JPH0737604A - Battery - Google Patents

Battery

Info

Publication number
JPH0737604A
JPH0737604A JP5202463A JP20246393A JPH0737604A JP H0737604 A JPH0737604 A JP H0737604A JP 5202463 A JP5202463 A JP 5202463A JP 20246393 A JP20246393 A JP 20246393A JP H0737604 A JPH0737604 A JP H0737604A
Authority
JP
Japan
Prior art keywords
active material
battery
electrolyte
film
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5202463A
Other languages
Japanese (ja)
Inventor
Kenji Ito
健司 伊藤
Hiroshi Matsuda
宏 松田
Yuuko Morikawa
有子 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5202463A priority Critical patent/JPH0737604A/en
Publication of JPH0737604A publication Critical patent/JPH0737604A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To increase current density by using a solid electrolyte obtained by the action of a supporting electrolyte to a polyimide thin film as an electrolyte separator. CONSTITUTION:A positive active material 12 and a negative active material 13 are arranged on each side of an electrode separator, and a positive current collector 14 and a negative current collector 15 are arranged on the outside of the active materials respectively. As the electrode separator 11, a solid electrolyte prepared by doping a supporting electrolyte such as hydrogen chloride in a polyimide thin film formed in a thickness of 1mum or less by an LB process is used. The active materials 12, 13 are prepared, for example, by doping hydrogen chloride in a conductive polymer deposited on both sides of the electrode separator 11 by an LB process of polyaniline. The current collectors 14, 15 are formed by sputtering, for example, gold on the outsides of the active materials 12, 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子固体電解質を応
用した全固体電池やペーパー電池等の優れた特性を有す
る電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having excellent characteristics such as an all-solid battery or a paper battery to which a polymer solid electrolyte is applied.

【0002】[0002]

【従来の技術】電池(特に二次電池)は、簡単に電気を
貯蔵し、再度取り出せる電源として、現代社会を支える
重要な製品の一つである。特に、最近のエレクトロニク
ス機器の小型化及びコードレス化はめざましく、それら
のエネルギー源としての電池には、より一層の高性能
化、小型化、長寿命化、軽量化、そして安全性が求めら
れている。しかし、電池の技術革新の速度は、エレクト
ロニクス機器の技術革新の速度に比べて遅く、電子機器
における優れた特性を有する電池の開発の占める重要性
は年々増加する傾向にある。又、微弱な電流を長期間に
わたって供給することが出来る小型電源は、今後もその
需要が更に高くなるものと考えられる。例えば、心臓用
ペースメーカーを始めとする(人工)臓器用埋め込み電
源として、体内薬物除放装置等の応用が考えられるマイ
クロメカニクス用電源として、不揮発性メモリー用のバ
ックアップ電源(パッケージ内に挿入)として、及びI
Cカード用の電源としての応用等が考えられる。ところ
で、従来から実用化されている電池は、鉛電池を始めと
して液体の電解質を使用している。乾電池も、実際のと
ころは電解質をゲル状にした湿電池である。
2. Description of the Related Art Batteries (particularly secondary batteries) are one of the important products that support the modern society as a power source that can easily store electricity and extract it again. In particular, the recent miniaturization and cordlessness of electronic devices is remarkable, and batteries as their energy sources are required to have higher performance, smaller size, longer life, lighter weight, and safety. . However, the rate of technological innovation of batteries is slower than the rate of technological innovation of electronic devices, and the importance of developing batteries having excellent characteristics in electronic devices tends to increase year by year. Further, it is considered that the demand for the small power source capable of supplying a weak current for a long period of time will be further increased in the future. For example, as an implantable power supply for (artificial) organs such as a cardiac pacemaker, as a power supply for micromechanics that can be applied to internal drug release devices, as a backup power supply for nonvolatile memory (inserted in a package), And I
Application as a power source for C cards can be considered. By the way, the batteries which have been put into practical use conventionally use liquid electrolytes including lead batteries. The dry battery is also a wet battery in which the electrolyte is in the form of gel.

