JPH0738259B2 - Optical disk manufacturing method - Google Patents

Optical disk manufacturing method

Info

Publication number
JPH0738259B2
JPH0738259B2 JP62006474A JP647487A JPH0738259B2 JP H0738259 B2 JPH0738259 B2 JP H0738259B2 JP 62006474 A JP62006474 A JP 62006474A JP 647487 A JP647487 A JP 647487A JP H0738259 B2 JPH0738259 B2 JP H0738259B2
Authority
JP
Japan
Prior art keywords
recording medium
state
recording
reflectance
optical disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62006474A
Other languages
Japanese (ja)
Other versions
JPS63175242A (en
Inventor
康之 後藤
研一 内海
岩雄 津川
明 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62006474A priority Critical patent/JPH0738259B2/en
Publication of JPS63175242A publication Critical patent/JPS63175242A/en
Publication of JPH0738259B2 publication Critical patent/JPH0738259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 透明基板上に膜形成する記録媒体の基板加熱条件と熱処
理時間を調節して、情報の消去状態と等しい結晶化状態
とすることにより不感期を無くした光ディスクの製造方
法。
DETAILED DESCRIPTION OF THE INVENTION [Outline] An optical disc in which a dead period is eliminated by adjusting a substrate heating condition and a heat treatment time of a recording medium formed on a transparent substrate to obtain a crystallized state equal to an erased state of information. Manufacturing method.

〔産業上の利用分野〕[Industrial application field]

本発明は不感期を無くした光ディスクの製造方法に関す
る。
The present invention relates to a method for manufacturing an optical disc that eliminates the dead period.

光ディスクはレーザ光を用いて高密度の情報記録を行う
メモリであり、記録容量が大きく、非接触で記録と再生
を行うことができ、また塵埃の影響を受けないなど優れ
た特徴をもっている。
An optical disk is a memory that records information at a high density by using a laser beam, has a large recording capacity, can perform recording and reproducing in a non-contact manner, and is excellent in that it is not affected by dust.

こゝで、光ディスクは記録媒体として低融点金属を用
い、情報の記録を穴の有無により行う読み出し専用のメ
モリ以外に結晶−結晶間或いは結晶−非晶質(アモルフ
ァス)間の反射率の差を利用した書換え可能なメモリ
(Erasable Memory)が開発されている。
Here, the optical disc uses a low melting point metal as a recording medium, and in addition to a read-only memory which records information by presence or absence of a hole, a difference in reflectance between crystal and crystal or crystal and amorphous (amorphous) is obtained. The rewritable memory (Erasable Memory) used is being developed.

本発明は結晶−結晶間転移を利用する光記録媒体の製造
方法に関するものである。
The present invention relates to a method for manufacturing an optical recording medium utilizing crystal-crystal transition.

〔従来の技術〕[Conventional technology]

結晶−結晶転移形の記録媒体としてはインジウム(In)
‐アンチモン(Sb)合金やIn-Sb-セレン(Se)合金を用
いたものなどが知られている。
Indium (In) is used as a recording medium of crystal-crystal transition type.
-An antimony (Sb) alloy or an In-Sb-selenium (Se) alloy is known.

かゝる合金を記録媒体とする光ディスクについて情報の
記録,再生および消去の機構を記録媒体としてIn-Sb合
金を使用する場合について説明すると次のようになる。
The following is a description of the case where an In-Sb alloy is used as a recording medium for the mechanism of recording, reproducing and erasing information for an optical disc using such an alloy as a recording medium.

このデバイスは組成比が原子量%で1:1、すなわち状態
図でIn50Sb50の組成をもつ金属間化合物とSb金属原子と
からなる固溶体が熱エネルギの付与条件により、これを
構成するSb金属原子の分散状態が異なり、この状態の相
違によりレーザ光の反射率が異なることを利用するもの
である。
This device has a composition ratio of 1: 1 in atomic weight%, that is, a solid solution consisting of an Sb metal atom and an intermetallic compound having a composition of In 50 Sb 50 in the phase diagram is composed of the Sb metal that constitutes the thermal energy This is because the dispersion state of atoms is different and the reflectance of laser light is different due to the difference in this state.

すなわち、電子顕微鏡による観察結果によると記録状態
は照射位置にSb原子が凝集しており、これを取り囲んで
微細なIn50Sb50金属間化合物があり、従って高い反射率
状態となっている。
That is, according to the observation result by the electron microscope, in the recorded state, Sb atoms are aggregated at the irradiation position, and there is a fine In 50 Sb 50 intermetallic compound surrounding the Sb atom, and thus the state is high reflectance.

