JPH0888300A - Heat interface - Google Patents

Heat interface

Info

Publication number
JPH0888300A
JPH0888300A JP22295994A JP22295994A JPH0888300A JP H0888300 A JPH0888300 A JP H0888300A JP 22295994 A JP22295994 A JP 22295994A JP 22295994 A JP22295994 A JP 22295994A JP H0888300 A JPH0888300 A JP H0888300A
Authority
JP
Japan
Prior art keywords
heat
thin wire
thermal
interface
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22295994A
Other languages
Japanese (ja)
Inventor
Noriyuki Ashiwake
範之 芦分
Keizo Kawamura
圭三 川村
Hideyuki Kimura
秀行 木村
Shigeo Ohashi
繁男 大橋
Toshio Hatada
敏夫 畑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22295994A priority Critical patent/JPH0888300A/en
Publication of JPH0888300A publication Critical patent/JPH0888300A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE: To obtain a heat interface structure having excellent operability of mounting and dismounting a heat sink by weaving first fine wires having heat conductivity and second fine wires having flexibility. CONSTITUTION: This heat interface is formed by alternately weaving first fine wires 1 made, for example, of copper, aluminum, etc., having excellent heat conductivity and second fine wires 2 made, for example, of silicon rubber, etc., having excellent flexibility. The interface is sandwiched between the heat generating surface 3 of an integrated circuit, etc., and the cooling surface 4 of a heat sink, etc., and when a load W is applied, the wires 2 are deformed, and many contact points 5 are formed among the wires 1, the surface 3 and the surface 4. The heat is transferred from the surface 3 to the wires 1 via the points 5, moved via the wires 1 in the thickness direction of the interface, and further transferred to the surface 4 via the points 5 between the wires 1 and the surface 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般の機器の冷却に係
り、特に、集積回路チップにヒートシンクを取り付ける
際の熱インターフェースに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to general equipment cooling, and more particularly to a thermal interface for attaching a heat sink to an integrated circuit chip.

【0002】[0002]

【従来の技術】発熱体とヒートシンク間の取付け面の接
触熱抵抗を低減させるための熱インターフェースは、熱
伝導グリースやシリコンゴム系の放熱シートが一般的で
ある。例えば、特開昭64−12561 号公報には、半導体素
子とヒートシンク間に熱伝導性グリースを塗布する方法
が開示されている。また、特開平2−25060号公報には、
半導体素子とヒートシンク間にサーマルシート(熱伝導
性の良好なゴム状板材)を設ける構造が開示されてい
る。さらに、特開平6−13508号公報には、集積回路とヒ
ートシンク間に、半流体物質を充填した金属メッシュを
設ける方法が開示されている。
2. Description of the Related Art As a thermal interface for reducing the contact thermal resistance of a mounting surface between a heat generating element and a heat sink, a heat conductive grease or a silicone rubber type heat radiating sheet is generally used. For example, Japanese Patent Application Laid-Open No. 64-12561 discloses a method of applying a heat conductive grease between a semiconductor element and a heat sink. Further, JP-A-2-25060 discloses that
A structure is disclosed in which a thermal sheet (a rubber-like plate material having good thermal conductivity) is provided between a semiconductor element and a heat sink. Further, Japanese Patent Laid-Open No. 6-13508 discloses a method of providing a metal mesh filled with a semi-fluid material between an integrated circuit and a heat sink.

【0003】[0003]

【発明が解決しようとする課題】集積回路チップあるい
はパッケージとヒートシンク間の取付け面に熱伝導性の
グリースやシート等の熱インターフェースが用いられる
のは次の理由による。
The reason why a thermal interface such as a thermally conductive grease or sheet is used on the mounting surface between the integrated circuit chip or package and the heat sink is as follows.

【0004】ヒートシンクの材質は、アルミニウム等の
金属材料が熱伝導率および加工の容易さの点で優れてい
る。しかし、このような金属材料は一般に線膨張率が大
きいため、これを、例えばシリコン製の集積回路チップ
に半田付け、あるいはエポキシ系の接着剤で剛体的に取
り付けると、線膨張率の不一致によってチップに大きな
熱応力が加わる可能性がでてくる。
As a material of the heat sink, a metal material such as aluminum is excellent in terms of thermal conductivity and workability. However, since such a metal material generally has a large coefficient of linear expansion, if it is soldered to an integrated circuit chip made of, for example, silicon or rigidly attached with an epoxy-based adhesive, the coefficient of linear expansion causes a mismatch. There is a possibility that large thermal stress will be applied to.

