JPH073843B2 - Heat transfer jig and heat dissipation method using the same - Google Patents

Heat transfer jig and heat dissipation method using the same

Info

Publication number
JPH073843B2
JPH073843B2 JP29413785A JP29413785A JPH073843B2 JP H073843 B2 JPH073843 B2 JP H073843B2 JP 29413785 A JP29413785 A JP 29413785A JP 29413785 A JP29413785 A JP 29413785A JP H073843 B2 JPH073843 B2 JP H073843B2
Authority
JP
Japan
Prior art keywords
heat
heat transfer
columnar support
heat dissipation
transfer jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29413785A
Other languages
Japanese (ja)
Other versions
JPS62154654A (en
Inventor
義満 坂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29413785A priority Critical patent/JPH073843B2/en
Publication of JPS62154654A publication Critical patent/JPS62154654A/en
Publication of JPH073843B2 publication Critical patent/JPH073843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Description

【発明の詳細な説明】 (発明の属する技術分野) 本発明は、半導体素子の放熱技術に関する。更に詳しく
は、半導体素子と外部放熱板間の寸法が、複数の半導体
素子において、半導体素子を搭載する基板の変形や、個
々の半導体素子固定剤の厚さの不均一性等により偏在が
生じる場合であっても、これらの寸法の偏差を吸収し、
かつ、効率良く熱を放熱板に伝達せしめる熱伝達用治具
及びこれを用いた放熱方法に関する。
Description: TECHNICAL FIELD The present invention relates to a heat dissipation technology for semiconductor elements. More specifically, when the dimension between the semiconductor element and the external heat dissipation plate is unevenly distributed among a plurality of semiconductor elements due to the deformation of the substrate on which the semiconductor element is mounted or the nonuniformity of the thickness of the individual semiconductor element fixatives. Even absorbs these dimensional deviations,
Also, the present invention relates to a heat transfer jig that efficiently transfers heat to a heat dissipation plate and a heat dissipation method using the same.

(従来の技術とその欠点) 従来、この種の用途に用いられるものとして、 放熱用グリスを充填する方法、放熱用弾性シートを
はさむ方法、ピストン状放熱片をばねで圧接させ、ピ
ストン側面に大きな面積の放熱面を対向させる方法等が
ある。それぞれについて次に示す。
(Prior art and its drawbacks) Conventionally used for this kind of application are a method of filling a heat dissipation grease, a method of sandwiching a heat dissipation elastic sheet, and a piston-like heat dissipation piece pressed against a spring to make a large side surface. There is a method of making the heat radiation surfaces of the areas face each other. Each is shown below.

の放熱用グリスを用いる方法は、ゲル状シリコーン樹
脂に熱伝達率の大きい窒化ホウ素,炭化シリコン等の微
粉末を混入したグリスを用いるものである。この方法は
熱伝達を行う面の間隔が数100ミクロン以下の場合用い
られるが、それ以上の間隔が見込まれる場合、グリスの
流出が発生し、使用できない。熱伝達係数も1W/m・℃程
度とあまり大きくなく、広い空間を充填する場合には適
用できないという欠点があった。
The method using the heat-dissipating grease uses a grease in which fine powder of boron nitride, silicon carbide or the like having a high heat transfer coefficient is mixed in a gel silicone resin. This method is used when the distance between the surfaces for heat transfer is several hundreds of microns or less, but if the distance is expected to be larger than that, grease outflow occurs and it cannot be used. The heat transfer coefficient is not so large as about 1 W / m · ° C, and there is a drawback that it cannot be applied when filling a wide space.

の放熱用弾性シートを用いる方法は数10ミクロン〜数
mmの間隔を埋める場合に用いられ、流出の問題はない
が、熱伝達係数は数W/m・℃程度であり、やはり、あま
り大きくないという欠点があった。
The method of using the elastic sheet for heat dissipation is from several tens of microns to several
It is used to fill the space of mm, and there is no problem of outflow, but the heat transfer coefficient is about several W / m · ° C, and again there is a drawback that it is not so large.