一方、消去状態は微細なIn50Sb50金属間化合物の中に微
細なSb原子が均一に分散しており、従って低い反射率状
態となっている。
On the other hand, in the erased state, fine Sb atoms are uniformly dispersed in the fine In 50 Sb 50 intermetallic compound, and thus the state of low reflectance is obtained.

かゝる状態は例えばInとSbとの原子量%が40:60で膜厚
が1000Åの記録媒体について説明すると、半導体レーザ
を用いて出力10mW,パルス幅200nS(大パワー,短時間)
の書込みパルスを照射すると照射部の記録媒体は短時間
の加熱溶融により状態変化が生じて反射率は約40%の状
態となる。これが情報の記録条件である。
Such a state is explained, for example, with a recording medium in which the atomic weight% of In and Sb is 40:60 and the film thickness is 1000Å. Using a semiconductor laser, output 10 mW, pulse width 200 nS (high power, short time)
When the writing pulse of (1) is irradiated, the recording medium in the irradiation portion changes in state due to heating and melting for a short time, and the reflectance becomes approximately 40%. This is the information recording condition.

一方、この位置に出力4mW,パルス幅400nS(中パワー,
長時間)の消去パルスを照射すると、被照射部は加熱に
より状態変化が生じて反射率は約30%の状態に落ちる。
On the other hand, output 4mW, pulse width 400nS (medium power,
When the erase pulse is applied for a long period of time, the irradiated part changes in state due to heating, and the reflectance drops to about 30%.

この情報の消去条件である。This is a condition for deleting this information.

一方、情報の記録位置に出力が0.5mW程度(小パワー)
のレーザ光を照射する場合には状態変化は生じない。
On the other hand, the output is about 0.5 mW at the information recording position (small power)
When irradiating the laser beam of No. 1, the state does not change.

これが情報の再生条件である。This is the information reproduction condition.

光ディスクへの情報の記録,再生および消去はこのよう
にレーザ光の照射条件の差により記録媒体に状態変化を
生じて反射率が異なるのを利用して行われている。
Recording, reproducing and erasing of information on the optical disc are performed by utilizing the fact that the state of the recording medium changes due to the difference in the irradiation condition of the laser beam and the reflectance is different.

然し、ガラスなどの透明基板に真空蒸着法などにより組
成比がIn40Sb60の記録媒体を膜形成しても、そのまゝ直
ちに書込みパルスを照射した段階では高い反射率を示さ
ず、安定した高い反射率状態を得るには書込みと消去動
作を数回反復して記録媒体を安定した結晶状態にする必
要がある。
However, even when a recording medium with a composition ratio of In 40 Sb 60 was formed on a transparent substrate such as glass by a vacuum deposition method or the like, it did not show a high reflectance at the stage of immediately irradiating the writing pulse, and was stable. To obtain a high reflectance state, it is necessary to repeat the writing and erasing operations several times to bring the recording medium into a stable crystalline state.

第2図はこの状態を示すもので、横軸には記録と消去を
1サイクルとする処理回数を、また縦軸には記録媒体の
反射率をとってある。
FIG. 2 shows this state, in which the abscissa axis represents the number of times of recording and erasing in one cycle, and the ordinate axis represents the reflectance of the recording medium.

図において膜形成の終わった記録媒体は当初は初期状態
1として示すように約25%の反射率を示しているが、書
込みパルスの照射により約30%に反射率が上昇し、消去
パルスの照射により約26%に降下し、記録と消去を繰り
返すことにより次第に反射率は上昇し、この例の場合は
4回以降は安定した状態となっている。
In the figure, the recording medium on which the film has been formed initially shows a reflectance of about 25% as shown in the initial state 1, but the irradiation of the writing pulse increases the reflectance to about 30% and the irradiation of the erase pulse. Then, the reflectivity gradually rises by repeating recording and erasing, and in the case of this example, it is stable after four times.

この安定状態に達するまでの期間は不感期(Incubation
Time)と言われているが、光ディスクをメモリとして
使用するには不感期を経過し安定化した状態とする必要
がある。
The period until reaching this stable state is the dead period (Incubation
It is said that, in order to use the optical disk as a memory, it has to be in a stable state after the dead period.

