JPH0739724A - Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment - Google Patents

Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment

Info

Publication number
JPH0739724A
JPH0739724A JP5185032A JP18503293A JPH0739724A JP H0739724 A JPH0739724 A JP H0739724A JP 5185032 A JP5185032 A JP 5185032A JP 18503293 A JP18503293 A JP 18503293A JP H0739724 A JPH0739724 A JP H0739724A
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonia
temperature
injection pipe
ammonia injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5185032A
Other languages
Japanese (ja)
Inventor
Yoshiro Inagaki
芳郎 稲垣
Masato Mukai
正人 向井
Yoshinori Nagai
良憲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5185032A priority Critical patent/JPH0739724A/en
Publication of JPH0739724A publication Critical patent/JPH0739724A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform denitrification with high efficiency by suppressing conversion reaction of NH3 into NOX in an ammonia feeding pipe of a high temp. exhaust gas denitrification equipment and feeding a required appropriate amt. of NH3 into a denitrification apparatus. CONSTITUTION:In an ammonia feeding apparatus of a high temp. exhaust gas denitrification equipment wherein denitrification of nitrogen oxides in a high temp. exhaust gas 1 is performed by feeding ammonia therein in the presence of a denitrification catalyst 2 and performing reduction thereof into harmless nitrogen, conversion reaction of fed NH3 into NOX is suppressed by insulating thermally at least a part or the whole of the apex parts of the ammonia feeding pipe 4 and a nozzle 6 provided in a duct of the high temp. exhaust gas or holding the inner wall temp. of the ammonia feeding pipe and the nozzle at 400 deg.C or lower by providing a cooling means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排ガス脱硝設備に係り、
特に高温の排ガス中の窒素酸化物を脱硝するのに好適な
高温排ガス脱硝設備のアンモニア注入装置に関する。
The present invention relates to an exhaust gas denitration equipment,
Particularly, the present invention relates to an ammonia injecting device for high temperature exhaust gas denitration equipment suitable for denitrifying nitrogen oxides in high temperature exhaust gas.

【0002】[0002]

【従来の技術】ガスタービンやボイラ等の排ガス中に含
まれる窒素酸化物(NOx)を低減する方法として、脱
硝触媒の存在下でアンモニアを注入し、排ガス中のNO
xとアンモニア(NH3)ガスを接触反応により無害の
窒素に還元してNOxを低減する、いわゆる選択的接触
還元(SCR)法が広く国内外の脱硝プラントで採用さ
れている。近年、ピーク電力への対応として、ガスター
ビンを単独に設置し、排出ガス対策として、ガスタービ
ン出口排ガス中のNOxを除去するために、直接、脱硝
装置が設置される傾向にあるが、この場合、従来の一般
の脱硝装置においては処理排ガスの温度が250℃〜4
50℃と比較的低温であるのに比べ、ガスタービンの排
ガス脱硝装置の場合には、出口排ガスの温度が450℃
〜650℃と高温になるという問題があった。図6に、
高温排ガス脱硝装置の典型的な一例として、シンプルサ
イクル用ガスタービン排ガス脱硝装置の構成を示す。図
において、ガスタービンの排ガス1は、450〜650
℃程度の高温の排ガスであり、この排ガス1のケーシン
グ(ダクト)2内に、アンモニア注入管4を設置し、ア
ンモニア注入管4の内部より供給されるアンモニアと空
気の混合ガス8を、アンモニア注入ノズル6からダクト
2内に噴出させる。排ガス1中に含まれるNOxはアン
モニアと混合された後、脱硝触媒床3にて、いわゆる接
触分解されて無害の窒素となり、クリーンガスとして系
外へ排出される。ここで、アンモニア注入管4は、高温
の排ガス中においても十分な耐熱性を有するステンレス
製の鋼管等が使用されるのが一般的であり、従来は中程
度の温度の排ガス用のアンモニア注入管4と同様に、裸
管のままで排ガスのダクト2中に設置されていた。な
お、従来技術として、本出願人の先願である、例えば特
開昭55−69395号公報、同55−69392号公
報が挙げられるが、これは高温の燃焼ガス通路内に挿入
されるアンモニア注入管の熱吸収量の低減と、高温の排
ガスから上記注入管を断熱保護し焼損を防止するため
に、耐火、断熱材のブロックをアンモニア注入管の外周
部に設けるものである。
2. Description of the Related Art As a method for reducing nitrogen oxides (NOx) contained in exhaust gas from gas turbines, boilers, etc., ammonia is injected in the presence of a denitration catalyst to remove NO in exhaust gas.
The so-called selective catalytic reduction (SCR) method of reducing NOx by reducing x and ammonia (NH 3 ) gas into harmless nitrogen by catalytic reaction is widely adopted in denitration plants in Japan and overseas. In recent years, there is a tendency that a gas turbine is installed independently as a measure against peak power, and a denitration device is directly installed to remove NOx in exhaust gas from a gas turbine outlet as a measure for exhaust gas. In the conventional general denitration device, the temperature of the treated exhaust gas is 250 ° C to 4 ° C.
Compared to a relatively low temperature of 50 ° C, in the case of an exhaust gas denitration device for a gas turbine, the temperature of the outlet exhaust gas is 450 ° C.
There was a problem that the temperature was as high as ˜650 ° C. In Figure 6,
As a typical example of the high temperature exhaust gas denitration device, the configuration of a gas turbine exhaust gas denitration device for a simple cycle is shown. In the figure, the exhaust gas 1 of the gas turbine is 450 to 650.
The exhaust gas has a high temperature of about 0 ° C., an ammonia injection pipe 4 is installed in a casing (duct) 2 of the exhaust gas 1, and a mixed gas 8 of ammonia and air supplied from the inside of the ammonia injection pipe 4 is injected with ammonia. It is ejected from the nozzle 6 into the duct 2. After NOx contained in the exhaust gas 1 is mixed with ammonia, it is so-called catalytically decomposed in the NOx removal catalyst bed 3 to become harmless nitrogen, and is discharged to the outside of the system as a clean gas. Here, as the ammonia injection pipe 4, a stainless steel pipe or the like having sufficient heat resistance even in high-temperature exhaust gas is generally used, and conventionally, an ammonia injection pipe for exhaust gas of medium temperature is used. As in No. 4, it was installed in the exhaust gas duct 2 as a bare tube. As a conventional technique, for example, Japanese Patent Application Laid-Open Nos. 55-69395 and 55-69392, which are the prior applications of the present applicant, can be cited. This is ammonia injection inserted into a high temperature combustion gas passage. In order to reduce the heat absorption amount of the pipe and to insulate and protect the injection pipe from high temperature exhaust gas to prevent burnout, a block of fireproof and heat insulating material is provided on the outer peripheral portion of the ammonia injection pipe.

【0003】[0003]

