JPH0740350B2 - Magnetic disk substrate - Google Patents

Magnetic disk substrate

Info

Publication number
JPH0740350B2
JPH0740350B2 JP60218724A JP21872485A JPH0740350B2 JP H0740350 B2 JPH0740350 B2 JP H0740350B2 JP 60218724 A JP60218724 A JP 60218724A JP 21872485 A JP21872485 A JP 21872485A JP H0740350 B2 JPH0740350 B2 JP H0740350B2
Authority
JP
Japan
Prior art keywords
substrate
zro
sintered body
magnetic disk
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60218724A
Other languages
Japanese (ja)
Other versions
JPS6278715A (en
Inventor
博 丸山
武志 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60218724A priority Critical patent/JPH0740350B2/en
Publication of JPS6278715A publication Critical patent/JPS6278715A/en
Publication of JPH0740350B2 publication Critical patent/JPH0740350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は部分安定化ジルコニア製基板を磁気ディスクの
支持体として高強度・高靱性特性を得、この基板上に磁
気記録媒体を100〜400℃にて形成しても基板自体が有す
る優れた初期特性を劣化せしめない長期信頼性の磁気デ
ィスク基板に関するものであり、更にボイド欠陥を解消
し得た磁気ディスク基板にも関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention uses a partially stabilized zirconia substrate as a support for a magnetic disk to obtain high strength and high toughness characteristics, and a magnetic recording medium of 100 to 400 is formed on this substrate. The present invention relates to a magnetic disk substrate having long-term reliability that does not deteriorate the excellent initial characteristics of the substrate itself even when formed at ° C, and further relates to a magnetic disk substrate that can eliminate void defects.

〔従来技術及び問題点〕 磁気ディスク装置はコンピュータの情報処理システムの
中で情報記憶の中心的な役割を果しているが、近時、こ
の磁気記録は高密度化及び大容量化の傾向にあるため、
スパッタリングやメッキなどの薄膜技術を利用して磁気
記録媒体の薄層化及び高面精度化をおこない、その要求
に答えようとしている。
[Prior Art and Problems] A magnetic disk device plays a central role in information storage in a computer information processing system. However, recently, this magnetic recording tends to have a higher density and a larger capacity. ,
By using thin film technology such as sputtering and plating, the magnetic recording medium is made thinner and the surface accuracy is improved, and the demand is being met.

かかる磁気記録媒体が形成される基板にはアルミニウム
合金が使用され、その表面を酸化して得られたアルマイ
ト層が2μ位の厚みで被覆されており、このアルマイト
層によって基板表面の硬度が大きくなっているが、この
硬質アルマイト層の厚みが小さく、且つアルミニウム合
金とアルマイトの熱膨張係数が異なっているため、基板
温度が上昇するに伴い、基板に歪みが発生し易かった。
即ち、スパッタリングによって基板上に磁気記録媒体を
形成する際には、スパッタ粒子や電子が基板上に衝突す
るため、その衝突エネルギによって基板温度が上昇し、
更に、γ−Fe2O3から成る磁気記録媒体の場合では、通
常、300℃以上に加熱処理することが行なわれており、
かように基板が被る温度上昇に伴って、アルミニウム基
板に歪みが発生し易くなり、これにより、このアルミニ
ウム基板に磁気記録媒体を形成して高密度磁気記録に用
いた場合、正確な書き込みや読み取りが出来にくいとい
う問題があった。
An aluminum alloy is used for a substrate on which such a magnetic recording medium is formed, and an alumite layer obtained by oxidizing the surface of the substrate is coated with a thickness of about 2 μ. This alumite layer increases the hardness of the substrate surface. However, since the thickness of this hard alumite layer is small and the aluminum alloy and alumite have different thermal expansion coefficients, the substrate is likely to be distorted as the substrate temperature rises.
That is, when a magnetic recording medium is formed on a substrate by sputtering, sputtered particles and electrons collide with the substrate, and the collision energy increases the substrate temperature,
Further, in the case of a magnetic recording medium made of γ-Fe 2 O 3 , it is usually heat-treated at 300 ° C. or higher,
As the temperature applied to the substrate rises, the aluminum substrate is likely to be distorted. As a result, when a magnetic recording medium is formed on the aluminum substrate and used for high-density magnetic recording, accurate writing and reading are performed. There was a problem that it was difficult to do.

更に、磁気ディスク装置は、同一の回転軸に複数の磁気
ディスクを配置して1000〜3000rpm位までの高速回転を
させて、読み取り及び書き込みのデータ処理をおこなっ
ており、この磁気ディスク基板がアルミニウム合金から
形成されていると、基板自体が遠心力によって伸び易く
なり、これによっても、高密度磁気記録に適した正確な
書き込み及び読み取りが出来ず、このような書き込み誤
差や読み取り誤差の解決が望まれていた。
Further, the magnetic disk device arranges a plurality of magnetic disks on the same rotary shaft and rotates them at a high speed of about 1000 to 3000 rpm to perform read and write data processing. If the substrate is formed of, the substrate itself tends to expand due to centrifugal force, and accurate writing and reading suitable for high-density magnetic recording cannot be performed. Therefore, it is desired to solve such writing error and reading error. Was there.

その上、アルミニウム合金製磁気ディスク基板には、通
常、表面がアルマイト処理されていても、その基板表面
の片面全面に亘って2〜3μのボイドが100個以上もあ
るため、高密度記録用磁気ディスク装置にとっては、こ
のボイド欠陥に起因して正確な書き込み及び読み取りが
出来ないという問題もあり、ボイド欠陥の少ない磁気デ
ィスク基板材料が望まれていた。
In addition, since the aluminum alloy magnetic disk substrate usually has 100 or more voids of 2 to 3μ over the entire surface of one side of the substrate even if the surface is anodized, the magnetic disk for high density recording is For the disk device, there is also a problem that accurate writing and reading cannot be performed due to this void defect, and a magnetic disk substrate material with few void defects has been desired.