そのため光ディスクの量産化に当たって不感期を解消し
て工程を短縮することが必要であった。
Therefore, in mass-producing optical discs, it was necessary to eliminate the dead period and shorten the process.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上記したように書換え可能な光ディスクには不感期が
存在しており、これを解消するための記録・消去サイク
ルの繰り返し処理が必要であるが、この処理が量産化の
障害となっている。
As described above, the rewritable optical disc has a dead period, and it is necessary to repeat the recording / erasing cycle to eliminate it, but this process is an obstacle to mass production.

そこで、如何にして不感期を無くするかが課題である。Therefore, how to eliminate the dead period is an issue.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は透明基板上に膜形成した記録媒体に対する
レーザ光の照射条件により、該記録媒体の結晶状態が変
化して反射率が異なるのを利用し、情報の記録と消去と
を行う書換え可能な光ディスクにおいて、前記透明基板
への膜形成に当たって基板加熱温度と熱処理時間を調節
して不感期をなくすることにより解決することができ
る。
The above problem can be rewritten by recording and erasing information by utilizing the fact that the crystal state of the recording medium changes depending on the irradiation conditions of the recording medium formed on the transparent substrate and the reflectance is different. In another optical disc, the problem can be solved by eliminating the dead period by adjusting the substrate heating temperature and the heat treatment time in forming the film on the transparent substrate.

〔作用〕[Action]

本発明は記録媒体の記録状態と消去状態における結晶状
態を観察した結果なされたものである。
The present invention has been made as a result of observing a crystalline state of a recording medium in a recorded state and an erased state.

すなわち、In-Sb系記録媒体において、記録状態におい
ては粒径が20nm程度で組成比がIn50Sb50金属間化合物微
結晶の中に粒径が200nm程度のSb原子が凝集しているの
が認められる。
That is, in the In-Sb-based recording medium, in the recorded state, Sb atoms having a grain size of about 20 nm and a composition ratio of In 50 Sb 50 intermetallic compound crystallites having a grain size of about 200 nm are aggregated. Is recognized.

また、消去状態は粒径が20nm程度のIn50Sb50金属間化合
物微結晶の中にこれと殆ど同じ度粒径のSb原子が均一に
分散しているのが認められる。
Further, in the erased state, it can be seen that Sb atoms of almost the same particle size are uniformly dispersed in In 50 Sb 50 intermetallic compound microcrystals having a particle size of about 20 nm.

一方、ガラスなどの透明基板上に真空蒸着法などの方法
により膜形成した初期状態のInSb記憶媒体は非晶質であ
る。
On the other hand, the InSb storage medium in an initial state in which a film is formed on a transparent substrate such as glass by a method such as a vacuum deposition method is amorphous.

そこで、不感期を無くするには初期状態のInSb記憶媒体
を消去状態と同じ結晶状態とすればよいことが判る。
Therefore, in order to eliminate the dead period, it is understood that the InSb storage medium in the initial state should be in the same crystalline state as the erased state.

さて、今まで蒸着中に基板加熱を行ったり、膜形成の終
わった記録媒体にレーザ照射を行って結晶化させたり、
膜形成の終わった記録媒体を加熱するなどの初期化処理
を行って不感期をなくすることが試みられてきた。
By the way, heating the substrate during evaporation until now, or irradiating the recording medium after film formation with laser to crystallize it,
It has been attempted to eliminate the dead period by performing an initialization process such as heating the recording medium after the film formation.

然し、発明者等は電子顕微鏡による観察の結果、このよ
うな従来の初期化処理で得られた結晶の粒径はIn50Sb50
金属間化合物とSb原子とも10nm程度であり、消去状態に
比較して細かいことを見出した。
However, as a result of observation with an electron microscope, the inventors have found that the grain size of the crystal obtained by such conventional initialization treatment is In 50 Sb 50
It was found that both the intermetallic compound and the Sb atom are about 10 nm, which is fine compared to the erased state.

そこで、不感期を無くするには更にエネルギーの付与が
必要なことが明らかとなった。
Therefore, it became clear that more energy needs to be applied to eliminate the dead period.

次に、発明者等は結晶−結晶転移形の他の記録媒体につ
いて検討した結果、同様な現象はガリウム・アンチモン
(GaSb)系やビスマス・テルル(BiTe)系などについて
も存在することが判った。
Next, the inventors examined other crystal-to-crystal transition type recording media, and found that similar phenomena also exist in gallium-antimony (GaSb) -based and bismuth-tellurium (BiTe) -based recording media. .