【0003】これに対し、電解質を固体にした固体電池
は、種々のメリットが考えられる為、近年さかんに研究
されてきている。特に、電解質にポリエーテル等の高分
子を用いた高分子固体電解質電池は、以下に示す点から
非常に有用である。 (1)非常に薄い固体電池が得られる:即ち、ICカー
ド及びICバックアップ用パッケージ内電池等、非常に
薄い電子機器用の電池としての用途が期待できる。又、
一般に、電池内部の化学反応は固相反応であり非常に効
率が悪いが、活物質の薄膜化により、イオン拡散が非常
に遅いことによる効果が小さくなり、実際のエネルギー
密度が理論エネルギー密度より大きくなる可能性があ
る。 (2)柔軟で機械的強度が強い:即ち、固体電解質とし
ては、高分子固体電解質の他に無機固体電解質も挙げら
れるが、機械的強度、変形能、成型性及び可塑性等の点
から高分子固体電解質の方が優れている。 (3)液漏れがなく安全である:即ち、液漏れがなく且
つ重金属等を含まない為、使用時の安全性が高く、体内
埋め込み装置用等にも使用することが出来る。更に、電
解質が蒸散することがない為、宇宙開発用にも適してい
る。 (4)フィルム化が容易で、大面積化が可能である:即
ち、通常の二次電池(鉛電池、Ni−Cd電池)におい
ては、電極面積が増大すると指数級数的にコストが増大
する。従って、近年、電力負荷平準化等の大電力貯蔵用
の電池が期待されているのに対して、電極面積の増大に
伴うコストの増大から、未だ実用化のめどがたっていな
いのが現状である。 (5)成型が容易であり、形状の自由選択が可能であ
る:即ち、電子機器の形状に合わせて、電池形状を容易
に変更することが出来る。 (6)廃棄処分が容易である:即ち、カドミウム及び鉛
等の重金属を含まない為、廃棄の際に通常の廃棄物と同
様にして処分することが可能である。
On the other hand, solid-state batteries having a solid electrolyte have been studied extensively in recent years because various advantages can be considered. In particular, a polymer solid electrolyte battery using a polymer such as polyether as an electrolyte is very useful from the following points. (1) A very thin solid battery can be obtained: That is, it can be expected to be used as a battery for an extremely thin electronic device such as a battery in an IC card and an IC backup package. or,
Generally, the chemical reaction inside the battery is a solid-phase reaction and is very inefficient, but due to the thinning of the active material, the effect due to the very slow ion diffusion becomes small, and the actual energy density is higher than the theoretical energy density. Could be. (2) Flexible and strong mechanical strength: That is, as the solid electrolyte, not only polymer solid electrolytes but also inorganic solid electrolytes can be mentioned. However, from the viewpoint of mechanical strength, deformability, moldability, plasticity, etc. Solid electrolytes are better. (3) Safe without liquid leakage: That is, since there is no liquid leakage and no heavy metals are contained, it is highly safe in use and can be used for implantable devices. Furthermore, since the electrolyte does not evaporate, it is also suitable for space development. (4) It can be easily formed into a film and can have a large area. That is, in a normal secondary battery (lead battery, Ni-Cd battery), the cost increases exponentially as the electrode area increases. Therefore, in recent years, while the battery for large power storage, such as a power load leveling has been expected, from the increase in cost due to an increase of the electrode area is the current situation is not just the prospect of yet practical . (5) Molding is easy and the shape can be freely selected. That is, the battery shape can be easily changed according to the shape of the electronic device. (6) Disposal is easy: In other words, since it does not contain heavy metals such as cadmium and lead, it can be disposed of in the same manner as normal waste at the time of disposal.