のピストン状放熱片を圧接する方法の基本概念を第6
図に示す。同図に示すように、この場合には、半導体素
子等の発熱素子1の熱を熱吸収体(又は熱放熱体)2へ
伝えるため、ピストン3を用いている。ピストン3は、
ばね4により発熱素子1に密着し、発熱素子1の熱を受
けとる。ピストン3から熱吸収体2へはピストンの側面
の気体層5を通じ放熱される。このような構造では、発
熱素子1と熱吸収体2との空隙部の寸法偏差を吸収でき
る。この効果を第7図により説明する。第7図におい
て、第6図と同一部分には同一符号を付してあるので、
これらは省略するが、13は冷却媒体の流れる管路、11は
はんだ等の素子固着剤、12は複数の素子1を搭載する基
板である。同図に示すように、複数の素子の各固着剤の
厚みが偏在している場合であっても、この偏差を吸収し
てすべての素子にピストン状放熱片を連接せしめて、放
熱経路を確実に形成することができる。
The basic concept of the method of pressing the piston-shaped heat dissipation piece of
Shown in the figure. As shown in the figure, in this case, the piston 3 is used to transfer the heat of the heating element 1 such as a semiconductor element to the heat absorber (or heat radiator) 2. Piston 3
The spring 4 makes close contact with the heating element 1 and receives the heat of the heating element 1. Heat is radiated from the piston 3 to the heat absorber 2 through the gas layer 5 on the side surface of the piston. With such a structure, it is possible to absorb the dimensional deviation of the gap between the heating element 1 and the heat absorber 2. This effect will be described with reference to FIG. In FIG. 7, since the same parts as those in FIG. 6 are designated by the same reference numerals,
Although these are omitted, 13 is a pipeline through which a cooling medium flows, 11 is an element fixing agent such as solder, and 12 is a substrate on which a plurality of elements 1 are mounted. As shown in the figure, even if the thickness of each adhesive of multiple elements is unevenly distributed, this deviation is absorbed and the piston-shaped heat dissipation piece is connected to all elements to ensure the heat dissipation path. Can be formed.

又、本構造においては、発熱素子の熱歪、即ち、第8図
に示すように熱膨張により1Aから1Bに変位する場合、こ
れらの変位量が各発熱素子間の偏差を吸収でき、複数素
子であっても確実に放熱経路を形成することができる。
又、第6図の構造において、ピストン片の先端に曲率を
与えてあるので、第9図に示すように、発熱素子が傾斜
している場合でも、ほぼ一定の接触面積を確保できる。
このことは、第9図に示すように、素子の設置状態が悪
く、傾斜する場合をはじめとして、空隙部5があるため
にピストン片3自体が傾斜して素子に接する場合にも、
接触面積を一定に保てることを示唆するものである。
Further, in this structure, when the heat distortion of the heating elements, that is, when the elements are displaced from 1A to 1B due to thermal expansion as shown in FIG. Even in this case, the heat dissipation path can be formed reliably.
Further, in the structure shown in FIG. 6, since the tip of the piston piece is provided with a curvature, as shown in FIG. 9, a substantially constant contact area can be secured even when the heating element is inclined.
This means that, as shown in FIG. 9, not only when the installation state of the element is poor and the element is inclined, but also when the piston piece 3 itself is inclined and comes into contact with the element because of the void portion 5,
This suggests that the contact area can be kept constant.

しかしながら、このようなピストン片を用いる構造は以
下に示す重大な欠点があった。即ち、まず第1にピスト
ン片,バネ等の機構部品を必要とするため、小型化が困
難であり、特に第7図のdで示すように、発熱素子と冷
却媒体の管路間距離を小さくできないという欠点があっ
た。また、気体槽5の伝達効率を高めるため、面積を大
きくとらなければならず、さらに、ヘリウム密封等によ
る対圧も必要となり、保守信頼性上の問題も発生する。
However, the structure using such a piston piece has the following serious drawbacks. That is, first of all, since mechanical parts such as a piston piece and a spring are required, it is difficult to miniaturize, and in particular, as shown by d in FIG. 7, the distance between the heating element and the cooling medium is small. There was a drawback that I could not. Further, in order to increase the transmission efficiency of the gas tank 5, a large area must be taken, and further, counter pressure by sealing with helium is required, which causes a problem in maintenance reliability.