【0005】一方、ヒートシンクが集積回路チップに単
に接触するだけにすると、上述のような熱応力の問題は
無くなるが、接触する面を極めて平坦に仕上げる必要が
でてくる。接触面に反りがあると、ヒートシンクが集積
回路チップに完全には密着しないために許容できない程
度の大きな熱抵抗が生じる。
On the other hand, if the heat sink is simply brought into contact with the integrated circuit chip, the above-mentioned problem of thermal stress is eliminated, but it is necessary to finish the contact surface extremely flat. Warpage of the contact surface causes unacceptably high thermal resistance because the heat sink does not completely adhere to the integrated circuit chip.

【0006】これに対し、熱伝導グリースやシートはあ
る程度の柔軟性を有しているため、ヒートシンクや集積
回路面の反りを吸収して両者に密着し、かつ、熱変形を
吸収しつつ熱をヒートシンクに伝えることが可能にな
る。これが、熱インターフェースの一つの機能である。
On the other hand, since the heat conductive grease and the sheet have a certain degree of flexibility, they absorb the warp of the heat sink and the integrated circuit surface and stick to them, and absorb the heat deformation while absorbing the heat. It becomes possible to convey to the heat sink. This is one function of the thermal interface.

【0007】熱インターフェースのもう一つの機能は、
集積回路チップ等の半導体素子へのヒートシンクの取り
付け,取り外しを容易にし、電子機器の分解,組立てを
容易にすることにある。
Another function of the thermal interface is
It is intended to facilitate attachment and detachment of a heat sink to a semiconductor element such as an integrated circuit chip and facilitate disassembly and assembly of electronic equipment.

【0008】しかし、最近の集積回路チップは大発熱密
度化、かつ大面積化する傾向にある、これに伴って、従
来の熱インターフェースには次のような問題が生じる。
すなわち、一つは熱抵抗の問題である。従来の熱インタ
ーフェースのうち、特開昭64−12561 号公報に開示され
ている熱伝導グリースや特開平2−25060号公報に開示さ
れている熱伝導シートは、基本的には、シリコンオイル
またはシリコンゴムに、熱伝導性の材質、例えば、アル
ミナ(Al23)のパウダを混入させて熱伝導率を高めて
いる。パウダの混入率を増加させると熱伝導率を上げる
ことができるが、ベースとなるオイルやゴムの熱伝導率
が低いので、ある限度以上に熱伝導率を上げることは困
難である。一方で、集積回路チップの大面積化に伴っ
て、熱インターフェースが吸収すべき反り量および熱変
形量が増加するため、熱インターフェースの厚さを厚く
する必要がでてくる。しかるに、従来の熱インターフェ
ースでは前述のように熱伝導率に限界があるため、熱イ
ンターフェースの厚さを厚くすると熱抵抗(熱インター
フェースの厚さに比例,熱伝導率に逆比例する)が許容
できない値になる。特開昭64−12561 号公報に開示され
ている熱伝導グリースを用いる方法では、ヒートシンク
を集積回路チップから取り外して再組立てする際に、洗
浄および再塗布の工程が必要になるために、分解,組立
て工程が複雑になる。これに対し、特開平6−13508号公
報の半流体物質を充填した金属メッシュを用いた熱イン
ターフェースでは、金属メッシュを用いているために熱
伝導率は高いが、柔軟性の点に問題があり、チップの大
面積化に伴う大変形の問題には対処できない。
However, recent integrated circuit chips tend to have a large heat generation density and a large area, which causes the following problems in the conventional thermal interface.
That is, one is the problem of thermal resistance. Of the conventional thermal interfaces, the thermal conductive grease disclosed in Japanese Patent Laid-Open No. 64-12561 and the thermal conductive sheet disclosed in Japanese Patent Laid-Open No. 2-25060 are basically silicone oil or silicone. A heat conductive material, for example, a powder of alumina (Al 2 O 3 ) is mixed into the rubber to increase the heat conductivity. The thermal conductivity can be increased by increasing the mixing ratio of the powder, but it is difficult to increase the thermal conductivity beyond a certain limit because the thermal conductivity of the base oil or rubber is low. On the other hand, as the area of the integrated circuit chip increases, the amount of warpage and the amount of thermal deformation that the thermal interface should absorb increase, so it becomes necessary to increase the thickness of the thermal interface. However, since the conventional thermal interface has a limit in thermal conductivity as described above, if the thickness of the thermal interface is increased, the thermal resistance (proportional to the thickness of the thermal interface and inversely proportional to the thermal conductivity) cannot be tolerated. It becomes a value. In the method using the thermal conductive grease disclosed in JP-A-64-12561, when the heat sink is detached from the integrated circuit chip and reassembled, the steps of cleaning and re-application are required. The assembly process becomes complicated. On the other hand, in the thermal interface using the metal mesh filled with the semi-fluid material described in JP-A-6-13508, the thermal conductivity is high because the metal mesh is used, but there is a problem in flexibility. However, it cannot deal with the problem of large deformation due to the increase in chip area.