例えば、GaSbにおいてはInSbと同様に組成比が原子量%
でGa50Sb50の位置に金属間化合物があることから、Sbの
組成比が60〜70の合金組成すなわちGa40Sb60〜Ga30Sb70
のものを記録媒体とすれば、大パワー,短時間のレーザ
照射により照射位置にSb原子が凝集した記録状態を作る
ことができ、また、中パワー,長時間のレーザ照射によ
り微細なSb原子が金属間化合物の中に均一に分散してい
る消去状態を作ることができるが、この場合にも非晶質
である蒸着膜を加熱して消去状態の粒径にすることによ
り不感期を無くすることができる。
For example, the composition ratio of GaSb is the same as InSb in terms of atomic weight%.
Since there is an intermetallic compound at the position of Ga 50 Sb 50 , the composition ratio of Sb is 60 to 70, that is, Ga 40 Sb 60 to Ga 30 Sb 70
If a recording medium of this kind is used, a recording state in which Sb atoms are aggregated at the irradiation position can be created by high power, short time laser irradiation, and fine Sb atoms can be generated by medium power, long time laser irradiation. It is possible to create an erased state that is uniformly dispersed in the intermetallic compound, but in this case as well, the dead period is eliminated by heating the amorphous vapor-deposited film to a particle size in the erased state. be able to.

また、BiTeの場合は金属間化合物は組成比が原子量%で
Bi40Te60(Bi2Te3)の位置にあることから、Bi30Te70
近の合金組成を記録媒体に用いればよく、この場合も非
晶質である蒸着膜を加熱して消去状態の粒径(約20nm)
にすることにより不感期を無くすることができる。
In the case of BiTe, the composition ratio of the intermetallic compound is atomic weight%.
Since it is at the position of Bi 40 Te 60 (Bi 2 Te 3 ), the alloy composition around Bi 30 Te 70 may be used for the recording medium. Particle size (about 20 nm)
The dead period can be eliminated by setting.

〔実施例〕〔Example〕

実施例1:(InSb合金への適用例) ガラス基板上に二元蒸着法により組成比がIn40Sb60の記
録媒体を厚さ100nmの厚さに膜形成する際に、基板の加
熱時間を2時間に固定し、基板温度を150〜240℃に変え
て結晶粒径が20nmとなる条件を求めた。
Example 1: (Example of application to InSb alloy) When a recording medium having a composition ratio of In 40 Sb 60 was formed into a film having a thickness of 100 nm on a glass substrate by a binary vapor deposition method, the heating time of the substrate was changed. The temperature was fixed for 2 hours, the substrate temperature was changed to 150 to 240 ° C., and the condition that the crystal grain size was 20 nm was obtained.

こゝで、膜形成は短時間に終了するので大部分の熱処理
は膜形成された記録媒体に対して行うことになる。
Since the film formation is completed in a short time, most of the heat treatment is performed on the film-formed recording medium.

この結果、粒径が20nmの粒径は基板温度を再結晶化が始
まる約200℃に保持し、不活性雰囲気(N2)中で約2時
間に亙って加熱する場合に得られることが判った。
As a result, a particle size of 20 nm can be obtained when the substrate temperature is maintained at about 200 ° C. where recrystallization starts and heating is performed in an inert atmosphere (N 2 ) for about 2 hours. understood.

この場合は第1図に示すように初期状態1の反射率は約
30%の値を示し、記録と消去動作を繰り返しても記録状
態2は約40%,消去状態は約30%と一定であり、不感期
が解消されたことが判る。
In this case, the reflectance in the initial state 1 is about 1 as shown in FIG.
It shows a value of 30%, and even if the recording and erasing operations are repeated, the recording state 2 is about 40% and the erasing state is about 30%, which means that the dead period is eliminated.

実施例2:(GaSb合金への適用例) ガラス基板上に二元蒸着法により組成比がGa40Sb60の記
録媒体を厚さ100nmの厚さに膜形成したが、この状態で
は膜質は非晶質である。
Example 2: (Example of application to GaSb alloy) A recording medium having a composition ratio of Ga 40 Sb 60 was formed into a film having a thickness of 100 nm on a glass substrate by a binary vapor deposition method. It is crystalline.

このGa40Sb60を記録媒体すると光ディスクにおいて記録
状態はInSbの場合と同様にレーザ照射位置に粒径が200n
m程度のSb原子が凝集しており、これを取り囲んで粒径
が20nm程度のGa50Sb50金属間化合物が存在している。
When this Ga 40 Sb 60 is used as the recording medium, the recording state on the optical disc is 200n at the laser irradiation position as in the case of InSb.
Sb atoms of about m are aggregated, and a Ga 50 Sb 50 intermetallic compound having a particle size of about 20 nm is present surrounding this.