更に、ピストン片3の先端に曲率を設けているため、ピ
ストン片3の全断面積に比べ、限定された一部分のみが
接触面積として機能するため、熱伝導効率が低いという
欠点があった。
Furthermore, since the tip end of the piston piece 3 is provided with a curvature, only a limited part of the piston piece 3 functions as a contact area as compared with the total cross-sectional area of the piston piece 3, so that the heat transfer efficiency is low.

(発明の目的) 本発明の目的は、かかる欠点を解決し、発熱素子との接
触面積が大きく、かつ小型であり、更に、発熱素子と放
熱板間距離の偏差を自らの変形により吸収し得る構造簡
単な熱伝達用治具及びその治具を用いた放熱方法を提供
することにある。
(Object of the Invention) An object of the present invention is to solve such a drawback, to have a large contact area with a heating element and to be small in size, and further to be able to absorb the deviation of the distance between the heating element and the heat dissipation plate by its own deformation. A heat transfer jig having a simple structure and a heat dissipation method using the jig are provided.

(発明の構成) 本発明は、発熱素子と放熱板間の空隙部に挿入して、熱
伝達経路を形成する熱伝達用治具として、熱伝導率の高
い板状小片を用い、これをねじり弾性を有する材質の柱
状支持体に固着し、この柱状支持体のバネ作用(ねじり
に対する復元力を利用したバネ作用)によって、板状小
片の両端が、発熱素子と放熱板に連接する治具を用いる
点に特徴がある。
(Structure of the Invention) The present invention uses a plate-like small piece having a high heat conductivity as a heat transfer jig that is inserted into a gap between a heating element and a heat dissipation plate to form a heat transfer path, and twists the piece. It is fixed to a columnar support made of elastic material, and the spring action of this columnar support (spring action utilizing the restoring force against torsion) causes a jig that connects both ends of the plate-shaped piece to the heating element and the heat dissipation plate. There is a feature in using it.

更に、板状小片を複数個、同一のバネ材料(柱状支持
体)に固定し、その作用するねじり応力が柱状支持体の
長手方向に、板状小片の幅の間隔で交互に反対向きにな
るように配置することにより、柱状支持体を、更に、放
熱板等他の部分に固定することなく、熱伝達用治具を自
立させることが可能となり、かつ、発熱素子と放熱板間
の空隙寸法の変位に応じて、治具の弾性変形量を異なら
しめることにより、空隙寸法の偏差を吸収し得るもので
ある。
Further, a plurality of plate-like small pieces are fixed to the same spring material (columnar support), and the acting torsional stresses are alternately opposite in the longitudinal direction of the columnar support at the width of the plate-like pieces. By arranging in this way, it becomes possible to make the heat transfer jig self-supporting without further fixing the columnar support to other parts such as the heat dissipation plate, and the gap size between the heat generating element and the heat dissipation plate. By varying the elastic deformation amount of the jig in accordance with the displacement of, the deviation of the void size can be absorbed.

(実施例) 第1図は本発明の熱伝達用治具の第1の実施例であり、
複数の熱伝達用板状小片6を柱状のバネ材7に接着剤8
を用いて固定してあり、更に板状小片の取り付け角度を
1枚おきにずらしてある。又、板状小片の両端部はわず
かに曲率を与え、接触面積を広くなるように工夫してあ
る。この治具を用いた放熱方法の実施例を第2図及び第
3図に示す。
(Embodiment) FIG. 1 is a first embodiment of a heat transfer jig of the present invention.
A plurality of small plate-shaped pieces 6 for heat transfer are attached to a columnar spring material 7 with an adhesive 8
Are fixed by using, and the mounting angles of the plate-like small pieces are shifted every other sheet. Further, both ends of the plate-like small piece are slightly curved so as to widen the contact area. An embodiment of a heat radiation method using this jig is shown in FIGS. 2 and 3.