【0009】本発明の目的は、ヒートシンクの取り付
け,取外し等の作業性に優れた熱インターフェース構造
を提供することにある。
An object of the present invention is to provide a thermal interface structure which is excellent in workability such as attaching and detaching a heat sink.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明は熱伝導性を有する第一の細線と、柔軟性を
有する第二の細線の二種類の機能の異なる細線を織あわ
せて熱インターフェースを構成した。
In order to achieve the above object, the present invention interweaves two kinds of thin wires having different functions, a first thin wire having thermal conductivity and a second thin wire having flexibility. Configured the thermal interface.

【0011】また、柔軟性を有する第二の細線の直径
を、熱伝導性の第一の細線の直径よりも大きくした。
Further, the diameter of the flexible second thin wire is made larger than the diameter of the heat conductive first thin wire.

【0012】また、柔軟性を有する第二の細線を中空断
面とした。
Further, the flexible second thin wire has a hollow cross section.

【0013】また、熱伝導性を有する第一の細線を矩形
断面とした。
The first thin wire having thermal conductivity has a rectangular cross section.

【0014】また、前記熱インターフェースに熱伝導性
の流体を含浸させた。
Further, the heat interface is impregnated with a heat conductive fluid.

【0015】[0015]

【作用】熱伝導性を有する第一の細線と柔軟性を有する
第二の細線を織あわせて熱インターフェースを構成した
から、熱は、熱伝導性細線を通して熱インターフェース
の一方の面から他方の面へ最短距離で伝えられるので、
熱インターフェースの熱抵抗を小さく保つことができ
る。一方、この熱伝導性の細線を保持するのに、柔軟性
を有する細線を織あわせて用いたから、柔軟性に優れる
と同時に取り扱い性もよくすることができる。
The heat interface is formed by weaving the first thin wire having heat conductivity and the second thin wire having flexibility, so that heat is transferred from one surface of the heat interface to the other surface through the heat conductive thin wire. Since it can be transmitted to the shortest distance to
The thermal resistance of the thermal interface can be kept small. On the other hand, in order to hold this heat conductive thin wire, since a thin wire having flexibility is used by being woven together, it is possible to improve the handleability while being excellent in flexibility.

【0016】また、柔軟細線の直径を熱伝導性細線の直
径よりも大きくしたから、高い柔軟性を得ることができ
る。
Further, since the diameter of the flexible thin wire is larger than that of the heat conductive thin wire, high flexibility can be obtained.

【0017】また、柔軟細線を中空断面構造としたか
ら、より高い柔軟性を得ることができる。
Further, since the flexible thin wire has a hollow cross-section structure, higher flexibility can be obtained.

【0018】また、熱伝導細線を矩形断面構造としたか
ら、集積回路チップ等の発熱面、およびヒートシンク面
と熱伝導細線との接触状態が線接触と成り、接触熱抵抗
を低くおさえ、熱インターフェース全体の熱抵抗を下げ
ることができる。
Further, since the heat-conducting thin wire has a rectangular cross-section structure, the contact state between the heat-generating surface of the integrated circuit chip and the heat sink surface and the heat-conducting thin wire is line contact, so that the contact thermal resistance is kept low and the thermal interface is reduced. The overall thermal resistance can be reduced.

【0019】また熱インターフェースに、熱伝導性の流
体を含浸させたから、接触熱抵抗をさらに下げることが
できる。
Further, since the thermal interface is impregnated with the thermally conductive fluid, the contact thermal resistance can be further reduced.

