JPH073834B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JPH073834B2 JPH073834B2 JP61058056A JP5805686A JPH073834B2 JP H073834 B2 JPH073834 B2 JP H073834B2 JP 61058056 A JP61058056 A JP 61058056A JP 5805686 A JP5805686 A JP 5805686A JP H073834 B2 JPH073834 B2 JP H073834B2
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- film
- psg
- wiring
- silicon nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Local Oxidation Of Silicon (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
【発明の詳細な説明】 〔概要〕 多層配線工程において、アルミニウム(Al)を電極窓内
にポリッシング(polishing,研磨)を利用して埋め込む
際に、ストッパーとして研磨率の低い膜例えばプラズマ
を用いて成長した窒化シリコン(Si3N4)を設ける。DETAILED DESCRIPTION [Overview] In a multi-layer wiring process, when aluminum (Al) is embedded in an electrode window by polishing, a film having a low polishing rate such as plasma is used as a stopper. Providing grown silicon nitride (Si 3 N 4 ).
本発明は半導体装置の製造方法に関するもので、さらに
詳しく言えば、半導体基板上に多層配線を平坦性をもた
せて形成する方法に関するものである。The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of forming a multilevel wiring on a semiconductor substrate with flatness.
半導体装置の配線は、同装置の集積度を高めるために配
線を微細パターンで形成することに加えて、多層配線構
造とすることが行われる。The wiring of the semiconductor device has a multilayer wiring structure in addition to forming the wiring with a fine pattern in order to increase the integration degree of the device.
多層配線の一例を第2図を参照して説明すると、下地例
えば半導体基板11上に第1層配線12をAlで形成し、その
上に層間絶縁膜13として燐・シリケート・ガラス(PS
G)を1.0μmの厚さに堆積する。実際の工程において
は、配線12の上方ではPSGが高く堆積されるので、平坦
化のために1度エッチングで高い部分のPSGを平らに
し、しかる後に再度PSGを成長する。次いで、絶縁膜13
に電極窓14を窓開けし、引き続きAl膜15を1.5μmの厚
さに付ける。An example of the multi-layer wiring will be described with reference to FIG. 2. A first-layer wiring 12 is formed of Al on a base, for example, a semiconductor substrate 11, and an inter-layer insulating film 13 is formed on the first wiring 12 by phosphorous silicate glass (PS).
G) is deposited to a thickness of 1.0 μm. In the actual process, since PSG is deposited high above the wiring 12, the PSG in the high portion is flattened by one etching for flattening, and then PSG is grown again. Then, the insulating film 13
Then, an electrode window 14 is opened, and then an Al film 15 is applied to a thickness of 1.5 μm.
次に、スラリーを用いるエッチングを伴った研磨、すな
わちポリッシングを行って電極窓14をAlで埋め込む。そ
うすると、第1層配線12と接続をとる電極または配線が
平坦に形成されるからである。第3図はかかるポリッシ
ングの理想的に行われた場合、すなわちAlはポリッシン
グされるが、PSGは全くポリッシングされない状態が示
される。Next, polishing with etching using a slurry, that is, polishing is performed to fill the electrode window 14 with Al. This is because the electrodes or wirings connected to the first layer wirings 12 are formed flat. FIG. 3 shows a case where such polishing is ideally performed, that is, Al is polished but PSG is not polished at all.
前記したAlのポリッシングにおいて、現実には第3図に
示されるポリッシングが実現されることは難しい。前記
ポリッシングは、第2図に示される配線が形成されたシ
リコンウエハを研磨することによってなされるが、ウエ
ハ内での研磨分布が均一でないため、例えばウエハのあ
る部分は15分で研磨されるのに、他の部分は未だ研磨が
十分になされていないために、例えば20分研磨をするこ
と、いわゆるオーバーポリッシング(over polishing,
過剰研磨)がなされる。そうすると、第4図に示される
ようにPSGが余分に研磨され、十分な耐圧が稼げないこ
とになる。In the above-mentioned Al polishing, it is actually difficult to realize the polishing shown in FIG. The polishing is performed by polishing a silicon wafer on which the wiring shown in FIG. 2 is formed. However, since the polishing distribution in the wafer is not uniform, for example, a part of the wafer is polished in 15 minutes. In addition, since other parts are not sufficiently polished, for example, polishing for 20 minutes, so-called over polishing (over polishing,
Excessive polishing). Then, as shown in FIG. 4, the PSG is excessively polished and a sufficient breakdown voltage cannot be obtained.
さらに実際のポリッシングにおいて、第5図に示される
如く第1層配線12の間隔が広いところでは、オーバーポ
リッシングをしない場合でも図示の如くPSGが研磨され
ることも経験される。Further, in the actual polishing, as shown in FIG. 5, where the first layer wirings 12 are widely spaced, it is also experienced that the PSG is polished as shown in the drawing even if the overpolishing is not performed.
本発明はこのような点に鑑みて創作されたもので、多層
配線形成工程において、PSGで形成した層間絶縁膜が研
磨され耐圧低下の来すことのないような方法を提供する
ことを目的とする。The present invention was created in view of the above circumstances, and an object of the present invention is to provide a method in which, in a multilayer wiring forming step, the interlayer insulating film formed by PSG is not polished and the breakdown voltage does not decrease. To do.
第1図は本発明実施例の断面図で、図中、16はプラズマ
成長した窒化シリコン膜である。FIG. 1 is a sectional view of an embodiment of the present invention, in which 16 is a plasma-grown silicon nitride film.
本発明においては、層間絶縁膜13をPSGを成長させて形
成した後に、その表面にプラズマを用いて窒化シリコン
膜を1000Å程度の膜厚に形成する。In the present invention, after the interlayer insulating film 13 is formed by growing PSG, a silicon nitride film is formed on its surface to a thickness of about 1000Å by using plasma.
前記した窒化シリコン膜16は、PSGに比べてポリッシン
グ・レート(polishing rate,研磨率)が約1/6程度であ
るので、オーバーポリッシングがなされても、窒化シリ
コン膜は十分にストッパーとして働き、PSGの研磨を防
止するのである。Since the above-mentioned silicon nitride film 16 has a polishing rate (polishing rate) of about 1/6 as compared with PSG, even if overpolishing is performed, the silicon nitride film functions sufficiently as a stopper, To prevent the polishing.
以下、図面を参照して本発明の実施例を詳細に説明す
る。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第1図を参照すると、先ず、下地例えばシリコン基板11
上に従来例と同様に第1層配線12を形成する。そのため
には、全面にAlを付け、それを通常の技術でパターニン
グする。第1層配線12は基板に形成された素子のための
配線または素子相互を接続する配線などである。Referring to FIG. 1, first, a base, for example, a silicon substrate 11
The first-layer wiring 12 is formed on the upper surface in the same manner as in the conventional example. For that purpose, Al is applied to the entire surface and is patterned by a usual technique. The first layer wirings 12 are wirings for elements formed on the substrate or wirings for connecting elements to each other.
次に、PSGを1.0μmの膜厚に成長し、その表面を平坦化
する。このプロセスも従来例と同様である。Next, PSG is grown to a film thickness of 1.0 μm and the surface is flattened. This process is also similar to the conventional example.
次に、絶縁膜13の表面に窒化シリコン膜16を1000Å程度
の膜厚に形成する。その成長を例えば化学気相成長法で
なすと、Alの融点より高い温度を必要とし、Al配線を損
傷するから、450℃程度の温度で実施可能なプラズマ成
長法を用いる。Next, a silicon nitride film 16 is formed on the surface of the insulating film 13 to have a film thickness of about 1000Å. If the growth is performed by, for example, a chemical vapor deposition method, a temperature higher than the melting point of Al is required and the Al wiring is damaged, so the plasma growth method that can be performed at a temperature of about 450 ° C. is used.
次の段階で電極窓14を形成し、Al膜15を1.5μmの膜厚
に形成し、Al膜15のポリッシングを行った。In the next step, the electrode window 14 was formed, the Al film 15 was formed to a thickness of 1.5 μm, and the Al film 15 was polished.
ここで、従来Alをポリッシュしたときと同じスラリーを
使用したときの、PSGと窒化シリコン膜とのポリッシン
グレートを比較したところ、 PSGは約90Å/分 窒化シリコンは約15Å/分 と、PSGに比べ窒化シリコン膜のポリッシングレートは
約1/6である。Here, when comparing the polishing rates of PSG and the silicon nitride film when using the same slurry as when polishing conventional Al, PSG is about 90 Å / min. Silicon nitride is about 15 Å / min. The polishing rate of the silicon nitride film is about 1/6.
一つの実験例において、Alを適正にポリッシュするのに
30分かかった例で、ウエハ内の研磨分布を解消するため
に50%のオーバーポリッシュ(15分のポリッシュ)をか
けたところ、窒化シリコン膜の研磨された量は200〜300
Åであり、PSG膜の膜ベリ(研磨)は見られなかった。In one experimental example, to properly polish Al
In the example where it took 30 minutes, when 50% overpolish (15 minutes polish) was applied to eliminate the polishing distribution in the wafer, the polished amount of the silicon nitride film was 200 to 300.
It was Å, and no film burring (polishing) of the PSG film was observed.
このようにして窒化シリコン膜を設けることによりポリ
ッシュの分布にさほど意を用いることなくポリッシング
を実施することができるようになり、作業性が向上し、
PSGの研磨は防止され、層間の耐圧性が損なわれること
がなくなった。By providing the silicon nitride film in this manner, polishing can be carried out without much care in polishing distribution, and workability is improved.
Polishing of PSG was prevented and the pressure resistance between layers was not impaired.
以上述べてきたように本発明によれば、多層配線工程に
おいて、電極窓をAlで埋め込むためのAlのポリッシュに
際し、オーバーポリッシングをなしてもPSGの層間絶縁
膜の研磨が防止され、作業性が向上する効果が得られ
た。As described above, according to the present invention, in the multi-layer wiring process, during polishing of Al for filling the electrode window with Al, polishing of the PSG interlayer insulating film is prevented even if overpolishing is performed, and workability is improved. The improving effect was obtained.
なお、上記はシリコン基板上の第1層配線の絶縁膜につ
いて説明したが、下地は絶縁膜であってもよく、本発明
の適用範囲は図示の例と上記の説明に限定されるもので
ない。また、窒化シリコンに代えて窒化チタン(TiN)
を用いてもよい。Although the insulating film of the first layer wiring on the silicon substrate has been described above, the base may be an insulating film, and the scope of application of the present invention is not limited to the illustrated example and the above description. Also, instead of silicon nitride, titanium nitride (TiN)
May be used.
第1図は本発明実施例の断面図、 第2図ないし第5図は従来例の断面図である。 第1図ないし第5図において、 11はシリコン基板、12は第1層配線、13は絶縁膜、14は
電極窓、15はAl膜、16は窒化シリコン膜である。FIG. 1 is a sectional view of an embodiment of the present invention, and FIGS. 2 to 5 are sectional views of a conventional example. In FIGS. 1 to 5, 11 is a silicon substrate, 12 is a first layer wiring, 13 is an insulating film, 14 is an electrode window, 15 is an Al film, and 16 is a silicon nitride film.
Claims (1)
めの層間絶縁膜(13)を燐・シリケート・ガラスで形成
し、 前記層間絶縁膜(13)上にそれよりも研磨率が低い膜を
プラズマ成長法で形成して後に研磨することを特徴とす
る半導体装置の製造方法。1. An interlayer insulating film (13) for wiring (12) formed on a base (11) is formed of phosphorus silicate glass, and is further polished on the interlayer insulating film (13). A method of manufacturing a semiconductor device, comprising forming a film having a low rate by a plasma growth method and then polishing the film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058056A JPH073834B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61058056A JPH073834B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62216344A JPS62216344A (en) | 1987-09-22 |
JPH073834B2 true JPH073834B2 (en) | 1995-01-18 |
Family
ID=13073254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61058056A Expired - Lifetime JPH073834B2 (en) | 1986-03-18 | 1986-03-18 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH073834B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2611615B2 (en) * | 1992-12-15 | 1997-05-21 | 日本電気株式会社 | Method for manufacturing semiconductor device |
JPH0745616A (en) * | 1993-07-29 | 1995-02-14 | Nec Corp | Manufacture of semiconductor device |
JP2864982B2 (en) * | 1994-02-08 | 1999-03-08 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US6372630B1 (en) | 1997-04-18 | 2002-04-16 | Nippon Steel Corporation | Semiconductor device and fabrication method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5861663A (en) * | 1981-10-08 | 1983-04-12 | Matsushita Electronics Corp | Manufacture of solid-state image pickup device |
JPS6118148A (en) * | 1984-07-04 | 1986-01-27 | Hitachi Ltd | Manufacture of semiconductor device |
-
1986
- 1986-03-18 JP JP61058056A patent/JPH073834B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5861663A (en) * | 1981-10-08 | 1983-04-12 | Matsushita Electronics Corp | Manufacture of solid-state image pickup device |
JPS6118148A (en) * | 1984-07-04 | 1986-01-27 | Hitachi Ltd | Manufacture of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPS62216344A (en) | 1987-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3360350B2 (en) | Surface flattening method | |
JPS5815250A (en) | Manufacture of semiconductor device | |
KR100331906B1 (en) | Method for manufacturing a semiconductor device | |
KR960005046B1 (en) | Semiconductor integrated circuit and the manufacturing process | |
JPH073834B2 (en) | Method for manufacturing semiconductor device | |
JP2950029B2 (en) | Method for manufacturing semiconductor device | |
JP3127983B2 (en) | Method for manufacturing semiconductor device | |
JPS63115341A (en) | Method of smoothening surface | |
JPS63302537A (en) | Manufacture of integrated circuit | |
JP2606315B2 (en) | Method for manufacturing semiconductor device | |
JPH0799759B2 (en) | Method for manufacturing semiconductor device | |
JPS6266679A (en) | Manufacture of semiconductor device | |
JPH05275424A (en) | Manufacture of semiconductor device | |
JPS62136018A (en) | Manufacture of semiconductor device | |
KR100558039B1 (en) | Method of planarization an insulating film in a semiconductor devide | |
JPS6160580B2 (en) | ||
KR100693785B1 (en) | Method for forming interlayer dielectric in semiconductor memory device | |
JP3149169B2 (en) | Method for manufacturing semiconductor device | |
JP2000031148A (en) | Manufacture of semiconductor device | |
JPH07263553A (en) | Production process of semiconductor device | |
KR19990008773A (en) | SOH wafer manufacturing method | |
JPH06151572A (en) | Dielectric-isolation substrate and its manufacture | |
JPS6273634A (en) | Manufacture of semiconductor device | |
JPH0684902A (en) | Method of flattening insulation film | |
JPH06188242A (en) | Semiconductor device and its manufacture |