これらの図において、2は熱吸収体(又は放熱体)、1
は半導体素子等の発熱体、10は板状の熱伝達用板状小片
6と柱状のバネ材(支持体)7と接着剤8からなる熱伝
達用治具であり、第2図は実装状態のyy′方向(第1図
参照)断面であり、第3図は、XX′方向の断面図であ
る。又、これらの図において、6A,6Bは板状小片6の端
面である。第2図,第3図から明らかなように、本発明
の治具においては多点で接触し、かつ、各接触部が湾曲
しているため、極めて広い総接触面積を得ることができ
る。又、第5図に示すように複数の発熱素子1を共通の
放熱体2に連接する場合、従来構造の第7図の場合と同
様に、発熱素子の固着剤11の厚み偏差に基く発熱素子と
放熱体間の空隙部寸法の偏差を個々の治具の弾性変形量
のちがいにより吸収し、ずべての素子と連接した安定な
放熱経路が形成できることがわかる。
In these figures, 2 is a heat absorber (or heat radiator), 1
Reference numeral 10 denotes a heating element such as a semiconductor element, 10 denotes a heat transfer jig including a plate-shaped small piece 6 for heat transfer, a columnar spring material (support) 7 and an adhesive agent. FIG. 3 is a sectional view taken along line YY '(see FIG. 1), and FIG. 3 is a sectional view taken along line XX'. Further, in these drawings, 6A and 6B are end faces of the plate-shaped small piece 6. As is clear from FIG. 2 and FIG. 3, in the jig of the present invention, contact is made at multiple points and each contact portion is curved, so an extremely wide total contact area can be obtained. When a plurality of heating elements 1 are connected to a common radiator 2 as shown in FIG. 5, the heating elements are based on the thickness deviation of the adhesive 11 of the heating elements, as in the case of the conventional structure shown in FIG. It can be seen that the deviation of the size of the space between the heat sink and the heat sink is absorbed by the difference in the elastic deformation amount of each jig, and a stable heat sink path connected to all the elements can be formed.

さらに、第1図に示すように、この治具は実装された場
合に、矢印で示す方向にねじり力が加わり、これと逆向
きの応力が作用する。この場合、各板状小片部の応力は
逆向きにつり合う大きさであることが好ましいが、必ず
しも全部の応力が等しい必要はなく、多少の偏差は柱状
支持体7自身で吸収できる。このことは、各板状小片の
変位に差があっても良いことを意味し、これは又、1つ
の発熱素子においても、放熱体との空隙部の寸法に偏差
がある場合、即ち、発熱素子が傾斜して設定されたよう
な場合でも、複数の板状小片が安定して接することがで
きることを意味する。
Further, as shown in FIG. 1, when this jig is mounted, a twisting force is applied in the direction indicated by the arrow, and a stress in the opposite direction is applied. In this case, it is preferable that the stress of each plate-shaped small piece is balanced in the opposite direction, but it is not necessary that all stresses are equal, and some deviation can be absorbed by the columnar support 7 itself. This means that there may be a difference in the displacement of each plate-like piece, and this also means that even in one heating element, if there is a deviation in the size of the void portion with respect to the radiator, that is, if there is heat generation. This means that a plurality of plate-shaped pieces can be stably contacted even when the element is set to be inclined.

以上の説明から明らかなように、本発明の治具において
は熱伝達材料小片の両端は常に発熱素子と熱吸収体に接
しており、両者間寸法に変化があっても棒状ばねのねじ
れ弾性により接触が保たれる。
As is clear from the above description, in the jig of the present invention, both ends of the small piece of heat transfer material are always in contact with the heat generating element and the heat absorber, and due to the torsional elasticity of the bar-shaped spring even if the dimension between them is changed. Contact is maintained.