【発明が解決しようとする課題】高温排ガスの脱硝装置
において、触媒やその触媒サポート部材による接触分解
作用によって、注入したNH3(アンモニア)が分解し
てNOxに転化される反応が起こり、NH3濃度の低下
と、脱硝装置入口NOxの増加によって脱硝反応効率が
低下することについては従来から指摘されていた。この
対策として、例えばNH3のNOx転化防止のためにア
ルミニウムなどをコーティングして、NH3の接触分解
によるNOx転化を防止する方法等が提案されている
が、従来はアンモニア注入管内でNH3の接触分解によ
るNOx転化は起こり難いものであると考えられてい
た。これは、アンモニア注入管に導入するNH3と空気
の混合ガスの温度が30〜50℃程度と低いため、アン
モニア注入管の内壁の温度は図3に示すように、NH3
のNOx転化開始温度である500℃にまでは達しない
であろうと考えられていた。ところが、排ガスのダクト
径が大型化してくると、アンモニア注入管の先端部にお
いてNH3のNOx転化の反応が生じる条件が整い、従
来想定されなかった低温側の領域であってもアンモニア
注入管の内壁によってNH3が分解されNOx転化反応
が発生することが分かった。この現象は、脱硝装置へ供
給する反応に必要なNH3量が減少し脱硝効率が低下す
るばかりでなく、NH3の分解によるNOx転化のため
に脱硝装置入口部におけるNOx量が増加し、脱硝負荷
の増大による触媒充填量の増加という二重の弊害が発生
し、排ガス脱硝装置の性能および効率を著しく低下させ
るという問題があった。
In the denitration apparatus of high-temperature exhaust gas [0005] by catalytic cracking action of the catalyst and its catalytic support member, implanted NH 3 (ammonia) is a reaction occurs which is converted to decompose NOx, NH 3 It has been previously pointed out that the NOx removal reaction efficiency decreases due to a decrease in concentration and an increase in NOx at the entrance of the NOx removal device. As a countermeasure, for example by coating aluminum and for NOx conversion prevention of NH 3, although such a method of preventing NOx conversion by catalytic decomposition of NH 3 has been proposed, in NH 3 at the ammonia injection pipe is conventional It has been considered that NOx conversion due to catalytic decomposition is unlikely to occur. This is because the temperature of the mixed gas of NH 3 and air introduced into the ammonia injection pipe is as low as about 30 to 50 ° C., so that the temperature of the inner wall of the ammonia injection pipe is NH 3 as shown in FIG.
It was thought that the NOx conversion starting temperature of 500 ° C. would not be reached. However, when the duct diameter of the exhaust gas increases, the conditions for the reaction of NOx conversion of NH 3 to occur at the tip of the ammonia injection pipe are set, and the ammonia injection pipe of the ammonia injection pipe is not expected even in the low temperature region. It was found that NH 3 was decomposed by the inner wall and a NOx conversion reaction occurred. This phenomenon not only reduces the amount of NH 3 required for the reaction to be supplied to the denitration device and lowers the denitration efficiency, but also increases the amount of NOx at the inlet of the denitration device due to NOx conversion due to the decomposition of NH 3 , resulting in denitration. The double adverse effect of increasing the catalyst filling amount due to the increase in load occurs, and there is a problem in that the performance and efficiency of the exhaust gas denitration device are significantly reduced.

【0004】本発明の目的は、上記従来技術における問
題点を解消するものであって、高温排ガスの脱硝設備の
アンモニア注入管の内壁におけるNH3の分解によるN
Ox転化を抑制し、必要とする適正量のNH3を脱硝装
置に供給して、高性能で高効率の脱硝が行えるようにし
た高温排ガス脱硝設備におけるアンモニア注入装置を提
供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, that is, N by decomposition of NH 3 on the inner wall of the ammonia injection pipe of the denitration equipment for high temperature exhaust gas.
It is an object of the present invention to provide an ammonia injecting device in a high temperature exhaust gas denitration equipment that suppresses Ox conversion and supplies a necessary and appropriate amount of NH 3 to the denitration device to perform denitration with high performance and efficiency.

【0005】[0005]