また、消去状態では粒径が20nm程度のGa50Sb50金属間化
合物の中に同程度のSb原子が分散している。
Further, in the erased state, the same amount of Sb atoms is dispersed in the Ga 50 Sb 50 intermetallic compound having a particle size of about 20 nm.

そこで、非晶質状態のGa40Sb60を消去状態の微結晶にす
るために、この合金(融点700℃)の再結晶化が始まる3
50℃に保持し、N2雰囲気中で加熱した結果、約2時間の
加熱で消去状態と同様な結晶粒径を得ることができた。
Therefore, recrystallization of this alloy (melting point 700 ° C) begins in order to make Ga 40 Sb 60 in the amorphous state into microcrystals in the erased state.
As a result of holding at 50 ° C. and heating in N 2 atmosphere, it was possible to obtain the same crystal grain size as in the erased state by heating for about 2 hours.

このような処理をした光ディスクについて、半導体レー
ザを用いて出力10mW,パルス幅200nS(大パワー,短時
間)の書込みを行った場合の反射率は約40%であり、一
方、この位置に出力4mW,パルス幅400nS(中パワー,長
時間)の消去パルスを照射する場合の反射率は約30%で
あり、この処理により不感期を無くすることができた。
For an optical disk that has undergone such processing, the reflectance is approximately 40% when writing with an output of 10 mW and pulse width of 200 nS (high power, short time) using a semiconductor laser, while output of 4 mW at this position Therefore, the reflectivity was about 30% when an erase pulse with a pulse width of 400 nS (medium power, long time) was irradiated, and the dead period could be eliminated by this treatment.

実施例3:(BiTe合金への適用例) ガラス基板上に二元蒸着法により組成比がBi30Te70の記
録媒体を厚さ100nmの厚さに膜形成したが、この状態で
は膜質は非晶質である。
Example 3: (Application example to BiTe alloy) A recording medium having a composition ratio of Bi 30 Te 70 was formed into a film with a thickness of 100 nm on a glass substrate by a binary vapor deposition method. It is crystalline.

この光ディスクにおいて記録状態はレーザ照射位置に粒
径が200nm程度のTe原子が凝集しており、これを取り囲
んで粒径が20nm程度のBi2Te3金属間化合物が存在してい
る。
In the recorded state of this optical disk, Te atoms having a particle size of about 200 nm are aggregated at the laser irradiation position, and a Bi 2 Te 3 intermetallic compound having a particle size of about 20 nm is present surrounding the Te atoms.

また、消去状態では粒径が20nm程度のBi2Te3金属間化合
物の中に同程度のTe原子が分散している。
In the erased state, Te atoms of the same size are dispersed in the Bi 2 Te 3 intermetallic compound having a particle size of about 20 nm.

そこで、非晶質状態のBi30Te70を消去状態の微結晶にす
るために、この合金(融点560℃)の再結晶化が始まる2
50℃に保持し、N2雰囲気中で加熱した結果、約2時間の
加熱で消去状態と同様な結晶粒径を得ることができた。
Therefore, recrystallization of this alloy (melting point 560 ° C) begins in order to convert amorphous Bi 30 Te 70 into erased microcrystals.
As a result of holding at 50 ° C. and heating in N 2 atmosphere, it was possible to obtain the same crystal grain size as in the erased state by heating for about 2 hours.

次に、このような処理をした光ディスクについて、半導
体レーザを用いて出力15mW,パルス幅150nS(大パワー,
短時間)の書込みを行った場合の反射率は約25%であ
り、一方、この位置に出力6mW,パルス幅400nS(中パワ
ー、長時間)の消去パルスを照射する場合の反射率は約
22%であり、この処理により不感期を無くすることがで
きる。
Next, regarding the optical disc that has been subjected to such a process, an output of 15 mW and a pulse width of 150 nS (large power,
The reflectance when writing for a short time) is about 25%, while the reflectance when an erase pulse with an output of 6 mW and a pulse width of 400 nS (medium power, long time) is applied to this position is about 25%.
This is 22%, and the dead period can be eliminated by this treatment.