また、前記アルマイト処理の他にアルミニウム基板表面
をメッキによりNi−P下地処理することも提案されてい
るが、ボイド欠陥や不均一なメッキのため製造歩留りが
悪く、実用化が難しい。
In addition to the alumite treatment, it has been proposed to subject the surface of an aluminum substrate to a Ni-P undercoat treatment by plating, but the production yield is poor due to void defects and uneven plating, and practical application is difficult.

上述の難点をすべて解消するためにセラミック製ディス
ク基板が注目されており、これによればスパッタリング
や熱処理に対して何ら歪みが発生せず、基板に加えられ
る遠心力に対して基板自体に生じる伸びも小さくなり、
更に基板表面にボイド欠陥のない高密度磁気記録用基板
とすることもできる。
In order to eliminate all the above-mentioned difficulties, a ceramic disk substrate has been attracting attention. According to this, no distortion occurs in sputtering or heat treatment, and the elongation generated in the substrate itself against the centrifugal force applied to the substrate. Becomes smaller,
Further, a high-density magnetic recording substrate having no void defects on the substrate surface can be used.

かかるセラミック基板のなかで、特に部分安定化ジルコ
ニアは高強度・高靱性特性を有しているため、クラック
や破損等は発生し難く、磁気ディスクとして要求される
非常に高度な信頼性を十分満足させるものである。
Among such ceramic substrates, partially stabilized zirconia, in particular, has high strength and high toughness characteristics, so cracks and damages do not occur easily, and the extremely high reliability required for magnetic disks is sufficiently satisfied. It is what makes me.

しかしながら、この部分安定化ジルコニア(Partially
Stabilized Zirconia、以下、PSZと略す)焼結体を使っ
た磁気ディスク基板では磁気記録媒体をスパッタリング
などの薄膜形成手段により形成するに際して100〜150℃
にまで高められ、これにより、焼結体中の正方晶ZrO2
(以下、t−ZrO2と略す)が単斜晶ZrO2相(以下、m−
ZrO2と略す)に相転移し、これにより、高強度・高靱性
特性を劣化せしめる要因になっていると共に初期の高い
信頼性を損うという問題がでてきた。特にスパッタリン
グの基板温度を上げると成膜速度を高めることができ、
またγ−Fe2O3膜を形成するに際して成膜後の熱処理温
度(300℃以上)が高ければ磁気特性に優れたものが得
られるため、耐熱性に優れたPSZ製磁気ディスク基板が
望まれる。
However, this partially stabilized zirconia (Partially
Stabilized Zirconia (hereinafter abbreviated as PSZ) 100 to 150 ° C when forming a magnetic recording medium by a thin film forming means such as sputtering in a magnetic disk substrate using a sintered body.
As a result, the tetragonal ZrO 2 phase (hereinafter abbreviated as t-ZrO 2 ) in the sintered body becomes a monoclinic ZrO 2 phase (hereinafter m-
This causes a phase transition to ZrO 2 (abbreviated as ZrO 2 ), which causes deterioration of high-strength and high-toughness characteristics, and also poses a problem of impairing initial high reliability. In particular, raising the substrate temperature for sputtering can increase the deposition rate,
In addition, when forming the γ-Fe 2 O 3 film, if the heat treatment temperature (300 ° C or higher) after film formation is high, excellent magnetic properties can be obtained, so a PSZ magnetic disk substrate with excellent heat resistance is desired. .

〔発明の目的〕[Object of the Invention]

従って本発明は上記事情に鑑みて完成されたものであ
り、その目的はPSZ製磁気ディスク基板上に磁気記録媒
体を薄膜形成手段により形成するに際して基板を所望の
温度に高めても基板本来の高強度・高靱性特性を損わ
ず、長期に亘って信頼性のある磁気ディスク基板を提供
することにある。
Therefore, the present invention has been completed in view of the above circumstances, and an object of the present invention is to improve the substrate's original high temperature even when the substrate is heated to a desired temperature when the magnetic recording medium is formed on the PSZ magnetic disk substrate by the thin film forming means. An object of the present invention is to provide a magnetic disk substrate that is reliable for a long period of time without impairing the strength and high toughness characteristics.

本発明の他の目的は基板上に優れた磁気特性を有する磁
気記録媒体を高速で成膜することができる磁気ディスク
基板を提供することにある。
Another object of the present invention is to provide a magnetic disk substrate capable of forming a magnetic recording medium having excellent magnetic characteristics on the substrate at a high speed.

本発明の更に他の目的はPSZ自体の超精密加工性や優れ
た形状精度などの諸特性により高密度記録化ができる磁
気ディスク基板を提供することにある。
Still another object of the present invention is to provide a magnetic disk substrate capable of high density recording due to various characteristics such as super-precision workability of PSZ itself and excellent shape accuracy.

〔問題を解決する手段〕[Means for solving problems]

本発明によれば、安定化剤としてY2O3を1〜6mol%の範
囲で含有し、主として正方晶ZrO2相から成り、平均結晶
粒子径が0.15〜0.5μmで、かつ理論密度比が95%以上
である部分安定化ジルコニア焼結体により磁気ディスク
基板を構成したものである。
According to the present invention, Y 2 O 3 is contained in the range of 1 to 6 mol% as a stabilizer, is mainly composed of tetragonal ZrO 2 phase, has an average crystal grain size of 0.15 to 0.5 μm, and has a theoretical density ratio of A magnetic disk substrate is composed of a partially stabilized zirconia sintered body of 95% or more.

ジルコニア(ZrO2)焼結体はY2O3,MgO,CaO,CeO2などの
焼結助剤を添加すると共にその添加量に応じてPSZ焼結
体や安定化ジルコニア焼結体となることが判っており、
本発明によれば、PSZ焼結体と成り得る範囲内でY2O3
添加して、後述の製法に基づいてこのPSZ焼結体の平均
結晶粒径を0.15〜0.5μmとし、且つ理論密度比を95%
以上とすることが重要である。この設定範囲から外れた
場合、PSZ焼結体を100〜400℃の温度雰囲気に置くと徐
々に焼結体中のt−ZrO2がm−ZrO2に相転移することが
判明した。
Zirconia (ZrO 2 ) sintered body can be a PSZ sintered body or a stabilized zirconia sintered body depending on the addition amount of sintering aids such as Y 2 O 3 , MgO, CaO, CeO 2 etc. Is known,
According to the present invention, Y 2 O 3 is added within the range where a PSZ sintered body can be obtained, and the average crystal grain size of this PSZ sintered body is set to 0.15 to 0.5 μm based on the production method described later, and theoretically. Density ratio 95%
The above is important. When the PSZ sintered body was out of this set range, it was found that when the PSZ sintered body was placed in a temperature atmosphere of 100 to 400 ° C., the phase transition of t-ZrO 2 in the sintered body gradually changed to m-ZrO 2 .

この相転移はPSZ焼結体の表面から内部へ向かって進行
することが判っているため、後述の実施例においては焼
結体表面のm−ZrO2量をX線回折法によって測定するこ
とにより、相転移の度合とした。
It is known that this phase transition proceeds from the surface of the PSZ sintered body to the inside thereof. Therefore, in the examples described later, the amount of m-ZrO 2 on the surface of the sintered body was measured by an X-ray diffraction method. , And the degree of phase transition.

本発明においては、斯様に平均結晶粒径及び理論密度比
を設定するに当り、用いるY2O3量を特定するのが望まし
く、その量を1乃至6mol%最適条件として2乃至4mol%
に含有されるように設定すると本発明の効果が顕著にな
ることが本発明者の種々の実験によって確認した。
In the present invention, it is desirable to specify the amount of Y 2 O 3 to be used in setting the average crystal grain size and the theoretical density ratio as described above, and the amount is set to 1 to 6 mol% as the optimum condition and 2 to 4 mol%.
It was confirmed by various experiments by the present inventor that the effect of the present invention becomes remarkable when it is set to be contained in

更に本発明においては、主としてt−ZrO2から成るPSZ
焼結体にm−ZrO2が10重量%以下含有していることが望
ましい。
Further, in the present invention, PSZ mainly composed of t-ZrO 2
It is desirable that the sintered body contains 10% by weight or less of m-ZrO 2 .

即ち、m−ZrO2は基板の加熱に際して相変態を起こして
t−ZrO2に変化するため収縮し、磁気ディスク基板に歪
みが発生し、その結果、高密度磁気記録に用いた場合、
正確な書き込みや読み取りが出来にくいという問題があ
る。
That is, m-ZrO 2 undergoes a phase transformation upon heating of the substrate and changes to t-ZrO 2 so that it contracts, causing distortion in the magnetic disk substrate, and as a result, when used for high density magnetic recording,
There is a problem that it is difficult to write and read accurately.

本発明者等は繰り返し実験した結果、m−ZrO2量を10重
量%以下にすれば上述の問題が解決できることを見い出
した。
As a result of repeated experiments, the present inventors have found that the above problems can be solved by setting the amount of m-ZrO 2 to 10% by weight or less.

尚、本発明に係るPSZ焼結体はX線回折法によってもt
−ZrO2と立方晶(Cubic)ZrO2の分離は難しいが、Cubic
ZrO2の存在を若干量でも確認し得るものも含む。
In addition, the PSZ sintered body according to the present invention has a t
It is difficult to separate −ZrO 2 and cubic (Cubic) ZrO 2 , but Cubic
It also includes one that can confirm the presence of ZrO 2 in a slight amount.

また、m−ZrO2量についてはR.C.Garvie and P.S.Nicho
lsonのJ.Amer.Ceram.Soc.,vol.55,No.6,P303〜305(197
2)に記載されたX線回折の測定方法に基いた。
Regarding the amount of m-ZrO 2 , RC Garvie and PSNicho
lson's J. Amer. Ceram. Soc., vol.55, No.6, P303-305 (197
It was based on the X-ray diffraction measurement method described in 2).

即ち、m−ZrO2の回折ピーク強度をIm(111),Im(ll
),Cubic ZrO2の回折ピーク強度をIc(111),t−ZrO2
の回折ピーク強度をIt(111)とした場合、 としてm−ZrO2量(重量%)を求めた。尚、上記論文に
はIt(111)が入っていないが本測定法においてはこれ
を入れた。また、後述の実施例もこの測定法を用いた。
That is, the diffraction peak intensities of m-ZrO 2 are Im (111), Im (ll
), Cubic ZrO 2 diffraction peak intensity is Ic (111), t−ZrO 2
When the diffraction peak intensity of is It (111), As a result, the amount of m-ZrO 2 (% by weight) was determined. It should be noted that although it (111) was not included in the above paper, it was included in this measurement method. The measuring method was also used in Examples described later.

かくして本発明の耐熱性磁気ディスク基板は磁気ディス
クの支持体として用いることができ、この支持体上にグ
レーズ層を形成したり、CVD,PVD,溶融塩法等の薄膜形成
技術によるSiC層、Si3N4層,BN層,AlN層,Al2O3層,TiN
層,TiC層,TiCN層,B4C層,ZnC層などの被覆層を形成した
りして表面粗さの改良やボイド欠陥を解消することがで
きる。更に、その上にメッキやスパッタリングなどの薄
膜形成手段により高密度記録媒体を形成することができ
る。
Thus, the heat-resistant magnetic disk substrate of the present invention can be used as a support for a magnetic disk, and a glaze layer can be formed on this support, or a SiC layer by a thin film forming technique such as CVD, PVD, or a molten salt method, Si. 3 N 4 layer, BN layer, AlN layer, Al 2 O 3 layer, TiN
Layers, TiC layers, TiCN layers, B 4 C layers, ZnC layers, and other coating layers can be formed to improve surface roughness and eliminate void defects. Furthermore, a high-density recording medium can be formed on it by a thin film forming means such as plating or sputtering.

また、本発明の磁気ディスク基板をHIP処理により製作
すればボイド欠陥が解消したディスク基板となるため、
この基板に直接記録媒体を形成することもできる。
Further, if the magnetic disk substrate of the present invention is manufactured by HIP processing, it becomes a disk substrate in which void defects are eliminated,
The recording medium can be directly formed on this substrate.

次に本発明の製法について述べる。Next, the manufacturing method of the present invention will be described.

本発明に用いるZrO2原料粉末は平均粒径0.15μm以下、
好ましくは0.06μm以下がよい。或いは水酸化ジルコニ
ウムなど仮焼に伴ってZrO2粉末になるようなものであっ
てもよい。この水酸化ジルコニウム(ZrO2・xH2O)を用
いる場合、仮焼温度を高くするほどZrO2粉末の一次粒子
が大きくなるため仮焼温度を900乃至1050℃の範囲で変
えることにより、一次粒子の平均粒径が0.02乃至0.1μ
mの幾種類かのZrO2粉末が得られる。
The ZrO 2 raw material powder used in the present invention has an average particle size of 0.15 μm or less,
It is preferably 0.06 μm or less. Alternatively, zirconium hydroxide or the like may be changed to ZrO 2 powder upon calcination. When this zirconium hydroxide (ZrO 2 · xH 2 O) is used, the primary particles of ZrO 2 powder become larger as the calcination temperature increases, so the calcination temperature can be changed in the range of 900 to 1050 ℃. Has an average particle size of 0.02 to 0.1μ
m several ZrO 2 powders are obtained.

またY2O3粉末については平均粒径2μm以下、好ましく
は1μm以下のものを用いるのがよい。
The Y 2 O 3 powder should have an average particle size of 2 μm or less, preferably 1 μm or less.

或いは、所定のY2O3が加えられたY2O3共沈ZrO2粉末を用
いてもよく、この粉末を用いるとY2O3成分とZrO2成分が
一層緻密且つ均一に分布した混合状態になるため、焼結
体の結晶粒径が均一化されるという利点を有する。
Alternatively, Y 2 O 3 coprecipitated ZrO 2 powder to which a predetermined Y 2 O 3 is added may be used, and when this powder is used, a mixture in which the Y 2 O 3 component and the ZrO 2 component are more densely and uniformly distributed. Since it is in the state, there is an advantage that the crystal grain size of the sintered body is made uniform.

本発明によれば、ZrO2粉末に総量中1乃至6mol%好適に
は2乃至4mol%の配合比率となるようにY2O3粉末を添加
し、次いで均一になるように十分に混合する。この混合
粉末を乾燥造粒し、必要によりディスク状にプレス成形
した後、1500℃以下、好適には1250乃至1500℃の温度で
加圧焼結又は無加圧焼結する。
According to the present invention, Y 2 O 3 powder is added to ZrO 2 powder so that the compounding ratio is 1 to 6 mol%, preferably 2 to 4 mol% in the total amount, and then mixed sufficiently to be uniform. This mixed powder is dried and granulated, and if necessary, pressed into a disk shape, and then pressure-sintered or pressureless-sintered at a temperature of 1500 ° C. or lower, preferably 1250 to 1500 ° C.

焼結体中の平均結晶粒径は焼成温度を高くするのに伴っ
て大きくなることが後述の実施例から明らかであり、平
均結晶粒径を0.5μm以下にするためには焼成温度を150
0℃以下に設定することが重要である。また、1250℃未
満の焼成温度では焼結体の嵩密度が小さくなり易く、本
発明に係る理論密度比が得るのがむずかしくなる。ま
た、焼結体の機械的強度等を向上させるためには、平均
結晶粒径ができるだけ小さい方が好ましいのであるが、
焼結体の平均結晶粒径を0.15μmより小さくすると焼結
性が悪くなるとともに、それより小さい粒径を有する粒
子を得るには限界がある。その為、焼結体の平均結晶粒
径の下限は0.15μmが良い。
It is clear from the examples described later that the average crystal grain size in the sintered body increases as the firing temperature is increased. To keep the average crystal grain size at 0.5 μm or less, the firing temperature is set to 150 μm.
It is important to set below 0 ° C. Further, if the firing temperature is less than 1250 ° C., the bulk density of the sintered body tends to be small, and it becomes difficult to obtain the theoretical density ratio according to the present invention. Further, in order to improve the mechanical strength and the like of the sintered body, it is preferable that the average crystal grain size is as small as possible,
When the average crystal grain size of the sintered body is smaller than 0.15 μm, the sinterability is deteriorated, and there is a limit in obtaining particles having a smaller grain size. Therefore, the lower limit of the average crystal grain size of the sintered body is preferably 0.15 μm.

本発明の磁気ディスク基板はHIP処理によっても製作で
きる。
The magnetic disk substrate of the present invention can also be manufactured by HIP processing.

即ち、ZrO2粉末に上述に従ってY2O3を添加し、均一にな
るように十分に混合する。この混合粉末を乾燥造粒して
ディスク状に成形し、予備焼成を行う。この予備焼成は
一般に1250乃至1500℃の温度で1乃至4時間行う。次い
で予備焼成体はHIP処理される。尚、予備焼成は不可欠
でなく、ディスク状成形体をシールしてHIP処理するこ
ともできる。
That is, Y 2 O 3 is added to the ZrO 2 powder as described above and mixed sufficiently so as to be uniform. This mixed powder is dried and granulated to form a disk, and pre-baked. This pre-baking is generally carried out at a temperature of 1250 to 1500 ° C. for 1 to 4 hours. Next, the pre-baked body is HIP processed. Pre-baking is not essential, and the disk-shaped molded body can be sealed and subjected to HIP treatment.

前記予備焼成体はHIP装置内部に設置され、その内部に
不活性ガスを圧入すると共に加熱を行う。この際、一般
に1500乃至2000atmの加圧と1250乃至1500℃への加熱が
有効である。
The pre-baked body is installed inside the HIP device, and an inert gas is press-fitted therein and heated. At this time, generally, pressurization of 1500 to 2000 atm and heating to 1250 to 1500 ° C. are effective.

かくして得られたPSZ製磁気ディスク基板をラッピン
グ、ポリッシングなどの研摩処理手段を用いて磁気ディ
スク基板とする。
The thus-obtained PSZ magnetic disk substrate is used as a magnetic disk substrate by using polishing processing means such as lapping and polishing.

〔実施例〕〔Example〕

以下、実施例を述べる。 Examples will be described below.

(例1) 水酸化ジルコニルを900乃至1050℃の温度範囲内で4通
りの仮焼温度を設定して4種類の一次平均粒子径0.02μ
m,0.05μm,0.06μm,0.08μmのジルコニア原料粉末とし
た。この4種類のジルコニア原料粉末にそれぞれ総量中
3モル%となるようにY2O3粉末(平均粒径0.9μm)を
配合し、十分に均一混合し、然る後、乾燥造粒し、ドー
ナツ状の円板に成形し、この成形体を第1表に示すよう
な焼成条件で焼結した。
(Example 1) Four types of calcination temperatures of zirconyl hydroxide were set within a temperature range of 900 to 1050 ° C, and four types of primary average particle diameters were 0.02μ.
A zirconia raw material powder having m, 0.05 μm, 0.06 μm, and 0.08 μm was used. Y 4 O 3 powder (average particle size 0.9 μm) was added to each of these 4 types of zirconia raw material powder so that the total amount was 3 mol%, and they were sufficiently mixed uniformly, and then dried and granulated, and then the donut was dried. Into a circular disc, and the compact was sintered under the firing conditions shown in Table 1.

かくして得られた焼結体について、嵩密度、理論密度比
及び平均結晶粒径、並びにX線回折法により焼結体表面
のm−ZrO2量を測定した。
With respect to the thus obtained sintered body, the bulk density, the theoretical density ratio, the average crystal grain size, and the amount of m-ZrO 2 on the surface of the sintered body were measured by the X-ray diffraction method.

更にかかる焼結体を250℃の温度雰囲気中100時間設置す
ることにより、焼結体表面のm−ZrO2増加量を測定し
た。尚、この250℃はt−ZrO2からm−ZrO2への変態が
最も起きやすい温度のため、選んだ。
Further, the sintered body was placed in a temperature atmosphere of 250 ° C. for 100 hours to measure the amount of increase in m-ZrO 2 on the surface of the sintered body. This 250 ° C. was selected because it is the temperature at which the transformation from t-ZrO 2 to m-ZrO 2 is most likely to occur.

これらの結果は第1表に示す通りである。The results are shown in Table 1.

第1表より明らかなように、試料番号1,5,6,7では平均
結晶粒径及び理論密度比が本発明の範囲内であるため、
焼結体表面のm−ZrO2量が少なく、且つ250℃の熱処理
によってほとんど焼結体表面のm−ZrO2量が増加せず、
特に試料番号1,5では全く生成しなかった。
As is clear from Table 1, in sample numbers 1, 5, 6, and 7, the average crystal grain size and the theoretical density ratio are within the range of the present invention.
Less m-ZrO 2 amount of surface of the sintered body, and does not increase m-ZrO 2 content of almost sintered body surface by heat treatment 250 ° C.,
In particular, it was not generated at all in sample numbers 1 and 5.

然るに試料番号2,3,4,8では理論密度比が、また試料番
号9,10,11,12では平均結晶粒径が本発明の範囲外のため
焼結体表面のm−ZrO2量が多く、そして250℃の熱処理
によって焼結体表面のm−ZrO2が顕著に増加しているこ
とが判る。
However, since the sample Nos. 2, 3, 4, and 8 have theoretical density ratios, and the sample Nos. 9, 10, 11, and 12 have average crystal grain sizes outside the scope of the present invention, the amount of m-ZrO 2 on the surface of the sintered body is It can be seen that the amount of m-ZrO 2 on the surface of the sintered body is remarkably increased by the heat treatment at 250 ° C.

そして、平均結晶粒径0.2μmの試料番号3,4,6、平均結
晶粒径0.3μmの試料番号1,7,8については、いずれも嵩
密度が大きいほど加熱処理後の焼結体表面のm−ZrO2
が少ないことが判る。
For sample numbers 3, 4, and 6 with an average crystal grain size of 0.2 μm and sample numbers 1, 7, and 8 with an average crystal grain size of 0.3 μm, the larger the bulk density, the more It can be seen that the amount of m-ZrO 2 is small.

更に本例の結果に基いて焼成温度と平均結晶粒径をプロ
ットしたところ、第1図に示す通りとなり、その特性曲
線は(イ)として表わすことができる。この図により、
概ね、焼結体の平均結晶粒径は焼成温度によって決定さ
れ、1500℃以下の焼成温度が重要であることが判る。そ
して、第1表から焼成温度が1500℃を越えるとジルコニ
ア粉末の一次平均粒子径の大きさと無関係に本発明のPS
Z焼結体が得られないことも明白である。
Further, when the firing temperature and the average crystal grain size are plotted based on the results of this example, the results are as shown in FIG. 1, and the characteristic curve can be expressed as (a). According to this figure,
Generally, the average crystal grain size of the sintered body is determined by the firing temperature, and it is understood that the firing temperature of 1500 ° C. or less is important. From Table 1, when the firing temperature exceeds 1500 ° C., the PS of the present invention is irrelevant regardless of the size of the primary average particle diameter of zirconia powder.
It is also clear that a Z sintered body cannot be obtained.

更にまた、同表中、同じ焼成条件ではジルコニア粉末の
一次平均粒子径が小さいほどm−ZrO2量が少なく且つ熱
処理に伴う相転移のないPSZ焼結体が得られることも判
る。
Furthermore, in the table, it is also understood that, under the same firing conditions, the smaller the average primary particle size of the zirconia powder, the smaller the amount of m-ZrO 2 and the more PSZ sintered body that does not undergo phase transition due to heat treatment.

〔例2〕 Y2O3共沈のZrO2粉末を用いる以外は例1と同一の方法に
従って試料番号13乃至21を得た。
Example 2 Sample Nos. 13 to 21 were obtained by the same method as in Example 1 except that ZrO 2 powder co-precipitated with Y 2 O 3 was used.

第2表より明らかなように、試料番号13,14,15,16,17,1
8では平均結晶粒径及び理論密度比が本発明の範囲内で
あるため、焼結体表面のm−ZrO2量が全くなく、250℃
の熱処理によっても全然m−ZrO2が生成しなかった。
As is clear from Table 2, sample numbers 13,14,15,16,17,1
In No. 8, since the average crystal grain size and the theoretical density ratio are within the range of the present invention, there is no amount of m-ZrO 2 on the surface of the sintered body,
No m-ZrO 2 was formed even by the heat treatment of.

然るに、試料番号19,20,21では平均結晶粒径が本発明の
範囲外のため、250℃の熱処理によって焼結体表面のm
−ZrO2が著しく増加していることが判る。
However, since the sample Nos. 19, 20, and 21 have the average crystal grain size outside the range of the present invention, the heat treatment at 250 ° C.
It can be seen that −ZrO 2 is significantly increased.

更に本例の結果に基いて焼成温度と平均結晶粒径をプロ
ットしたところ、第2図に示す通りとなり、その特性曲
線は(ロ)として表わすことができる。この図によって
も、概ね、焼結体の平均結晶粒径は焼成温度によって決
定され、1500℃以下の焼成温度が重要であることが判
る。
Further, when the firing temperature and the average crystal grain size are plotted based on the results of this example, the results are as shown in FIG. 2, and the characteristic curve can be expressed as (b). This figure also shows that the average crystal grain size of the sintered body is generally determined by the firing temperature, and that the firing temperature of 1500 ° C. or lower is important.

更にまた、例1の場合、焼成温度を下げると嵩密度が顕
著に小さくなるが、本例においては、ジルコニア粒子の
粒子径にも関連するが、1300℃の焼成温度によっても嵩
密度、即ち理論密度比を向上させることができる。
Furthermore, in the case of Example 1, although the bulk density becomes significantly smaller when the firing temperature is lowered, in this example, although it is related to the particle size of the zirconia particles, the bulk density, that is, the theoretical The density ratio can be improved.

以上の実施例から明らかな通り、本発明によれば初期の
高強度・高靱性特性を維持した長期信頼性のPSZ焼結体
が提供できる。
As is clear from the above examples, according to the present invention, it is possible to provide a PSZ sintered body having long-term reliability while maintaining the initial high strength and high toughness characteristics.

(例3) Y2O3共沈のZrO2粉末(一次平均粒子径0.15μm,Y2O33mol
%含有)にワックスエマルジョンの有機質バインダを添
加し、十分に均一混合し、スプレードライヤーにて乾燥
造粒をした。次いで、この粉体を油圧プレス(圧力1.5t
on/cm2)でドーナツ状の円板(外径180mm、内径52mm、
厚み4mm)である成形体を得た。この成形体を1300℃の
温度で2時間焼成を行ってディスク状焼成品を得た。
(Example 3) ZrO 2 powder co-precipitated with Y 2 O 3 (first average particle diameter 0.15 μm, Y 2 O 3 3 mol
%), An organic binder of a wax emulsion was added, sufficiently mixed, and dried and granulated with a spray dryer. This powder is then hydraulically pressed (pressure 1.5t
on / cm 2 ) donut-shaped disc (outer diameter 180 mm, inner diameter 52 mm,
A molded body having a thickness of 4 mm was obtained. This molded body was fired at a temperature of 1300 ° C. for 2 hours to obtain a disc-shaped fired product.

次いで、Arガス加圧(2000atm)にて1400℃、1時間のH
IP処理を行って磁気ディスク基板を得た。
Then, pressurizing with Ar gas (2000 atm) for 1 hour at 1400 ° C for 1 hour
IP processing was performed to obtain a magnetic disk substrate.

この基板について、嵩密度、理論密度比及び平均結晶粒
径を測定したところ、5.91g/cm3、98.3%、<0.2μmで
あった。そして、X線回折法により焼結体表面のm−Zr
O2量を測定したところ、全く検出されなかった。更に25
0℃100時間の熱処理を行っても全く検出されなかった。
When the bulk density, theoretical density ratio and average crystal grain size of this substrate were measured, it was 5.91 g / cm 3 , 98.3%, and <0.2 μm. Then, m-Zr on the surface of the sintered body was measured by X-ray diffraction.
When the amount of O 2 was measured, it was not detected at all. 25 more
It was not detected at all even after heat treatment at 0 ° C for 100 hours.

研摩はラッピング、ポリッシングの順で行い、最終製品
として外径130mm、内径40mm、厚み1.9mmの形状とし、平
面度3μm、表面粗さ0.01Ra,同軸度10μm、平行度10
μmの精度の5.25インチ磁気ディスク用基板を得た。
Polishing is performed in the order of lapping and polishing, and the final product has an outer diameter of 130 mm, an inner diameter of 40 mm, and a thickness of 1.9 mm. Flatness 3 μm, surface roughness 0.01 Ra, coaxiality 10 μm, parallelism 10
A 5.25-inch magnetic disk substrate with an accuracy of μm was obtained.

かくして得られた基板について、画像解析装置(ルーゼ
ックス500)及び金属顕微鏡(400倍)を用いて測定面積
8.0×105μm2に亘ってボイドを調べた結果、0.3μm以
上のボイドは全くなかった。また、上述の研摩処理によ
っても表面のm−ZrO2量は10重量%を越えなかった。
The area of the substrate thus obtained was measured using an image analyzer (Luzex 500) and a metallurgical microscope (400x).
As a result of examining the voids over 8.0 × 10 5 μm 2 , there were no voids of 0.3 μm or more. Further, the amount of m-ZrO 2 on the surface did not exceed 10% by weight even by the above-mentioned polishing treatment.

