPH0825397A (en) Production of hollow molded product