【0020】[0020]

【実施例】以下、本発明の一実施例を図1および図2に
より説明する。図1は本発明の熱インターフェースの平
面図である。本発明の熱インターフェースは基本的には
熱伝導性に優れた第一の細線1と柔軟性に優れた第二の
細線2を交互に織あわせる。細線の材料は、銅,アルミ
ニウム,金,銀等の熱伝導率の高い金属が望ましい。ま
た、細線2の材料は、シリコンゴム(ただし、これに限
定されるものではない)等、柔軟性の高い材料が望まし
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a plan view of the thermal interface of the present invention. The thermal interface of the present invention basically weaves the first thin wires 1 having excellent thermal conductivity and the second thin wires 2 having excellent flexibility alternately. The material of the thin wire is preferably a metal having high thermal conductivity such as copper, aluminum, gold and silver. The material of the thin wire 2 is preferably a highly flexible material such as silicon rubber (but not limited to this).

【0021】次に本実施例の動作を図2により説明す
る。集積回路等の発熱面3とヒートシンク等の冷却面4
の間に本発明の熱インターフェースを挟み、荷重Wを加
えると、柔軟性細線2が変形し、熱伝導細線1と発熱面
3および冷却面4の間に多数の接触点5が形成される。
熱は、発熱面3からこの接触点5を介して熱伝導性細線
1に伝えられ、細線1を伝わって熱インターフェースの
厚さ方向に矢印6の方向に移動し、さらに、細線1と冷
却面4との間の接触点5を介して冷却面4に伝えられ
る。本発明の熱インターフェースは、柔軟性を有する細
線2が、反りや熱変形等の変位を吸収するように作用
し、熱伝導細線1と発熱面3または冷却面4との間に多
数の接触点を形成するように作用する。また熱伝導細線
1は、熱を熱インターフェースの厚さ方向に伝えるよう
に作用する。本発明の熱インターフェースは上述のよう
な二種類の作用の異なる細線を用いたから、高柔軟性と
低熱抵抗という二つの相反する性質を両立させることが
できる。
Next, the operation of this embodiment will be described with reference to FIG. Heating surface 3 such as an integrated circuit and cooling surface 4 such as a heat sink
When the thermal interface of the present invention is sandwiched between and the load W is applied, the flexible thin wire 2 is deformed, and a large number of contact points 5 are formed between the heat conductive thin wire 1 and the heat generating surface 3 and the cooling surface 4.
The heat is transferred from the heat generating surface 3 to the heat conductive thin wire 1 through this contact point 5, moves along the thin wire 1 in the thickness direction of the thermal interface in the direction of the arrow 6, and further, the thin wire 1 and the cooling surface. It is transmitted to the cooling surface 4 via a contact point 5 with the cooling surface 4. In the thermal interface of the present invention, the flexible thin wire 2 acts to absorb displacement such as warpage or thermal deformation, and a large number of contact points are provided between the heat conductive thin wire 1 and the heat generating surface 3 or the cooling surface 4. Acts to form. Further, the heat conductive thin wire 1 acts so as to transfer heat in the thickness direction of the heat interface. Since the thermal interface of the present invention uses the two kinds of thin wires having different functions as described above, it is possible to achieve both the two contradictory properties of high flexibility and low thermal resistance.

【0022】図3に本発明の第二の実施例を示す。柔軟
性を有する細線2の直径を、熱伝導性を有する細線1の
直径よりも大きくした。こうすることにより、熱インタ
ーフェースの厚さ方向の変位吸収能力をより高めること
ができ、反りの大きい面への適用が容易になる。
FIG. 3 shows a second embodiment of the present invention. The diameter of the thin wire 2 having flexibility was made larger than the diameter of the thin wire 1 having thermal conductivity. By doing so, it is possible to further enhance the displacement absorbing ability of the thermal interface in the thickness direction, and it becomes easy to apply it to a surface having a large warp.

【0023】図4に本発明の第三の実施例を示す。柔軟
性細線2を中空断面7とした。柔軟性細線2の厚さ方向
の変形がより容易になり、熱インターフェースの柔軟性
をさらに高めることができる。
FIG. 4 shows a third embodiment of the present invention. The flexible thin wire 2 has a hollow cross section 7. The flexible thin wire 2 can be deformed more easily in the thickness direction, and the flexibility of the thermal interface can be further enhanced.