【課題を解決するための手段】上記本発明の目的を達成
するために、高温排ガスの脱硝設備に用いられるアンモ
ニア注入管およびノズルの外周部の少なくとも一部に断
熱手段を施すか、あるいは、例えば水または空気を用い
た2重管式の熱交換方式等による冷却手段を設けて、ア
ンモニア注入管およびノズル部の内壁温度が400℃以
下となるように構成し、アンモニアの分解によるNOx
転化反応を抑制するものである。本発明は、高温の排ガ
ス中に含まれる窒素酸化物(NOx)を、脱硝触媒の存
在下でアンモニアを注入して接触反応により無害の窒素
に還元する高温排ガス脱硝設備におけるアンモニア注入
装置において、高温の排ガスのダクト内に設けるアンモ
ニア注入管およびノズル外周部の少なくとも一部に断熱
手段を施すか、または、例えば水または空気との熱交換
による冷却手段を設けて、アンモニア注入管およびノズ
ルの内壁部の温度を400℃以下に保持し、NH3の分
解によるNOx転化を抑制できる構成とした高温排ガス
脱硝設備のアンモニア注入装置である。
In order to achieve the above object of the present invention, at least a part of the outer peripheral portion of the ammonia injection pipe and nozzle used in the denitration equipment for high temperature exhaust gas is provided with heat insulating means, or, for example, A cooling means such as a double-pipe heat exchange method using water or air is provided so that the inner wall temperature of the ammonia injection pipe and the nozzle portion is 400 ° C. or lower, and NOx is generated by decomposition of ammonia.
It suppresses the conversion reaction. INDUSTRIAL APPLICABILITY The present invention relates to a nitrogen oxide (NOx) contained in a high-temperature exhaust gas, an ammonia injecting device in a high-temperature exhaust gas denitration facility for injecting ammonia in the presence of a denitration catalyst to reduce harmless nitrogen by a catalytic reaction. At least part of the outer circumference of the nozzle and the ammonia injection pipe provided in the exhaust gas duct, or by providing a cooling means by heat exchange with water or air, for example, the ammonia injection pipe and the inner wall of the nozzle Is an ammonia injecting device for a high temperature exhaust gas denitration facility configured to maintain the temperature of 400 ° C. or lower and suppress NOx conversion due to decomposition of NH 3 .

【0006】[0006]

【作用】アンモニア注入管およびノズル部に施した断熱
施工もしくは冷却手段は、アンモニア注入管およびノズ
ルの内壁部の温度を必要以上に上昇するのを抑制する効
果があって、アンモニア注入管の内壁およびノズルの内
壁の温度を400℃以下に保持できるようにして、上記
内壁部でアンモニアの分解によるNOx転化反応を抑制
する。これにより、脱硝触媒床へ導入されるアンモニア
量の減少がなくなるので効率良く脱硝反応を継続するこ
とができる。また、アンモニアの分解によるNOx転化
のために生じる脱硝触媒床入口NOx濃度の増加がない
ので、触媒充填量を余分に増量する必要がなくなり、設
備費および維持費が安価な排ガス脱硝設備を実現するこ
とができる。
The heat insulating construction or cooling means applied to the ammonia injection pipe and the nozzle portion has the effect of suppressing the temperature of the inner wall portion of the ammonia injection pipe and the nozzle from rising more than necessary, and The temperature of the inner wall of the nozzle can be maintained at 400 ° C. or lower to suppress the NOx conversion reaction due to the decomposition of ammonia on the inner wall portion. As a result, there is no decrease in the amount of ammonia introduced into the denitration catalyst bed, so that the denitration reaction can be efficiently continued. In addition, since there is no increase in the NOx concentration at the denitration catalyst bed inlet that occurs due to NOx conversion due to the decomposition of ammonia, it is not necessary to increase the catalyst filling amount excessively, and an exhaust gas denitration facility with low equipment costs and maintenance costs is realized. be able to.

【0007】[0007]

【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1は、本発明の高温排ガス脱
硝設備のアンモニア注入装置の構成を示す模式図で、図
2は、図1のA−A断面を示す。図において、アンモニ
ア(NH3)ガスは爆発防止のため約5%程度にまで空
気により希釈されたアンモニアと空気の混合ガス8は、
30〜50℃程度の大気温度に近い状態でアンモニア注
入管4に導入される。このアンモニア注入管4の外周に
は断熱材5が設けられている。図2に示すように、断熱
材5は、好ましくはアンモニア注入ノズル6の先端部ま
でカバーした方が断熱効果を上げる点で望ましいが、ア
ンモニア注入管4およびアンモニア注入ノズル6の内壁
部の温度が400℃以下に保持できるのであれば、断熱
材5による断熱の施工は部分的であってもよい。断熱材
5は、一般にロックウール材や、ガラスウール材等が用
いられるが、排ガスの圧力損失低減のため、アンモニア
注入管4の管群による排ガスダクトの閉塞面積が大きく
ならないように、断熱効果が高く、可能な限り断熱材5
の厚さを薄くすることができる断熱材料を用いることが
好ましい。高温排ガス中でのアンモニア分解によるNO
x転化率は、温度に大きく依存する。図3は、各温度に
おけるアンモニアのNOx転化率を示すもので、曲線A
は、排ガスダクト内におけるNH3のNOx転化率を示
し、曲線Bは、NH3注入管内(特に、NH3と空気の混
合ガス供給口より遠い先端部分)におけるNH3のNO
x転化率を示す。曲線Aに比べ、曲線Bがより低温側に
シフトしているのは、NH3注入管4の先端部が、次に
示すNH3のNOx転化に有利な条件となっているため
であると考えられる。 (1)NH3注入管4の先端部は、NH3と空気の混合ガ
ス8の流量が少ないことからガスの流速が遅く、したが
って滞留時間が長くなる。 (2)排ガス中のNH3濃度は数10ppmのオーダで
あるのに対し、NH3と空気の混合ガス8中のNH3濃度
は5%程度で約1000倍の高濃度である。 このため、NH3注入管内でNOxへの転化を抑制する
ためには、NH3注入管4の内壁温度を400℃以下に
保つ必要があることが分かる。図4は、600℃の高温
排ガスの脱硝設備に本発明のNH3注入装置を適用した
場合の効果を、従来例と比較して示したものである。幅
10mの排ガスダクト2に設置されたアンモニア注入管
(外径60mm)4に、断熱材5を施工しない場合のN
3注入管内壁温度(曲線C)と、厚さ30mmの断熱
材5を施工した場合のNH3注入管内壁温度(曲線D)
を示す。従来例である曲線Cでは、アンモニア注入管4
の全体の約半分が400℃以上となり、NH3のNOx
転化は上記の400℃以上の部分で起こるものと予想さ
れる。しかし、本発明の曲線Dにおいては、アンモニア
注入管4の内壁の温度が、すべて400℃以下に保持さ
れているのでNH3のNOx転化防止には極めて有効で
あることが分かる。図5は、本発明の他の実施例を示す
もので、排ガス温度が550℃程度と比較的低くなる
と、図1のように全アンモニア注入管4にわたって断熱
材5を施工する必要がなく、アンモニア注入管4のノズ
ル先端部の内壁温度を400℃以下に保持できれば十分
である。以上の実施例においては、アンモニア注入管お
よびノズルの外周部の1部もしくは全部に断熱材を施工
して、アンモニア注入管およびノズル内壁部の温度を4
00℃以下に保持する例について述べたが、アンモニア
注入管およびノズルを2重管方式にして、冷水、あるい
は冷風を通してアンモニア注入管およびノズルの1部も
しくは全部を冷却する手段を設けてもよい。
Embodiments of the present invention will be described below in more detail with reference to the drawings. FIG. 1 is a schematic diagram showing the configuration of an ammonia injecting apparatus for high temperature exhaust gas denitration equipment according to the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. In the figure, ammonia (NH 3 ) gas is a mixed gas 8 of ammonia and air diluted with air to about 5% to prevent explosion,
It is introduced into the ammonia injection pipe 4 in a state close to the atmospheric temperature of about 30 to 50 ° C. A heat insulating material 5 is provided on the outer circumference of the ammonia injection pipe 4. As shown in FIG. 2, it is preferable that the heat insulating material 5 covers the tip of the ammonia injection nozzle 6 in order to improve the heat insulating effect. However, the temperature of the ammonia injection pipe 4 and the inner wall of the ammonia injection nozzle 6 is As long as the temperature can be maintained at 400 ° C. or lower, the heat insulating material 5 may be partially heat-insulated. A rock wool material, a glass wool material, or the like is generally used as the heat insulating material 5. However, in order to reduce the pressure loss of the exhaust gas, a heat insulating effect is obtained so that the area of the exhaust gas duct blocked by the group of the ammonia injection pipes 4 does not become large. Insulation 5 as high as possible
It is preferable to use a heat insulating material that can reduce the thickness of the. NO due to ammonia decomposition in high temperature exhaust gas
The x conversion is highly temperature dependent. FIG. 3 shows the NOx conversion rate of ammonia at each temperature.
Shows the NOx conversion rate of NH 3 in the exhaust gas duct, curve B is NH 3 injection tube (in particular, NH 3 and far distal portion of a mixed gas supply opening of the air) NO of NH 3 in
x conversion is shown. It is considered that the curve B is shifted to a lower temperature side than the curve A because the tip portion of the NH 3 injection pipe 4 is a condition advantageous for NOx conversion of NH 3 shown below. To be (1) Since the flow rate of the mixed gas 8 of NH 3 and air is small, the flow rate of the gas at the tip of the NH 3 injection pipe 4 is low, and therefore the residence time is long. (2) The NH 3 concentration in the exhaust gas is on the order of several tens of ppm, whereas the NH 3 concentration in the mixed gas 8 of NH 3 and air is about 5%, which is about 1000 times higher. Therefore, NH 3 in order to suppress the conversion to NOx at the injection tract, the inner wall temperature of the NH 3 injection tube 4 it can be seen that it is necessary to maintain the 400 ° C. or less. FIG. 4 shows the effect when the NH 3 injection apparatus of the present invention is applied to the denitration equipment for high-temperature exhaust gas at 600 ° C. in comparison with the conventional example. N when the heat insulating material 5 is not applied to the ammonia injection pipe (outer diameter 60 mm) 4 installed in the exhaust gas duct 2 having a width of 10 m
H 3 injection pipe inner wall temperature (curve C) and NH 3 injection pipe inner wall temperature (curve D) when the heat insulating material 5 having a thickness of 30 mm is applied
Indicates. In the curve C, which is a conventional example, the ammonia injection pipe 4
Approximately half of the total temperature rises above 400 ° C, and NH 3 NOx
The conversion is expected to occur above 400 ° C. However, in the curve D of the present invention, it can be seen that the temperature of the inner wall of the ammonia injection pipe 4 is kept at 400 ° C. or less, and thus it is extremely effective in preventing NOx conversion of NH 3 . FIG. 5 shows another embodiment of the present invention. When the exhaust gas temperature becomes relatively low at about 550 ° C., there is no need to install the heat insulating material 5 over the entire ammonia injection pipe 4 as shown in FIG. It is sufficient if the temperature of the inner wall of the nozzle tip portion of the injection pipe 4 can be maintained at 400 ° C. or lower. In the above embodiments, a heat insulating material is applied to a part or all of the outer peripheral portion of the ammonia injection pipe and the nozzle so that the temperature of the ammonia injection pipe and the inner wall portion of the nozzle is 4%.
Although the example in which the temperature is kept at 00 ° C. or lower has been described, the ammonia injection pipe and the nozzle may be a double pipe system, and means for cooling part or all of the ammonia injection pipe and the nozzle through cold water or cold air may be provided.

【0008】[0008]

【発明の効果】以上詳細に説明したごとく、本発明の高
温排ガス脱硝設備のアンモニア注入装置によれば、アン
モニア注入管およびノズルの内壁部の温度を、すべて4
00℃以下に保持することが可能となるので、注入する
NH3のNOx転化反応を効果的に防止することができ
ることになり、常に脱硝触媒床へ必要とする適正量のN
3が供給でき、NH3の供給不足による脱硝触媒の性能
低下の防止および必要以上の脱硝触媒量を充填する必要
がなくなる。また、無駄なNH3の消費がなくなるので
ランニングコストの低減がはかられ、低コストでしかも
信頼性の高い高温排ガス脱硝設備を実現することができ
る。
As described in detail above, according to the ammonia injecting apparatus for the high temperature exhaust gas denitration equipment of the present invention, the temperature of the inner wall of the ammonia injecting pipe and the nozzle is all 4
Since it is possible to maintain the temperature below 00 ° C., it is possible to effectively prevent the NOx conversion reaction of the injected NH 3 , and it is always possible to keep the proper amount of N required for the denitration catalyst bed.
Since H 3 can be supplied, it is not necessary to prevent the performance of the denitration catalyst from deteriorating due to insufficient supply of NH 3 and to fill an excessive amount of denitration catalyst. Further, since wasteful consumption of NH 3 is eliminated, running cost can be reduced, and a high-temperature exhaust gas denitration equipment with low cost and high reliability can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で示した高温排ガス脱硝装置の
アンモニア注入管の配置構成を示す模式図。
FIG. 1 is a schematic diagram showing an arrangement configuration of an ammonia injection pipe of a high temperature exhaust gas denitration device shown in an example of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】本発明の実施例で示した高温排ガスダクト内
(A)およびアンモニア注入管内(B)におけるNH3
のNOx転化率と内壁温度との関係を示すグラフ。
FIG. 3 shows NH 3 in the high temperature exhaust gas duct (A) and the ammonia injection pipe (B) shown in the embodiment of the present invention.
Is a graph showing the relationship between the NOx conversion rate and the inner wall temperature.

【図4】本発明の実施例で示したアンモニア注入管に断
熱材を施工しない場合(C)と断熱材を施工した場合
(D)のNH3注入管内壁の温度分布を示すグラフ。
FIG. 4 is a graph showing the temperature distribution on the inner wall of the NH 3 injection pipe in the case where the heat insulating material is not applied to the ammonia injection pipe shown in the embodiment of the present invention (C) and the case where the heat insulating material is applied (D).

【図5】本発明の他の実施例である高温排ガス脱硝装置
のアンモニア注入管の配置構成を示す模式図。
FIG. 5 is a schematic diagram showing an arrangement configuration of an ammonia injection pipe of a high temperature exhaust gas denitration device which is another embodiment of the present invention.

【図6】従来の脱硝装置のアンモニア注入管の配置構成
を示す模式図。
FIG. 6 is a schematic diagram showing an arrangement configuration of an ammonia injection pipe of a conventional denitration device.

【符号の説明】[Explanation of symbols]

1…排ガス 2…ケーシング(ダクト) 3…脱硝触媒床 4…アンモニア注入管 5…断熱材 6…アンモニア注入ノズル 7…触媒サポート部材 8…アンモニアと空気の混合ガス A…高温排ガスダクト内におけるNH3のNOx転化率 B…NH3注入管(先端部)内におけるNH3のNOx転
化率 C…断熱材を施工しない場合のNH3注入管内壁の温度 D…断熱材を施工した場合のNH3注入管内壁の温度
DESCRIPTION OF SYMBOLS 1 ... Exhaust gas 2 ... Casing (duct) 3 ... DeNOx catalyst bed 4 ... Ammonia injection pipe 5 ... Heat insulating material 6 ... Ammonia injection nozzle 7 ... Catalyst support member 8 ... Mixed gas of ammonia and air A ... NH 3 in high temperature exhaust gas duct NH 3 injection in the case of construction of NOx conversion B ... NH 3 injection pipe temperature D ... insulation NH 3 injection tube wall when not applying a NOx conversion rate C ... insulation NH 3 in (tip) in Inner wall temperature

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 ZAB ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01D 53/36 ZAB

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高温の排ガス中に含まれる窒素酸化物を、
脱硝触媒の存在下でアンモニアを注入し無害の窒素に接
触還元する排ガス脱硝設備のアンモニア注入装置におい
て、高温の排ガスのダクト内に設けるアンモニア注入管
およびノズル外周部の少なくとも一部に断熱手段を施す
か、もしくは冷却手段を設けて、アンモニア注入管およ
びノズル先端部に至る管内壁の温度を、アンモニアが分
解し窒素酸化物に転化する反応を抑制できる400℃以
下の温度に保持する手段を設けたことを特徴とする高温
排ガス脱硝設備のアンモニア注入装置。
1. A nitrogen oxide contained in high temperature exhaust gas,
In an ammonia injection device for exhaust gas denitration equipment that injects ammonia in the presence of a denitration catalyst and catalytically reduces it to harmless nitrogen, at least part of the outer circumference of the nozzle and the ammonia injection pipe provided in the duct for high-temperature exhaust gas is provided with heat insulating means. Alternatively, a means for maintaining the temperature of the ammonia injection pipe and the inner wall of the pipe leading to the nozzle tip portion at a temperature of 400 ° C. or lower that can suppress the reaction of decomposing ammonia and converting into nitrogen oxides is provided. Ammonia injection device for high temperature exhaust gas denitration equipment.
JP5185032A 1993-07-27 1993-07-27 Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment Pending JPH0739724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185032A JPH0739724A (en) 1993-07-27 1993-07-27 Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185032A JPH0739724A (en) 1993-07-27 1993-07-27 Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment

Publications (1)

Publication Number Publication Date
JPH0739724A true JPH0739724A (en) 1995-02-10

Family

ID=16163598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185032A Pending JPH0739724A (en) 1993-07-27 1993-07-27 Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment

Country Status (1)

Country Link
JP (1) JPH0739724A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
WO2020158146A1 (en) * 2019-01-30 2020-08-06 三菱日立パワーシステムズ株式会社 Reducing agent supply device and denitrification apparatus
WO2023095690A1 (en) * 2021-11-24 2023-06-01 三菱重工業株式会社 Ammonia fuel supply unit and boiler system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
WO2020158146A1 (en) * 2019-01-30 2020-08-06 三菱日立パワーシステムズ株式会社 Reducing agent supply device and denitrification apparatus
JP2020121259A (en) * 2019-01-30 2020-08-13 三菱日立パワーシステムズ株式会社 Reductant supply device and denitrification device
US11583803B2 (en) 2019-01-30 2023-02-21 Mitsubishi Heavy Industries, Ltd. Reducing agent supply device and denitration device
WO2023095690A1 (en) * 2021-11-24 2023-06-01 三菱重工業株式会社 Ammonia fuel supply unit and boiler system

Similar Documents

Publication Publication Date Title
EP1785606B1 (en) Exhaust gas purifier
KR102309224B1 (en) Method for purifying diesel engine exhaust gases
US6471927B2 (en) Process for converting urea into ammonia
WO2021141243A1 (en) Method for treating exhaust gas of thermal power plant
JP3727668B2 (en) Exhaust gas boiler
WO1998022209A1 (en) SELECTIVE CATALYTIC NOx REDUCTION UTILIZING UREA WITHOUT CATALYST FOULING
KR102607313B1 (en) Method and system for removing hazardous compounds from flue gas using SCR catalyst
KR20040092497A (en) Cleaning Method of NO2 Visible Gas from Stationary Sources
JPH0739724A (en) Apparatus for feeding ammonia in high temperature exhaust gas denitrification equipment
EP1492612B1 (en) System and method for the selective catalytic reduction of nitrogen oxide in a gas stream
WO2014084538A1 (en) Exhaust gas denitrification reactor and exhaust gas denitrification system using same
JPH08281074A (en) Denitrification equipment using urea
JPH0871372A (en) Denitration apparatus and method using urea
JPH1057770A (en) Flue gas denitrification device
KR101818263B1 (en) Urea pretreatment apparatus
KR101461289B1 (en) Selective catalytic reduction reactor with improved structure
EP2279784A1 (en) Method of operating hydrolytic separator
KR20090084055A (en) The reduction agent injection system for increasing nh3 evolution in sncr process
JPH05269351A (en) Method for removing nitrogen oxides
KR102232267B1 (en) An apparatus for reducing nitrogen oxide
US20140170030A1 (en) Aftertreatment System Using LNT and SCR
CN208627647U (en) A kind of protection sleeve pipe of spray gun tail end
KR102359124B1 (en) Method and system for removing hazardous compounds from flue gases using fabric filter bags with SCR catalyst
CN115779674B (en) Treatment method of waste incineration flue gas
JP2021042742A (en) Exhaust emission control device