本発明の構造の熱抵抗は熱伝達材料(6)中の熱抵抗
R1、熱伝達材料(6)と発熱素子(1)間の熱抵抗R2
熱伝達材料(6)と熱吸収体(2)の間の熱抵抗R3の和
で表わせる。
The thermal resistance of the structure of the present invention is the thermal resistance in the heat transfer material (6).
R 1 , thermal resistance R 2 between the heat transfer material (6) and the heating element (1),
It can be represented by the sum of the thermal resistance R 3 between the heat transfer material (6) and the heat absorber (2).

R1は次のように表わせる。R 1 can be expressed as follows.

G:熱伝達材料の熱伝達係数〔W/m・℃〕 W:熱伝達材料小片の巾〔m〕 T:熱伝達材料小片の厚さ〔m〕 L:熱伝達材料小片の長さ〔m〕 たとえば幅/mm、厚さ0.5mm、長さ4mmの銅片ではG=385
なのでR1=20.8℃/Wとなる。
G: Heat transfer coefficient of heat transfer material [W / m ・ ° C] W: Width of small piece of heat transfer material [m] T: Thickness of small piece of heat transfer material [m] L: Length of small piece of heat transfer material [m ] For example, G = 385 for width / mm, thickness 0.5mm, length 4mm copper piece
So R 1 = 20.8 ℃ / W.

R2,R3は熱伝達材料小片と発熱素子あるいは熱吸収体の
間の空間の熱抵抗である。この部分のみ、放熱用グリス
(G=1W/m・℃)で充填し、平均空間厚さ10μm、面積
1mm角と仮定するとR2=R3=10℃/Wとなる。従って、上
記寸法例では熱伝達材料小片1個当りの熱抵抗はR1+R2
+R3=40.8℃/Wとなる。この小片を棒状ばねの軸方向に
10枚/cm、軸と垂直な方向に4枚/cmの割で配置した場
合、面積1cm角の部分の熱抵抗は1.02℃/Wとなる。第2
図及び第3図における発熱素子と熱吸収体間距離を2mm
とすると本発明を用いた場合のこの空間の等価な熱伝達
係数Gは20W/m・℃と、熱伝導グリス等のみを使う場合
の10倍以上に改善されている。また、ピストン等を用い
る場合にくらべ極めて小型である。特に、第5図に示す
ように、発熱素子1の表面と冷却媒体の流れる管路B間
の距離Dを、従来のピストン片構造の場合(第7図の
d)に比べて著しく短縮でき、装置の小型化とともに、
冷却(放熱)効率の著しい向上が期待できる。なお、上
記の構造において、柱状支持体は金属,プラスチック,
ゴム等、多少でもねじり変形に対して弾性を有する材質
ならば何でもよい。又、熱伝達用板状小片は銅,アル
ミ,リン青銅等の熱伝導係数の高い材料が適している
が、一般にこれらの材料は弾性変形が小さいが、本願の
構造ではバネ材料(柱状支持体)に、別の材料を用いる
ことが可能であるので、それぞれの材料の特質を生かし
た構成となっている。
R 2 and R 3 are the thermal resistance of the space between the small piece of heat transfer material and the heating element or heat absorber. Only this part is filled with heat dissipation grease (G = 1 W / m ° C), average space thickness is 10 μm, area
Assuming 1 mm square, R 2 = R 3 = 10 ° C / W. Therefore, in the above dimension example, the thermal resistance per small piece of heat transfer material is R 1 + R 2
+ R 3 = 40.8 ° C / W. This small piece in the axial direction of the bar spring
When arranged at a rate of 10 sheets / cm and 4 sheets / cm in the direction perpendicular to the axis, the thermal resistance of a 1 cm square area is 1.02 ° C / W. Second
The distance between the heating element and the heat absorber in Fig. 3 and Fig. 3 is 2 mm.
Then, the equivalent heat transfer coefficient G of this space in the case of using the present invention is 20 W / m.degree. C., which is more than 10 times that in the case of using only the heat conducting grease. In addition, it is extremely small compared to the case where a piston or the like is used. In particular, as shown in FIG. 5, the distance D between the surface of the heating element 1 and the pipe B through which the cooling medium flows can be significantly shortened as compared with the case of the conventional piston piece structure (d in FIG. 7). With the miniaturization of the device,
A significant improvement in cooling (heat dissipation) efficiency can be expected. In the above structure, the columnar support is made of metal, plastic,
Any material may be used, such as rubber, as long as it is elastic to some extent due to torsional deformation. For the heat transfer plate-like piece, a material having a high coefficient of thermal conductivity such as copper, aluminum or phosphor bronze is suitable. Generally, these materials have a small elastic deformation, but in the structure of the present application, a spring material (columnar support) is used. ), It is possible to use a different material, it has a structure that takes advantage of the characteristics of each material.

又、上記の実施例では柱状支持体(バネ材)と板状片と
の接続は、接着剤で固着せしめる方法について説明した
が、材料の組み合わせによっては、溶接等の固着方法も
可能であることは言うまでもない。
Further, in the above embodiment, the connection between the columnar support (spring material) and the plate-like piece is explained by fixing with an adhesive, but a fixing method such as welding may be possible depending on the combination of materials. Needless to say.

第4図は本発明の第2の実施例である。10は熱伝達用板
状小片6と、柱状支持体7と接着剤8とからなる熱伝達
用治具10を、発熱素子1と熱吸収体(又は放熱体)2と
の間に挿入せしめて放熱経路を形成する方法を示す。こ
の実施例においては、熱伝達用板状小片6の板厚を厚く
し、熱伝導の抵抗を下げている。又、発熱素子1および
熱吸収体2との接触面の断面形状を最適化することによ
り、熱伝導効率を高めている。なお、同図に示すよう
に、各板状小片自体に貫通孔を設け、これに柱状支持体
を挿入し、空隙部に接着剤を充填せしめて板状小片と柱
状支持体を固着せしめている。このような構成にするこ
とにより、柱状支持体のスペースを別に設ける必要が無
いので、全体の小型化に役立つ。
FIG. 4 shows a second embodiment of the present invention. 10 is a plate-like piece for heat transfer 6, a heat transfer jig 10 including a columnar support 7 and an adhesive 8 is inserted between the heat generating element 1 and the heat absorber (or heat radiator) 2. A method of forming a heat radiation path will be described. In this embodiment, the plate thickness of the heat transfer plate-like small piece 6 is increased to reduce the heat conduction resistance. Further, the heat conduction efficiency is improved by optimizing the cross-sectional shape of the contact surface between the heating element 1 and the heat absorber 2. In addition, as shown in the figure, each plate-shaped small piece is provided with a through hole, a columnar support is inserted into this, and the gap is filled with an adhesive to fix the plate-shaped small piece and the columnar support. . With such a configuration, it is not necessary to separately provide a space for the columnar support, which is useful for downsizing the whole.

(発明の効果) 以上説明したように、本発明は熱伝達をはかろうとする
空間に熱伝導性にすぐれた材料の板状小片を複数配置
し、それぞれ柱状支持体(バネ材)によって伝熱面に密
接する構造になっているから、小型でかつすぐれた熱伝
達特性が得られる利点がある。また、構造が簡単で、自
由なばね材料の選択が可能であることから、安価で安定
な構造の設計が可能である。
(Effects of the Invention) As described above, according to the present invention, a plurality of plate-like small pieces of a material having excellent heat conductivity are arranged in a space where heat transfer is intended, and heat is transferred by a columnar support (spring material). Since the structure is in close contact with the surface, there is an advantage that a small size and excellent heat transfer characteristics can be obtained. Further, since the structure is simple and the spring material can be freely selected, an inexpensive and stable structure can be designed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に用いる熱伝達用治具の第1の実施例
の斜視図、第2図は、第1図の治具の実装状態を説明す
る第1の断面図、第3図は同じく第1図の治具の実装状
態を説明する第2の断面図、第4図は本発明に用いる熱
伝達用治具の第2の実施例の断面図、第5図は本発明に
用いる熱伝達用治具の複数実装状態を説明する断面図、
第6図は従来の熱伝達用治具の基本構造を説明する図、
第7図は従来の熱伝達用治具の複数実装状態を説明する
断面図、第8図及び第9図は従来の熱伝達用治具の機能
を説明する図。 1…半導体素子に代表される発熱素子、2…熱吸収体又
は放熱体、3…ピストン小片、4…バネ、5…空隙部、
6…高熱伝導材の板状小片、7…柱状支持体(バネ
材)、8…接着剤、10…熱伝達用治具、11…発熱素子の
固着剤、12…発熱素子の搭載基板、13…冷却用媒体の流
れる管路。
FIG. 1 is a perspective view of a first embodiment of a heat transfer jig used in the present invention, FIG. 2 is a first sectional view for explaining a mounting state of the jig of FIG. 1, and FIG. Is a second sectional view for explaining the mounting state of the jig shown in FIG. 1, FIG. 4 is a sectional view of a second embodiment of the heat transfer jig used in the present invention, and FIG. Sectional views for explaining a plurality of mounting states of the heat transfer jig to be used,
FIG. 6 is a view for explaining the basic structure of a conventional heat transfer jig,
FIG. 7 is a sectional view for explaining a plurality of mounting states of a conventional heat transfer jig, and FIGS. 8 and 9 are diagrams for explaining the function of the conventional heat transfer jig. DESCRIPTION OF SYMBOLS 1 ... Heating element represented by a semiconductor element, 2 ... Heat absorber or radiator, 3 ... Piston piece, 4 ... Spring, 5 ... Void,
6 ... Plate-shaped small piece of high thermal conductive material, 7 ... Columnar support (spring material), 8 ... Adhesive agent, 10 ... Heat transfer jig, 11 ... Heat element fixing agent, 12 ... Heat element mounting substrate, 13 ... A pipeline through which a cooling medium flows.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ねじり弾性を有する第1の材質でなる柱状
支持体(7)と、端部を湾曲させた板状で、かつ熱伝導
率の高い第2の材質でなる接触部材(6)と、上記柱状
支持体に上記接触部材を固着せしめる接着剤(8)と、
からなり、上記接触部材(6)の長手方向を上記柱状支
持体(7)の長手方向と直交させ、かつ交互に所定の角
度(θ)で交又指状に複数の接触部材(6)を上記柱状
支持体(7)に上記接着剤で固着せしめて取り付けたこ
とを特徴とする熱伝達用治具。
1. A columnar support (7) made of a first material having torsional elasticity, and a contact member (6) made of a second material having a curved end portion and having a high thermal conductivity. And an adhesive (8) for fixing the contact member to the columnar support,
And the longitudinal direction of the contact member (6) is orthogonal to the longitudinal direction of the columnar support (7), and a plurality of contact members (6) are alternately crossed at a predetermined angle (θ) and finger-shaped. A heat transfer jig, characterized in that it is fixed to the columnar support (7) with the adhesive and attached.
【請求項2】柱状支持体(7)の側面に接触部材(6)
が接触し、当該接触部の周辺を接着剤(8)で固着せし
めたことを特徴とする特許請求の範囲第1項記載の熱伝
達用治具。
2. A contact member (6) on the side surface of the columnar support (7).
2. The heat transfer jig according to claim 1, wherein the heat transfer jigs are in contact with each other, and the periphery of the contact portion is fixed with an adhesive (8).
【請求項3】接触部材が厚板でなり、かつ中央部に柱状
支持体(7)の外径よりもわずかに大きな貫通孔(9)
を有し、当該貫通孔(9)に上記柱状支持体(7)を貫
通せしめ、かつ空隙部に接着剤(8)を充填せしめて固
着することを特徴とする特許請求の範囲第1項記載の熱
伝達用治具。
3. A through hole (9) whose contact member is a thick plate and which is slightly larger than the outer diameter of the columnar support (7) in the center.
The columnar support (7) is penetrated through the through hole (9), and an adhesive (8) is filled in the void to fix the columnar support (7). Heat transfer jig.
【請求項4】半導体素子と外部放熱手段との空隙部に熱
伝導率の高い材質でなる熱伝達用治具を介在させて、半
導体素子の発生する熱を外部放熱手段に伝達せしめる放
熱方法において、上記熱伝達用治具がねじり弾性を有す
る材質でなる柱状支持体に、熱伝導率の高い板状接触部
材を複数枚、交又指状に固着せしめた構成をなし、当該
熱伝達用治具の変形により、上記半導体素子と外部放熱
手段との空隙部の変形及び偏差を吸収させることを特徴
とする放熱方法。
4. A heat dissipation method in which a heat transfer jig made of a material having a high heat conductivity is interposed in a gap between the semiconductor element and the external heat dissipation means to transfer the heat generated by the semiconductor element to the external heat dissipation means. The heat transfer jig has a structure in which a plurality of plate-like contact members having high heat conductivity are fixed in a columnar support made of a material having torsional elasticity in an interdigitated or finger-like manner. A heat dissipation method, characterized in that deformation and deviation of a gap between the semiconductor element and the external heat dissipation means are absorbed by deformation of the tool.
JP29413785A 1985-12-26 1985-12-26 Heat transfer jig and heat dissipation method using the same Expired - Lifetime JPH073843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29413785A JPH073843B2 (en) 1985-12-26 1985-12-26 Heat transfer jig and heat dissipation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29413785A JPH073843B2 (en) 1985-12-26 1985-12-26 Heat transfer jig and heat dissipation method using the same

Publications (2)

Publication Number Publication Date
JPS62154654A JPS62154654A (en) 1987-07-09
JPH073843B2 true JPH073843B2 (en) 1995-01-18

Family

ID=17803785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29413785A Expired - Lifetime JPH073843B2 (en) 1985-12-26 1985-12-26 Heat transfer jig and heat dissipation method using the same

Country Status (1)

Country Link
JP (1) JPH073843B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2901835B2 (en) * 1993-04-05 1999-06-07 株式会社東芝 Semiconductor device
US5557501A (en) * 1994-11-18 1996-09-17 Tessera, Inc. Compliant thermal connectors and assemblies incorporating the same

Also Published As

Publication number Publication date
JPS62154654A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
US6538308B1 (en) Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
EP0344084B1 (en) High conduction cooling module having internal fins and compliant interfaces for VLSI chip technology
JP5511737B2 (en) Thermoelectric device with improved thermal separation
US20070230133A1 (en) Stress release thermal interfaces
US7749812B2 (en) Heat sink with thermally compliant beams
JP2006508542A (en) Integrated thermoelectric module
WO1996011372A1 (en) Improved heat transfer system for thermoelectric modules
US6994153B2 (en) Heat discharger suitable for application to heat pipes
US6985359B2 (en) Variable-wedge thermal-interface device
WO2019024656A1 (en) Floating-type heat sink and elastic bracket therefor
US20210315132A1 (en) Aligned multi-rail high-power cooling module
JP2002064168A (en) Cooling device, manufacturing method of cooling device, and semiconductor device
US20040207985A1 (en) Variable-gap thermal-interface device
JPH073843B2 (en) Heat transfer jig and heat dissipation method using the same
US7131199B2 (en) Mechanical highly compliant thermal interface pad
JPH079955B2 (en) Heat transfer jig and heat dissipation method using the same
US6988533B2 (en) Method and apparatus for mounting a heat transfer apparatus upon an electronic component
JP2002151636A (en) Heat sink
JPH0955456A (en) Semiconductor device cooling structure
US11435148B2 (en) Composite spring heat spreader
JP3469811B2 (en) Line type thermoelectric conversion module
CN113889442A (en) Heat conducting member, single board, computing equipment and manufacturing method
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JP3968669B2 (en) Thermoelectric converter
JPH0888300A (en) Heat interface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term