〔発明の効果〕〔The invention's effect〕

通常、スパッタリングにより磁気記録媒体を形成する場
合、スパッタ時に基板温度を上げた方が成膜速度を高め
ることができ、またγ−Fe2O3膜を形成するに際して成
膜後の熱処理温度が高い方が磁気特性に優れたものが得
られるが、Ni−P下地処理アルミニウム基板では280℃
以上で磁性をおびるためにこの温度が限界であり、アル
マイト処理基板の耐熱限界はせいぜい約350℃である。
これに対して本発明の基板は一段と耐熱性に優れてお
り、優れた磁気特性を有する磁気記録媒体が高速成膜で
形成することができる。
Generally, when forming a magnetic recording medium by sputtering, it is possible to increase the film formation rate by increasing the substrate temperature during sputtering, and the heat treatment temperature after film formation is high when forming the γ-Fe 2 O 3 film. The one with better magnetic properties can be obtained, but the Ni-P-primed aluminum substrate is 280 ℃.
This temperature is the limit because it exhibits magnetism, and the heat resistance limit of the alumite-treated substrate is about 350 ° C. at most.
On the other hand, the substrate of the present invention is further excellent in heat resistance, and a magnetic recording medium having excellent magnetic characteristics can be formed by high speed film formation.

更に、本発明の磁気ディスク基板は次に述べるような効
果も有することから、更に望ましい基板となることは明
らかである。
Furthermore, since the magnetic disk substrate of the present invention has the effects described below, it is clear that it will be a more desirable substrate.

磁気ディスクは非常に高度な信頼性が要求されるた
めにクラックの発生や破損等は決して起きてはならな
い。本発明の基板によれば、PSZ焼結体を用いると強度
及び靱性を著しく向上させることができると共にその特
性劣化がなく、長期信頼性を十分に満足させるものであ
る。
Since a magnetic disk is required to have a very high degree of reliability, cracks or damage should never occur. According to the substrate of the present invention, when the PSZ sintered body is used, the strength and toughness can be remarkably improved, the characteristics thereof are not deteriorated, and long-term reliability is sufficiently satisfied.

基板上の磁気記録媒体以外の周辺に微量な磁性が存
在しても信号の消失やノイズの原因となるが、本発明の
基板は非磁性であり、磁気ディスク装置の信頼性を高め
る。
Even if a small amount of magnetism is present in the periphery of the substrate other than the magnetic recording medium, it may cause signal loss or noise, but the substrate of the present invention is non-magnetic and enhances the reliability of the magnetic disk device.

剛性が高いため、基板自体の加工に際して変形を受
けにくく、3000rpm以上の高速回転を行っても基板自体
が被る遠心力によって基板自体に生じる伸びが小さくな
る。ディスクのクランプや回転時の変形が大きいとディ
スク面にヘッドが追従できず、信号が乱れたり、ヘッド
クラッシュの発生原因となるが、この問題は全く解消さ
れる。
Due to its high rigidity, the substrate itself is less likely to be deformed when it is processed, and even if it is rotated at a high speed of 3000 rpm or more, the elongation generated on the substrate itself due to the centrifugal force applied to the substrate itself is small. If the deformation of the disk during clamping or rotation is large, the head cannot follow the disk surface, which causes signal disturbance or head crash, but this problem is completely eliminated.

高密度記録化に伴って磁気記録媒体は増々薄くなる
傾向にあり、メッキやスパッタリングによるとその厚み
は0.3μm以下が普通である。このように薄い膜をジル
コニア製基板上に直に形成してもヘッドとの数万回にも
及ぶCSS(Contact−Start−Stop)に耐えることができ
る。
The magnetic recording medium tends to become thinner as the recording density becomes higher, and the thickness thereof is generally 0.3 μm or less by plating or sputtering. Even if such a thin film is directly formed on the zirconia substrate, it can withstand CSS (Contact-Start-Stop) up to tens of thousands of times with the head.

超精密加工性や形状精度に優れており、基板表面を
研摩することにより中心線平均粗さ(Ra)で0.01μm以
下の表面粗さにまで達成でき、その結果、スパッタリン
グやメッキなどによって形成された磁気記録媒体が著し
く薄くなっても基板の表面粗さに起因して記録媒体の表
面に凹凸がほとんど発生せず高密度磁気記録に好適であ
る。
It excels in ultra-precision machinability and shape accuracy, and by polishing the substrate surface, a center line average roughness (Ra) of 0.01 μm or less can be achieved, and as a result, it is formed by sputtering or plating. Moreover, even if the magnetic recording medium becomes extremely thin, the surface roughness of the substrate hardly causes unevenness on the surface of the recording medium, which is suitable for high-density magnetic recording.

アルマイト処理アルミニウム基板などアルミニウム
基板に下地処理したものについてはアルマイト層とアル
ミニウム基板との熱膨張係数の差に起因したクラック発
生が問題となったが、本発明の磁気ディスク用基板は全
体に亘って単一材料であり、かかる問題は発生しない。
With respect to the aluminum substrate such as the alumite-treated aluminum substrate which was subjected to the base treatment, the crack generation due to the difference in the thermal expansion coefficient between the alumite layer and the aluminum substrate became a problem, but the magnetic disk substrate of the present invention was found to have Since it is a single material, such a problem does not occur.

優れた耐食性の基板であるため、酸やアルカリを使
った洗浄が可能である。また、不導体であるため金属磁
性媒体と基板との間でElectrochemical Corrosionが発
生せず、これに起因したノイズや信号エラーを解消する
ことができ長期信頼性を高めることができる。
Since it is a substrate with excellent corrosion resistance, it can be cleaned using acid or alkali. In addition, since it is a non-conductor, electrochemical corrosion is not generated between the metal magnetic medium and the substrate, noise and signal errors caused by this can be eliminated, and long-term reliability can be improved.

HIP処理PSZ製基板ではビッカーズ硬度Hvで1400kg/m
m2という高硬度特性を示しているため、アルミニウム基
板のようにアルマイト処理やNi−P下地処理を必要とせ
ず、そして、平均ボイド径を1μm以下、更に製作条件
を良好に設定することにより0.5μm以下にすることが
でき、これにより、直にメッキやスパッタリングなどに
より磁気記録媒体を形成することができて製造コストの
低減ができる。
With HIP-treated PSZ substrate, Vickers hardness Hv is 1400 kg / m
Since it has a high hardness of m 2, it does not require alumite treatment or Ni-P undercoating unlike the aluminum substrate, and it has an average void diameter of 1 μm or less. The magnetic recording medium can be formed to have a thickness of not more than μm, whereby the magnetic recording medium can be directly formed by plating or sputtering, and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本発明の磁気ディスク基板における
平均結晶粒径の焼成温度依存特性を示す図である。 イ,ロ……部分安定化ジルコニア焼結体における平均結
晶粒径の焼成温度依存特性曲線
1 and 2 are graphs showing firing temperature dependence characteristics of the average crystal grain size in the magnetic disk substrate of the present invention. A, b …… Characteristic curve of firing temperature dependence of average grain size in partially stabilized zirconia sintered body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】安定化剤としてY2O3を1〜6mol%の範囲で
含有し、主として正方晶ZrO2相から成り、平均結晶粒径
が0.15〜0.5μmで、かつ理論密度比が95%以上である
部分安定化ジルコニア焼結体から成る磁気ディスク基
板。
1. A stabilizer containing Y 2 O 3 in a range of 1 to 6 mol%, consisting mainly of a tetragonal ZrO 2 phase, having an average crystal grain size of 0.15 to 0.5 μm and a theoretical density ratio of 95. % Magnetic disk substrate made of partially stabilized zirconia sintered body.
JP60218724A 1985-09-30 1985-09-30 Magnetic disk substrate Expired - Lifetime JPH0740350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218724A JPH0740350B2 (en) 1985-09-30 1985-09-30 Magnetic disk substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218724A JPH0740350B2 (en) 1985-09-30 1985-09-30 Magnetic disk substrate

Publications (2)

Publication Number Publication Date
JPS6278715A JPS6278715A (en) 1987-04-11
JPH0740350B2 true JPH0740350B2 (en) 1995-05-01

Family

ID=16724441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218724A Expired - Lifetime JPH0740350B2 (en) 1985-09-30 1985-09-30 Magnetic disk substrate

Country Status (1)

Country Link
JP (1) JPH0740350B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718780B2 (en) * 1988-03-29 1995-03-06 富士重工業株式会社 Vehicle diagnostic system
CA2188150A1 (en) * 1994-04-19 1995-10-26 Oh-Hun Kwon Improved disk substrate
US5567523A (en) * 1994-10-19 1996-10-22 Kobe Steel Research Laboratories, Usa, Applied Electronics Center Magnetic recording medium comprising a carbon substrate, a silicon or aluminum nitride sub layer, and a barium hexaferrite magnetic layer
US5916655A (en) * 1995-04-18 1999-06-29 Saint-Gobain/Norton Industrial Ceramics Corporation Disk substrate
US6069103A (en) * 1996-07-11 2000-05-30 Saint-Gobain/Norton Industrial Ceramics Corporation LTD resistant, high strength zirconia ceramic
US5735985A (en) * 1996-11-15 1998-04-07 Eastman Kodak Company Method for micromolding ceramic structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022733A (en) * 1983-07-19 1985-02-05 Hitachi Metals Ltd Substrate for magnetic disc
JPS6174103A (en) * 1984-09-20 1986-04-16 Hitachi Metals Ltd Magnetic recorder
JPS6244499A (en) * 1985-08-22 1987-02-26 日本タングステン株式会社 Selector card

Also Published As

Publication number Publication date
JPS6278715A (en) 1987-04-11

Similar Documents

Publication Publication Date Title
US4738885A (en) Magnetic disk, substrate therefor and process for preparation thereof
US5480695A (en) Ceramic substrates and magnetic data storage components prepared therefrom
JPS60138730A (en) Substrate for magnetic disc
EP0131895B1 (en) Magnetic disk substrate
JPH0740350B2 (en) Magnetic disk substrate
JP4025791B2 (en) Magnetic head slider material, magnetic head slider, and method for manufacturing magnetic head slider material
JPH06101115B2 (en) Zirconia magnetic disk substrate and manufacturing method thereof
US6146551A (en) Semiconductive ceramics and supporting member made of the same for supporting magnetic disk substrate
JP3215000B2 (en) Non-magnetic ceramics for recording / reproducing head slider and method of manufacturing the same
JPH0622055B2 (en) Magnetic disk manufacturing method
JP3502683B2 (en) Substrate for recording media disk
JPH11189463A (en) Semiconductive ceramic, and jig and tool, holder for magnetic disk substrate and magnetic disk by using the same
JP3450178B2 (en) Method of manufacturing substrate for thin film magnetic head
JP3860681B2 (en) Conductive ceramics, antistatic member using the same, and magnetic disk drive
JP2594532B2 (en) Magnetic disk and method of manufacturing the same
JP3152740B2 (en) Non-magnetic ceramics
JPS597130B2 (en) Method for manufacturing thin film magnetic head substrate
JP2001181038A (en) Electroconductive ceramics and antistatic member using the same
JP2000195212A (en) Support member for magnetic disk substrate and magnetic disk device using the same
JPS60204669A (en) Non-magnetic ceramic material for magnetic head
JPH0793734A (en) Magnetic head slider and magnetic disk device using the same
JPH07237964A (en) Nonmagnetic ceramics for record reproducing head and production thereof
JP3085619B2 (en) Non-magnetic ceramics
JP2001155460A (en) Magnetic disk holding member
JP2857136B2 (en) Magnetic recording medium and method of manufacturing the same