【0024】図5に本発明の第四の実施例を示す。熱伝
導細線1の断面形状を偏平な矩形断面8とした。こうす
ることにより、熱伝導細線1と発熱面または冷却面との
接触状態を線接触状態とすることができ、接触面積が増
加するため、熱伝導細線1と発熱面または冷却面との間
の接触熱抵抗を低く保つことができ、熱インターフェー
スの熱抵抗を下げることができる。
FIG. 5 shows a fourth embodiment of the present invention. The cross-sectional shape of the heat conduction thin wire 1 is a flat rectangular cross section 8. By doing so, the contact state between the heat-conducting thin wire 1 and the heat-generating surface or the cooling surface can be made into a line contact state, and the contact area increases, so that the heat-conducting thin wire 1 and the heat-generating surface or cooling surface are The contact thermal resistance can be kept low and the thermal resistance of the thermal interface can be reduced.

【0025】図6に本発明の第五の実施例を示す。熱イ
ンターフェースに、例えば、鉱物油等の熱伝導性の流体
を含浸させた。これにより、熱伝導細線1と発熱面3お
よび冷却面4との間の接触熱抵抗を大幅に下げることが
できる。ただし、装置の分解,組立て等の作業性はやや
低下する。
FIG. 6 shows a fifth embodiment of the present invention. The thermal interface was impregnated with a thermally conductive fluid such as mineral oil. As a result, the contact thermal resistance between the heat conducting thin wire 1 and the heat generating surface 3 and the cooling surface 4 can be significantly reduced. However, the workability of disassembling and assembling the device is slightly reduced.

【0026】[0026]

【発明の効果】本発明によれば、熱伝導性に優れた第一
の細線と柔軟性に優れた第二の細線を交互に織あわせ、
熱の伝導は第一の細線、変位の吸収は第二の細線と、そ
れぞれの機能を分けたから、柔軟性に優れ、熱伝導性が
高く、かつ取り扱い性に優れた熱インターフェースが得
られる。
According to the present invention, the first fine wire having excellent thermal conductivity and the second fine wire having excellent flexibility are alternately woven,
Since the heat conduction is divided into the first thin line and the displacement absorption into the second fine line, the functions are divided, so that a thermal interface having excellent flexibility, high thermal conductivity, and excellent handleability can be obtained.

【0027】また本発明によれば、柔軟細線の直径を熱
伝導細線の直径よりも大きくしたから、柔軟性のより高
い熱インターフェースが得られる。
Further, according to the present invention, since the diameter of the flexible thin wire is larger than the diameter of the heat conducting thin wire, a thermal interface having higher flexibility can be obtained.

【0028】また本発明によれば、柔軟細線を中空断面
にしたから、柔軟性のさらに高い熱インターフェースが
得られる。
Further, according to the present invention, since the flexible thin wire has a hollow cross section, a more flexible thermal interface can be obtained.

【0029】また本発明によれば、熱伝導細線の断面形
状を偏平な矩形断面としたから、熱インターフェースと
発熱面または冷却面との間の接触熱抵抗を下げることが
できる。
Further, according to the present invention, since the cross-sectional shape of the heat-conducting thin wire is a flat rectangular cross-section, the contact thermal resistance between the heat interface and the heat generating surface or the cooling surface can be reduced.

【0030】また本発明によれば、熱インターフェース
に熱伝導性の流体を含浸させたから、熱インターフェー
スと発熱面または冷却面との間の接触熱抵抗をさらに低
減することができる。
Further, according to the present invention, since the thermal interface is impregnated with the thermally conductive fluid, the contact thermal resistance between the thermal interface and the heat generating surface or the cooling surface can be further reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面図。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】本発明の作用の断面図。FIG. 2 is a sectional view of the operation of the present invention.

【図3】本発明の第二の実施例の断面図。FIG. 3 is a sectional view of a second embodiment of the present invention.

【図4】本発明の第三の実施例の断面図。FIG. 4 is a sectional view of a third embodiment of the present invention.

【図5】本発明の第四の実施例の断面図。FIG. 5 is a sectional view of a fourth embodiment of the present invention.

【図6】本発明の第五の実施例の断面図。FIG. 6 is a sectional view of a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…熱伝導性を有する第一の細線、2…柔軟性を有する
第二の細線、3…発熱面、4…冷却面、5…接触点、6
…熱の流れの方向、7…第二の細線の中空断面、8…第
一の細線の偏平矩形断面、9…熱伝導性の流体。
DESCRIPTION OF SYMBOLS 1 ... 1st fine wire which has thermal conductivity, 2 ... 2nd fine wire which has flexibility, 3 ... Heating surface, 4 ... Cooling surface, 5 ... Contact point, 6
... direction of heat flow, 7 ... hollow cross section of second thin wire, 8 ... flat rectangular cross section of first thin wire, 9 ... heat conductive fluid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 繁男 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 畑田 敏夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeo Ohashi Inventor Shigeo Ohashi 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd.Mechanical Research Laboratory (72) Toshio Hatada 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Manufacturing Co., Ltd. Inside the mechanical laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱伝導性を有する第一の細線と、柔軟性を
有する第二の細線とを織あわせて成ることを特徴とする
熱インターフェース。
1. A thermal interface comprising a first thin wire having thermal conductivity and a second thin wire having flexibility woven together.
JP22295994A 1994-09-19 1994-09-19 Heat interface Pending JPH0888300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22295994A JPH0888300A (en) 1994-09-19 1994-09-19 Heat interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22295994A JPH0888300A (en) 1994-09-19 1994-09-19 Heat interface

Publications (1)

Publication Number Publication Date
JPH0888300A true JPH0888300A (en) 1996-04-02

Family

ID=16790569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22295994A Pending JPH0888300A (en) 1994-09-19 1994-09-19 Heat interface

Country Status (1)

Country Link
JP (1) JPH0888300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640650A1 (en) * 1996-10-02 1998-04-09 Ego Elektro Geraetebau Gmbh Heat generating assembly for substrate mounted electronics
JP2011525052A (en) * 2008-06-20 2011-09-08 アルカテル−ルーセント ユーエスエー インコーポレーテッド Heat transfer structure
JP2014170868A (en) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd Electronic control device, heat dissipation structure thereof, and electronic device coming with electronic control device
US11032942B2 (en) 2013-09-27 2021-06-08 Alcatel Lucent Structure for a heat transfer interface and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640650A1 (en) * 1996-10-02 1998-04-09 Ego Elektro Geraetebau Gmbh Heat generating assembly for substrate mounted electronics
JP2011525052A (en) * 2008-06-20 2011-09-08 アルカテル−ルーセント ユーエスエー インコーポレーテッド Heat transfer structure
US8963323B2 (en) 2008-06-20 2015-02-24 Alcatel Lucent Heat-transfer structure
US9308571B2 (en) 2008-06-20 2016-04-12 Alcatel Lucent Heat-transfer structure
JP2014170868A (en) * 2013-03-05 2014-09-18 Hitachi Automotive Systems Ltd Electronic control device, heat dissipation structure thereof, and electronic device coming with electronic control device
US11032942B2 (en) 2013-09-27 2021-06-08 Alcatel Lucent Structure for a heat transfer interface and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4993482A (en) Coiled spring heat transfer element
US4811166A (en) Heat dissipating member for mounting a semiconductor device and electrical circuit unit incorporating the member
US6538308B1 (en) Semiconductor apparatus with heat radiation structure for removing heat from semiconductor element
US4788627A (en) Heat sink device using composite metal alloy
US5696665A (en) Integrated circuit package with diamond heat sink
US7078109B2 (en) Heat spreading thermal interface structure
JPH0613508A (en) Heat interface
US20090122491A1 (en) Universal patterned metal thermal interface
EP2227822A2 (en) A heat sink and method of forming a heatsink using a wedge-lock system
EP2232969B1 (en) Thermally and electrically conductive interconnect structures
US11758691B2 (en) Heat dissipation structure and electronic device adopting the same
EP0696630A2 (en) Heat conductive material and method for producing the same
US20210066157A1 (en) Power electronics module and a method of producing a power electronics module
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JPH0888300A (en) Heat interface
JP3669980B2 (en) MODULE STRUCTURE MANUFACTURING METHOD, CIRCUIT BOARD FIXING METHOD, AND CIRCUIT BOARD
JPS6318687A (en) Circuit board
US20040226688A1 (en) Application specific apparatus for dissipating heat from multiple electronic components
JP2004500692A5 (en)
US10856403B2 (en) Power electronics module and a method of producing a power electronics module
JP4091896B2 (en) Manufacturing method of semiconductor device
JP3669981B2 (en) Method for manufacturing module structure
JP2004064050A (en) Module structure and circuit board suitable for it
JPS63217648A (en) Heat dissipation structure of heating element
JPS63224242A (en) Heat transfer device