〔発明の効果〕〔The invention's effect〕

以上記したように本発明の実施により不感期をなくする
ことができ、これにより製造工程の短縮によるコスト低
減が可能となる。
As described above, the dead period can be eliminated by implementing the present invention, and thus the cost can be reduced by shortening the manufacturing process.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を実施した光ディスクの反射率の変化特
性、 第2図は従来の光ディスクの反射率の変化特性、 である。 図において、 1は初期状態、2は記録状態、3は消去状態、 である。
FIG. 1 is a reflectance change characteristic of an optical disc according to the present invention, and FIG. 2 is a reflectance change characteristic of a conventional optical disc. In the figure, 1 is an initial state, 2 is a recording state, and 3 is an erasing state.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】透明基板上に膜形成した記録媒体に対する
レーザ光の照射条件により、該記録媒体の結晶状態が変
化して反射率が異なるのを利用し、情報の記録と消去と
を行う書換え可能な光ディスクにおいて、前記透明基板
への記録媒体の膜形成に当たって基板加熱温度と熱処理
時間を調節し、記録媒体の結晶粒径を記録情報の消去状
態の結晶粒径に等しくすることを特徴とする光ディスク
の製造方法。
1. Rewriting for recording and erasing information by utilizing the fact that the crystalline state of the recording medium changes depending on the irradiation conditions of the recording medium formed on a transparent substrate and the reflectance is different. In a possible optical disc, the substrate heating temperature and the heat treatment time are adjusted in forming the film of the recording medium on the transparent substrate, and the crystal grain size of the recording medium is made equal to the crystal grain size in the erased state of the recorded information. Optical disc manufacturing method.
【請求項2】前記記録媒体がインジウム・アンチモン合
金よりなることを特徴とする特許請求の範囲第1項記載
の光ディスクの製造方法。
2. The method of manufacturing an optical disk according to claim 1, wherein the recording medium is made of an indium antimony alloy.
JP62006474A 1987-01-14 1987-01-14 Optical disk manufacturing method Expired - Fee Related JPH0738259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62006474A JPH0738259B2 (en) 1987-01-14 1987-01-14 Optical disk manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62006474A JPH0738259B2 (en) 1987-01-14 1987-01-14 Optical disk manufacturing method

Publications (2)

Publication Number Publication Date
JPS63175242A JPS63175242A (en) 1988-07-19
JPH0738259B2 true JPH0738259B2 (en) 1995-04-26

Family

ID=11639458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62006474A Expired - Fee Related JPH0738259B2 (en) 1987-01-14 1987-01-14 Optical disk manufacturing method

Country Status (1)

Country Link
JP (1) JPH0738259B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU723890B2 (en) * 1997-02-28 2000-09-07 Asahi Kasei Kogyo Kabushiki Kaisha Phase change optical recording medium, method of manufacturing the same, and method of recording information on the same
ES2201474T3 (en) * 1997-04-16 2004-03-16 Asahi Kasei Kabushiki Kaisha PROCEDURE FOR THE PRODUCTION OF AN OPTIMAL INFORMATION REGISTRATION MEDIA AND OPTICAL INFORMATION REGISTRATION MEDIA PRODUCED BY THE PROCESS.
US6554972B1 (en) * 1998-06-26 2003-04-29 Kabushiki Kaisha Toshiba Information recording medium and its manufacturing method

Also Published As

Publication number Publication date
JPS63175242A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
JPH08267926A (en) Optical recording medium
US4860274A (en) Information storage medium and method of erasing information
JPH0422438B2 (en)
JPS62208442A (en) Rewriting type optical recording medium
JPH0738259B2 (en) Optical disk manufacturing method
JP2556183B2 (en) Optical recording method and optical recording medium using this method
JP2513605B2 (en) Optical disk manufacturing method
US5976617A (en) Initialization method of phase transformation-type optical disk
JPS62202345A (en) Rewriting type optical recording medium
JPS6376120A (en) Erasable type optical recording medium
JPS6058893A (en) Optical recording medium
JP2766276B2 (en) Rewritable phase-change optical memory medium
JP2577353B2 (en) Information recording medium
JPS62200544A (en) Optical recording medium
JPH053983B2 (en)
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
JP2615577B2 (en) Optical recording method
JPH0822611B2 (en) Method for manufacturing optical recording medium
JPH02278538A (en) Method for crystallization of phase-transition type recording medium
JPH01162247A (en) Rewriting type phase transfer optical recording medium
JPH01191344A (en) Optical information recording medium
JPS6220154A (en) Manufacture of optical recording medium
JPH01113936A (en) Member for recording information
JPS62202344A (en) Optical recording medium
JPS62283431A (en) Optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees