JPH0740005A - Method for continuously casting wide and thin cast slab - Google Patents

Method for continuously casting wide and thin cast slab

Info

Publication number
JPH0740005A
JPH0740005A JP33254292A JP33254292A JPH0740005A JP H0740005 A JPH0740005 A JP H0740005A JP 33254292 A JP33254292 A JP 33254292A JP 33254292 A JP33254292 A JP 33254292A JP H0740005 A JPH0740005 A JP H0740005A
Authority
JP
Japan
Prior art keywords
slab
mold
cast slab
short side
unsolidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33254292A
Other languages
Japanese (ja)
Inventor
Takashi Kanazawa
敬 金沢
Takaiku Yamamoto
高郁 山本
Tamotsu Sasaki
保 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33254292A priority Critical patent/JPH0740005A/en
Publication of JPH0740005A publication Critical patent/JPH0740005A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable continuous casting of a wide and thin cast slab having little surface crack and internal crack by using a mold whose casting short sides are formed as continuous recessed shape in the casting direction for an inner peripheral surface. CONSTITUTION:An unsolidified cast slab 13, in which only periphery part is solidified and the inner part is unsolidified condition, is formed in the mold for continuous casting. The cross sectional shape of this unsolidified cast slab 13 is the projecting shape in the short sides. In order to form this shaped slab, the mold whose short sides are formed as the continuous recessed shape in the casting direction for the inner peripheral surface of the mold, is used. A rolling reduction zone is arranged just below the mold and the rolling reduction is executed to the cast slab 13 by using rolling reduction rolls. Further, the short sides of the cast slab 1 are heated before executing the rolling reduction. By this method, extending quantity in the casting direction is reduced by bulging the solidified shells at the short sides to the outside at the time of executing the rolling reduction to the unsolidified cast slab. Therefore, shearing tension strain at the boundary part between the solidified shell at the long side and the solidified shell at the short side, is relaxed and the deforming resistance at the short side can be made to be small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、広幅薄鋳片を連続鋳造
する方法に係り、特に表面割れや内部割れの少ない広幅
薄鋳片を連続して製造可能な方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting wide and thin slabs, and more particularly to a method for continuously producing wide and thin slabs with few surface cracks and internal cracks.

【0002】[0002]

【従来の技術】近年、精錬技術や鋳造技術の著しい進歩
により品質性状の良好な鋳片の製造が容易化したこと
や、省力・省エネルギ思想の高まり等を背景として、熱
間圧延工程の大幅な省略や、熱間圧延を施すことなく溶
湯から直接的かつ連続的に薄板材を製造しようとする試
みが比較的融点の低い非鉄金属ばかりか鉄系金属にまで
行われるようになり、ツインベルトキャスターや異形断
面モールドを使用した連続鋳造法〔シュレーマン・ジマ
ーク方式〕(特開昭60−158955号公報、特開昭
62−220249号公報等)等各種の提案がなされて
いる。そして、連続鋳造される鋳片が未凝固の状態で圧
下を加える未凝固圧下技術もそのうちの1つである(例
えば特開昭61−9954号公報、特開昭63−171
254号公報等)。
2. Description of the Related Art In recent years, significant progress in refining technology and casting technology has facilitated the production of slabs with good quality properties, and the idea of labor-saving and energy-saving has increased. In addition to non-ferrous metals with relatively low melting points as well as iron-based metals, attempts to manufacture thin plate materials directly and continuously from molten metal without performing omissions or hot rolling have been made. Various proposals have been made such as a continuous casting method using a caster or a modified cross-section mold [Schlehmann-Jimmark method] (JP-A-60-158955, JP-A-62-220249, etc.). One of them is an unsolidification reduction technique in which a continuously cast slab is subjected to reduction in an unsolidified state (for example, Japanese Patent Laid-Open Nos. 61-9954 and 63-171).
No. 254, etc.).

【0003】この未凝固圧下技術は、連続鋳造鋳片の凝
固が完了する前に、ロール圧下を行うものであり、特に
圧下した後でも未凝固部が残存するように未凝固圧延を
行えば、ロール圧下される部分は短辺側の凝固シェルの
みで、長辺側の凝固シェルの大部分は曲げ変形を受ける
だけであるので、従来の熱間圧延と比較して未凝固圧延
時の圧延荷重及びトルクは非常に小さくなって、圧延設
備の小型化が可能となるという長所がある。
[0003] This unsolidifying reduction technique is to roll-roll down before the solidification of a continuously cast slab is completed. Particularly, if unrolling is performed so that the unsolidified portion remains after the rolling, The rolled portion is only the solidified shell on the short side, and most of the solidified shell on the long side is only subjected to bending deformation.Therefore, compared with conventional hot rolling, the rolling load during unsolidified rolling is reduced. Also, the torque is extremely small, and there is an advantage that the rolling equipment can be downsized.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような未凝固圧下にあっては、図10に示すように、
未凝固鋳片1の内部には未凝固層1aが存在するので、
図10(a)に示すような、短辺側が全長にわたって直
角の同一厚さの凝固シェル1bを有する未凝固鋳片1を
圧下ロールで圧下した場合、短辺側の凝固シェル1b
が、図10(b)に示すように、外側にせり出して凝固
界面に曲げによる歪みが作用して凝固界面が割れ、ここ
に濃化溶鋼が侵入する、いわゆる内部割れ1dが発生
し、品質上問題となる。
However, under the non-coagulation pressure as described above, as shown in FIG.
Since the unsolidified layer 1a exists inside the unsolidified slab 1,
As shown in FIG. 10 (a), when the unrolled slab 1 having the solidified shell 1b of the same thickness in which the short side is right angled over the entire length is pressed by the rolling roll, the solidified shell 1b on the short side is
However, as shown in FIG. 10 (b), the solidification interface is cracked by the bending strain acting on the solidification interface and the so-called internal crack 1d, in which the concentrated molten steel enters, is generated in terms of quality. It becomes a problem.

【0005】また、前記圧下ロールでの圧下により、短
辺側の凝固シェル1bのみが圧縮変形されて鋳造方向に
伸びることになる。これに対して、長辺側の大部分の凝
固シェル1cは圧下ロールによる圧縮変形は受けずに曲
げられるだけであるので、鋳造方向への伸びは前記短辺
側凝固シェル1bの伸びに起因する引っ張り応力によっ
て引き起こされるものだけである。
Further, due to the reduction by the reduction roll, only the solidified shell 1b on the short side is compressed and deformed to extend in the casting direction. On the other hand, most of the solidified shells 1c on the long side are bent without being compressed and deformed by the pressing rolls, so that the elongation in the casting direction is caused by the elongation of the solidified shells 1b on the short side. Only those caused by tensile stress.

【0006】従って、未凝固圧下の場合には、長辺側凝
固シェル1cと短辺側凝固シェル1bとの境界部分に剪
断引っ張り歪みが発生して表面割れ1eが発生する危険
性が大きいという問題もある〔図10(c)参照〕。
Therefore, in the case of unsolidified pressure, there is a great risk that shear tensile strain will occur at the boundary portion between the long side solidified shell 1c and the short side solidified shell 1b and surface crack 1e will occur. There is also [see FIG. 10 (c)].

【0007】本発明は、上記した未凝固圧下技術にあっ
た問題点を解決し、鋳片の表面割れや、内部割れの少な
い広幅薄鋳片を連続鋳造する方法、及びこの方法に使用
する圧下装置の簡素化を可能とする方法を提供すること
を目的としている。
The present invention solves the above-mentioned problems in the unsolidification reduction technique, a method for continuously casting wide and thin slabs with less surface cracks and internal cracks in the slab, and the rolling reduction used in this method. It is an object to provide a method that enables simplification of a device.

【0008】[0008]

【課題を解決するための手段】上記した目的を達成する
ために、本発明広幅薄鋳片の連続鋳造方法は、鋳片内部
に未凝固層が存在する間に、鋳片を圧下する広幅薄鋳片
の連続鋳造方法において、内周面を鋳造方向に連続する
凹型となした鋳型短辺を有する鋳型を使用することとし
ているのであり、さらに、鋳片の圧下前に、鋳片短辺を
加熱するのである。
In order to achieve the above-mentioned object, the continuous casting method for wide and thin cast pieces according to the present invention is a wide and thin piece for rolling down a cast piece while an unsolidified layer is present inside the cast piece. In the continuous casting method of the slab, the inner peripheral surface is to use a mold having a mold short side that is a concave shape continuous in the casting direction, further, before the reduction of the slab, the slab short side. It heats.

【0009】[0009]

【作用】本発明では、未凝固圧下する鋳片の形状を、鋳
型においてその短辺側を凸型形状となしているので、未
凝固圧下時、短辺側凝固シェルの外側へのせり出しによ
り、鋳造方向への伸び量が減少する。従って、長辺側凝
固シェルと短辺側凝固シェルとの境界部分での剪断引っ
張り歪みが緩和される。また、ロール圧下前に鋳片短辺
を加熱するので、短辺部の変形抵抗が小さくなり、ロー
ル圧下装置を設備的に簡素な装置とできる。
In the present invention, the shape of the slab to be uncoagulated and pressed is that the short side of the mold has a convex shape. The amount of elongation in the casting direction decreases. Therefore, the shear tensile strain at the boundary between the long side solidified shell and the short side solidified shell is relaxed. Further, since the short side of the slab is heated before roll reduction, the deformation resistance of the short side portion becomes small, and the roll reduction apparatus can be a simple apparatus in terms of equipment.

【0010】以上のことを立証するのが図3である。こ
の図3は、図4に示すように、ロードセル2を介して油
圧シリンダ3により、表1に示す、管厚さH、肉厚さh
の短辺を有する角管鉛試験片4を、非駆動ロール5間か
ら引き抜き、あるいは押し込み、またはロールによって
圧下したときの、角管鉛試験片4における長辺側断面積
SLと短辺側断面積SSとの比(断面積比)〔SL/S
S〕と、鋳造方向の伸び歪みεl との関係を示した図で
ある。また、図3中の■G〜Jは角管鉛試験片4の短辺
側の形状を、図5(a)〜(d)に示す形状とした場合
〔■Gは図5(a)、■Hは図5(b)、■Iは図5
(c)、■Jは図5(d)〕の結果である。なお、図3
における歪み測定は、角管鉛試験片4の外周面に格子模
様をけがき、この格子模様の伸びから求めた。
FIG. 3 demonstrates the above. 3, the pipe thickness H and the wall thickness h shown in Table 1 are obtained by the hydraulic cylinder 3 through the load cell 2 as shown in FIG.
When the square tube lead test piece 4 having the short side is pulled out from between the non-driving rolls 5, pushed in, or pressed by the roll, the long side cross-sectional area SL and the short side cut of the square tube lead test piece 4 are cut. Ratio with area SS (cross-sectional area ratio) [SL / S
FIG. 3 is a diagram showing the relationship between S] and elongation strain εl in the casting direction. 3A to 3J in FIG. 3 are the cases where the shape of the short side of the square tube lead test piece 4 is the shape shown in FIGS. 5A to 5D. ■ H shows Fig. 5 (b), ■ I shows Fig. 5
(C) and (J) are the results of FIG. 5 (d)]. Note that FIG.
The strain measurement was performed by scribing a grid pattern on the outer peripheral surface of the square tube lead test piece 4 and determining the elongation of the grid pattern.

【0011】[0011]

【表1】 [Table 1]

【0012】図3より、未凝固圧下する鋳片の形状を、
その短辺側を凸型形状となした場合(図3中の■G〜
H)には、矩形状の鋳片の場合と比較して、鋳造方向へ
の伸び歪みが小さくなることがわかる。また、凹型とな
した鋳型短辺を有する鋳型を使用するため、図10
(a)で示されるような、鋳型内部の直角に近い形状の
凝固シェル1bは存在せず、局部的な応力集中箇所がな
くなる。したがって、せり出しが多くなっても内部割れ
の発生頻度は少なくなる。すなわち、本発明の作用が立
証できる。
From FIG. 3, the shape of the slab to be unsolidified is
When the short side is formed into a convex shape ((G) in FIG.
It can be seen that in H), the elongation strain in the casting direction is smaller than that in the case of the rectangular slab. In addition, since a mold having a concave mold short side is used, as shown in FIG.
As shown in (a), there is no solidified shell 1b having a shape close to a right angle inside the mold, and local stress concentration points are eliminated. Therefore, even if the amount of protrusion is large, the frequency of occurrence of internal cracks is low. That is, the operation of the present invention can be proved.

【0013】[0013]

【実施例】以下、本発明広幅薄鋳片の連続鋳造方法を図
1及び図2に示す1実施例に基づいて説明する。図1は
本発明方法に適用する未凝固鋳片の要部の1例を示す横
断面図、図2は本発明方法のプロセスの概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A continuous casting method for wide and thin cast pieces according to the present invention will be described below with reference to an embodiment shown in FIGS. FIG. 1 is a cross-sectional view showing an example of the essential part of an unsolidified cast piece applied to the method of the present invention, and FIG. 2 is a schematic view of the process of the method of the present invention.

【0014】図2において、11は本発明方法を実施す
る際に使用する鋳型であり、本発明では、鋳型11を構
成する鋳型短辺の内周面を、鋳造方向に連続した凹型と
なしたものを使用する。12はこの鋳型11の直下に配
設された圧下ゾーンであり、この圧下ゾーン12内の圧
下ロール12aで、前記鋳型11から引き抜かれ、その
短辺を例えば加熱バーナ12bで加熱された未凝固鋳片
13を、所要の厚さになるまで圧下するのである。14
は前記圧下ゾーン12で所定の厚みに圧下できなかった
場合に、さらに補助的な圧下を行うための静定ゾーン、
15は鋳片を引き抜くためのピンチロールである。な
お、圧下ゾーン12及び静定ゾーン14内におけるロー
ルのうち、黒く塗りつぶしたものは、駆動ロールを示
す。
In FIG. 2, reference numeral 11 denotes a mold used for carrying out the method of the present invention. In the present invention, the inner peripheral surface of the short side of the mold constituting the mold 11 is a concave mold continuous in the casting direction. Use one. Reference numeral 12 denotes a rolling down zone disposed directly below the mold 11. A rolling down roll 12a in the rolling down zone 12 pulls out from the casting mold 11 and a short side thereof is heated by, for example, a heating burner 12b. The strip 13 is rolled down to the required thickness. 14
Is a static control zone for performing further auxiliary reduction when the reduction zone 12 cannot be reduced to a predetermined thickness,
Reference numeral 15 is a pinch roll for pulling out the slab. In addition, among the rolls in the rolling-down zone 12 and the static control zone 14, the black-painted rolls indicate drive rolls.

【0015】本発明は、上記したような連続鋳造装置を
用いて広幅薄鋳片を連続鋳造する方法であり、鋳型11
内においてその周囲のみ凝固し、内部は未凝固状態の未
凝固鋳片13の横断面形状は、図1に示すように、短辺
側が凸型となっている。そしてかかる形状となした未凝
固鋳片13を、圧下ロール12aによる圧下前にその短
辺側を加熱して短辺部の変形抵抗を小さくした後、ある
いは加熱せずに圧下ゾーン12内の圧下ロール12aで
所要の厚さになるまで圧下するのである。ところで、前
記加熱方法としては、特に限定するものではないが、図
6(a)に示すような保温カバー16を圧下ロール12
a間に配置した方式や、(b)に示すような加熱バーナ
12bを圧下ロール12a間から臨ませた方式、あるい
は図示省略したが誘導加熱方式等を採用すればよい。ま
た、2次冷却水の幅切りや、鋳片に沿って流れる「たれ
水」をマスキングする方法も有効である。
The present invention is a method for continuously casting wide and thin slabs using the continuous casting apparatus as described above.
As shown in FIG. 1, the cross-sectional shape of the unsolidified slab 13 in which only its periphery is solidified and the inside is unsolidified is convex on the short side. Then, the unsolidified slab 13 having such a shape is heated on its short side to reduce the deformation resistance of the short side before the reduction by the reduction roll 12a, or is reduced in the reduction zone 12 without heating. The roll 12a is rolled down to a required thickness. Incidentally, the heating method is not particularly limited, but the heat insulating cover 16 as shown in FIG.
A method of arranging between a and a method of heating the heating burner 12b as shown in (b) from between the pressing rolls 12a, or an induction heating method (not shown) may be adopted. Further, it is also effective to cut the width of the secondary cooling water or mask the "dripping water" flowing along the slab.

【0016】本発明では、未凝固鋳片13の短辺側を凸
型に形成したものを圧下するので、鋳造方向への伸び量
が、従来の矩形状未凝固鋳片の場合と比較して、減少す
ることになり、長辺側凝固シェルと短辺側凝固シェルと
の境界部分での剪断引っ張り歪みが緩和される。また、
凝固シェルにおいて応力集中する形状の部分もなくな
る。さらに、ロール圧下前に、鋳片短辺を加熱した場合
には、該部分の変形抵抗が小さくなるので、圧下装置は
簡素なものでよい。従って、従来の未凝固圧下法の場合
に発生していた表面割れや内部割れが、本発明方法を適
用することによって減少できる。
In the present invention, since the unsolidified slab 13 having the short side formed in a convex shape is pressed down, the elongation in the casting direction is larger than that of the conventional rectangular unsolidified slab. , And the shear tensile strain at the boundary between the long side solidified shell and the short side solidified shell is relaxed. Also,
There is also no part of the solidified shell where the stress is concentrated. Furthermore, when the short side of the slab is heated before the roll is rolled down, the deformation resistance of the part is reduced, so that the rolling down device may be simple. Therefore, the surface cracks and internal cracks that have occurred in the case of the conventional unsolidification reduction method can be reduced by applying the method of the present invention.

【0017】次に、本発明の効果を確認するために行っ
た実験結果について説明する。 〔実験1〕湾曲半径が5.0mの多点矯正型連続鋳造装
置を用い、表2に示す化学成分の中炭素アルミキルド鋼
の溶鋼から、幅1500mm、厚さ100mmのスラブ
を、鋳造速度5.0m/分で連続鋳造した。第1ストラ
ンドは図1に示す形状の未凝固鋳片を、また、比較とし
て第2ストランドは従来の矩形状の未凝固鋳片を、10
0mmから60mm厚さとなるように圧下し、最終ピン
チロールから供給されるスラブを、60mm厚さとし
た。
Next, the results of experiments conducted to confirm the effects of the present invention will be described. [Experiment 1] A slab having a width of 1500 mm and a thickness of 100 mm was prepared from molten steel of medium carbon aluminum killed steel having the chemical composition shown in Table 2 by using a multi-point straightening type continuous casting device having a bending radius of 5.0 m and a casting speed of 5. Continuous casting was performed at 0 m / min. The first strand is an unsolidified slab having the shape shown in FIG. 1, and the second strand is a conventional rectangular unsolidified slab for comparison.
The slab supplied from the final pinch roll was reduced to a thickness of 60 mm after being pressed to a thickness of 0 mm to 60 mm.

【0018】[0018]

【表2】 [Table 2]

【0019】得られた内部割れ、表面割れ発生状況を図
7(a)(b)に示すが、未凝固圧下する短辺側を凸型
形状となした本発明では、表面割れは皆無となり、ま
た、内部割れも従来方法と比較して1/10以下に減少
しているのがわかる。なお、図7中の表面割れ強度率
は、表面の目視観察により測定した表面割れの総長さ
を、鋳片の総長さで除した値、また、内部割れ強度率
は、鋳片縦断面のサルファプリントにより測定した内部
割れ長さを、サルファプリントした鋳片総長さで除した
値である。
The occurrence of internal cracks and surface cracks thus obtained is shown in FIGS. 7 (a) and 7 (b). However, in the present invention in which the short side to which unsolidified pressure is reduced has a convex shape, no surface cracks occur, Further, it can be seen that the internal cracking is also reduced to 1/10 or less as compared with the conventional method. The surface cracking strength rate in FIG. 7 is a value obtained by dividing the total length of surface cracking measured by visual observation of the surface by the total length of the slab, and the internal cracking strength rate is the sulfa of the slab longitudinal section. It is a value obtained by dividing the internal crack length measured by printing by the total length of the sulfur-printed slab.

【0020】〔実験2〕実験1と同様の多点矯正型連続
鋳造装置を用い、表3に示す化学成分の中炭素アルミキ
ルド鋼の溶鋼から、短辺形状が図1に示す形状の幅15
00mm、厚さ100mmのスラブを、鋳造速度5.0
m/分で連続鋳造した。この実験2では、圧下ゾーンの
手前にバーナタイプのスラブエッジヒータを設置し、鋳
片短辺を800℃から1100℃以上に加熱した後、1
00mmから60mm厚さとなるように圧下した場合
と、加熱せずに100mmから60mm厚さとなるよう
に圧下した場合の圧下状況を比較した。バーナの燃料に
はコークス炉ガスを使用し、還元雰囲気になるようその
空気比を調整した。
[Experiment 2] Using a multi-point straightening type continuous casting apparatus similar to that of Experiment 1, from the molten steel of medium carbon aluminum killed steel having the chemical composition shown in Table 3, the short side shape has a width of the shape shown in FIG.
A slab with a thickness of 00 mm and a thickness of 100 mm is cast at a casting speed of 5.0.
Continuous casting was performed at m / min. In this experiment 2, a burner type slab edge heater was installed in front of the reduction zone, the short side of the slab was heated from 800 ° C to 1100 ° C or higher, and then 1
The reduction situation was compared between the case where the thickness was reduced to 00 mm to 60 mm and the case where the thickness was reduced to 100 mm to 60 mm without heating. Coke oven gas was used as the fuel for the burner, and its air ratio was adjusted so as to create a reducing atmosphere.

【0021】[0021]

【表3】 [Table 3]

【0022】図8に鋳片短辺の加熱の有無による圧下装
置の油圧圧下力の比較を示したが、短辺を加熱すること
により短辺の変形強度が低下し、容易に圧下が進行して
いるのがわかる。また、図9に鋳片短辺の加熱の有無に
よるピンチロールの引き抜き抵抗力の比較を示したが、
短辺を加熱することによりピンチロールの引き抜き抵抗
が低下し、圧下が容易に行われていることがわかる。さ
らに、鋳造速度によっては、短辺の加熱を行わないと6
0mm厚さ迄圧下できない場合があり、目標とする60
mm厚さの鋳片の安定鋳造が阻害されることもあった。
以上の結果より、短辺の加熱の有効性が判る。
FIG. 8 shows a comparison of the hydraulic pressure reduction force of the pressure reducing device depending on whether or not the short side of the cast slab is heated. By heating the short side, the deformation strength of the short side is reduced and the reduction is easily promoted. I understand. Further, FIG. 9 shows a comparison of pull-out resistance of the pinch roll depending on whether or not the short side of the slab is heated.
It can be seen that by heating the short side, the pullout resistance of the pinch roll is reduced, and the reduction is easily performed. Furthermore, depending on the casting speed, if heating of the short side is not performed, 6
In some cases, it may not be possible to roll down to a thickness of 0 mm.
In some cases, stable casting of a slab having a thickness of mm was hindered.
From the above results, the effectiveness of heating the short side can be seen.

【0023】[0023]

【発明の効果】以上説明したように,本発明方法によれ
ば、表面割れ及び内部割れの少ない広幅薄鋳片を連続鋳
造することが可能となり、熱延工程の大幅な省略が可能
となる。また、鋳片短辺をロール圧下する前に加熱する
ことにより、圧下が容易となって、圧下装置の設備的簡
素化が可能となる。
As described above, according to the method of the present invention, it becomes possible to continuously cast wide and thin slabs with few surface cracks and internal cracks, and the hot rolling step can be largely omitted. Further, by heating the short side of the slab before the roll is rolled, the rolling is facilitated, and the equipment of the rolling-down device can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法に適用する未凝固鋳片の要部の1例
を示す横断面図である。
FIG. 1 is a cross-sectional view showing an example of a main part of an unsolidified cast piece applied to the method of the present invention.

【図2】本発明方法のプロセスの概略図である。FIG. 2 is a schematic diagram of the process of the method of the present invention.

【図3】短辺側の形状を変化した場合における短辺側凝
固シェル部分の鋳造方向の伸びを示す実験結果図であ
る。
FIG. 3 is an experimental result chart showing elongation in the casting direction of the solidified shell portion on the short side when the shape on the short side is changed.

【図4】図3の実験装置の説明図である。FIG. 4 is an explanatory diagram of the experimental apparatus of FIG.

【図5】(a)〜(d)は図3の実験に使用した短辺形
状を示す図である。
5 (a) to 5 (d) are diagrams showing short side shapes used in the experiment of FIG.

【図6】鋳片短辺の加熱手段の1例を示す図で、(a)
は保温カバーを使用したもの、(b)は加熱バーナを使
用したものである。
FIG. 6 is a view showing an example of a heating means for a short side of a slab, (a)
Shows the one using the heat insulating cover, and (b) shows the one using the heating burner.

【図7】(a)(b)は第1の本発明方法の効果を説明
するための図面である。
7 (a) and 7 (b) are drawings for explaining the effect of the first method of the present invention.

【図8】第2の本発明方法の効果を説明するための図面
である。
FIG. 8 is a drawing for explaining the effect of the second method of the present invention.

【図9】第2の本発明方法の効果を説明するための図面
である。
FIG. 9 is a drawing for explaining the effect of the second method of the present invention.

【図10】(a)〜(c)は従来方法の問題点を説明す
るための図面である。
10 (a) to 10 (c) are drawings for explaining the problems of the conventional method.

【符号の説明】[Explanation of symbols]

11 鋳型 12a 圧下ロール 12b 加熱バーナ 13 未凝固鋳片 11 mold 12a rolling roll 12b heating burner 13 unsolidified slab

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋳片内部に未凝固層が存在する間に、鋳
片を圧下する広幅薄鋳片の連続鋳造方法において、内周
面を鋳造方向に連続する凹型となした鋳型短辺を有する
鋳型を使用することを特徴とする広幅薄鋳片の連続鋳造
方法。
1. In a continuous casting method for wide and thin cast pieces, wherein a non-solidified layer is present inside a cast piece, in a continuous casting method of a wide thin cast piece, a short side of a mold having a concave shape whose inner peripheral surface is continuous in the casting direction. A continuous casting method for wide and thin slabs, characterized by using a mold having the same.
【請求項2】 鋳片を圧下する前に、鋳片短辺を加熱す
ることを特徴とする請求項1記載の広幅薄鋳片の連続鋳
造方法。
2. The continuous casting method for wide and thin slabs according to claim 1, wherein the short sides of the slabs are heated before pressing the slabs.
JP33254292A 1992-11-17 1992-11-17 Method for continuously casting wide and thin cast slab Pending JPH0740005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33254292A JPH0740005A (en) 1992-11-17 1992-11-17 Method for continuously casting wide and thin cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33254292A JPH0740005A (en) 1992-11-17 1992-11-17 Method for continuously casting wide and thin cast slab

Publications (1)

Publication Number Publication Date
JPH0740005A true JPH0740005A (en) 1995-02-10

Family

ID=18256086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33254292A Pending JPH0740005A (en) 1992-11-17 1992-11-17 Method for continuously casting wide and thin cast slab

Country Status (1)

Country Link
JP (1) JPH0740005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000747A1 (en) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997000747A1 (en) * 1995-06-21 1997-01-09 Sumitomo Metal Industries, Ltd. Continuous casting of thin cast pieces
US5871040A (en) * 1995-06-21 1999-02-16 Sumitomo Metal Industries, Ltd. Process for continuously casting thin slabs

Similar Documents

Publication Publication Date Title
US4962808A (en) Method of producing a steel strip having a thickness of less than 10 mm
JP2980006B2 (en) Continuous casting method
JP3684731B2 (en) Slab cutting method in continuous casting of steel
JPH0740005A (en) Method for continuously casting wide and thin cast slab
JPH0768359A (en) Method for continuously casting wide and thin cast sheet
JP2001062550A (en) Casting piece cooling method in continuous casting
JP3104635B2 (en) Manufacturing method of round billet slab by continuous casting
JPH0818116B2 (en) Continuous casting slab manufacturing method
JP3271574B2 (en) Continuous casting method of billet slab
JPH08164460A (en) Production of continuously cast slab having good internal quality
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JPH0890182A (en) Method for continuously casting wide and thin cast slab
AU620419B2 (en) Method of producing a steel strip having a thickness of less than 10 mm
JP4687629B2 (en) Metal continuous casting method
JP3114671B2 (en) Steel continuous casting method
JP3104627B2 (en) Unsolidified rolling production method of round billet
JPH07132355A (en) Screw down method for cast slab in continuous casting
JP3404253B2 (en) Method and apparatus for producing billet for bar steel
JP3147803B2 (en) Continuous casting method
JP3356100B2 (en) Continuous casting method
JP3055462B2 (en) Continuous casting method
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
JPH05245604A (en) Continuous casting method
JP4259424B2 (en) Method for producing high chromium steel large section billet
JP3297802B2 (en) Continuous casting method