【0004】しかし、固体電解質は前記した様に、室温
でのイオン伝導性が悪く、電流密度が大きくとれないと
いう本質的な問題がある。例えば、実用化されている有
機溶媒系電解質に比べて、高分子固体電解質のイオン伝
導度は2桁程度小さい。高分子におけるイオン伝導は、
高分子のセグメント運動に起因するとされているので、
これを用いている限りイオン伝導度には上限がある。即
ち、一般に高分子固体電解質として代表されているポリ
エーテルの場合は、無機系塩のオリゴオキシエチレン溶
液が示すイオン伝導度以上の値は発現されない。その値
は室温で約10-4 S/cm前後といわれている。そこ
で、より速いイオン伝導度を実現する為に、電極隔膜に
用いられる高分子固体電解質を薄膜化することが試みら
れている。高分子固体電解質の厚さを一桁薄くすること
が出来れば、そのイオン伝導度が一桁向上したのと同じ
効果を生む為である。
However, as described above, the solid electrolyte has a problem that the ionic conductivity at room temperature is poor and the current density cannot be large. For example, the ionic conductivity of a solid polymer electrolyte is about two orders of magnitude lower than that of an organic solvent-based electrolyte that has been put into practical use. Ionic conduction in polymers is
Since it is said to be due to the segmental motion of the polymer,
As long as this is used, the ionic conductivity has an upper limit. That is, in the case of polyether, which is generally represented by a polymer solid electrolyte, a value higher than the ionic conductivity exhibited by an oligooxyethylene solution of an inorganic salt is not expressed. The value is said to be around 10 −4 S / cm at room temperature. Therefore, in order to achieve faster ionic conductivity, it has been attempted to thin the solid polymer electrolyte used for the electrode diaphragm. This is because if the thickness of the polymer solid electrolyte can be reduced by an order of magnitude, the same effect that the ionic conductivity is improved by an order of magnitude is produced.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、電極
隔膜に用いられる高分子固体電解質を薄膜化するには、
次に挙げる様な種々の問題点がある。 (1)充放電に伴って支持電解質濃度が変化する電池の
場合、充放電に伴い増減する支持電解質を保持する必要
がある為、支持電解質の最大量を溶かし得る高分子固体
電解質が必要となる。一般的に、高分子固体電解質への
支持電解質の溶解性は低い為、大量の高分子固体電解質
を必要とする。従って、体積あたりのエネルギー容量が
減少し、更に、高分子固体電解質の厚さが増大する為、
イオン伝導性も悪化する。 (2)固体電解質の薄膜化で、機械的強度及び電子絶縁
性が悪化する。 (3)固体電解質のクッション性の減少から、活物質と
高分子固体電解質との接合に剥がれが生じる可能性が大
きい。 (4)単電池の性能がばらつき易くなる為、電池を積層
することが困難となる。 従って、本発明の目的は、上記の電極隔膜に用いられる
固体電解質の薄膜化に伴う種々の問題点を解決し、固体
電解質に超薄膜を用いているにもかかわらず、イオン伝
導性に優れ、電流密度の高い、機械的強度、電子絶縁性
及び活物質と高分子固体電解質との接合に剥がれが生ず
ることのない高性能な電池を提供することにある。更
に、本発明の別の目的は、単電池の積層が容易な、起電
力の大きな電池を提供することにある。
However, in order to reduce the thickness of the solid polymer electrolyte used for the electrode diaphragm,
There are various problems as listed below. (1) In the case of a battery whose supporting electrolyte concentration changes with charge and discharge, it is necessary to hold a supporting electrolyte that increases and decreases with charge and discharge, and thus a solid polymer electrolyte capable of dissolving the maximum amount of supporting electrolyte is required. . Generally, the solubility of the supporting electrolyte in the solid polymer electrolyte is low, and thus a large amount of the solid polymer electrolyte is required. Therefore, the energy capacity per volume is reduced, and further, the thickness of the solid polymer electrolyte is increased,
Ionic conductivity also deteriorates. (2) The thinning of the solid electrolyte deteriorates mechanical strength and electronic insulation. (3) Since the cushioning property of the solid electrolyte is reduced, there is a high possibility that the active material and the polymer solid electrolyte will be separated from each other. (4) It is difficult to stack batteries because the performance of the unit cells tends to vary. Therefore, the object of the present invention is to solve various problems associated with the thinning of the solid electrolyte used for the above electrode diaphragm, despite using an ultrathin film for the solid electrolyte, excellent in ion conductivity, It is an object of the present invention to provide a high-performance battery having a high current density, mechanical strength, electronic insulation, and no peeling in the bond between the active material and the solid polymer electrolyte. Further, another object of the present invention is to provide a battery having a large electromotive force, which allows easy stacking of single cells.

【0006】[0006]

【問題を解決する為の手段】上記の目的は、以下の本発
明によって達成される。即ち、本発明は、負極活物質、
電極隔膜、正極活物質、支持電解質及び集電体から成
り、正極活物質と負極活物質との支持電解質の濃度差に
よる起電力を利用する電池において、電極隔膜の厚さが
1μm以下であることを特徴とする電池である。
The above objects can be achieved by the present invention described below. That is, the present invention is a negative electrode active material,
In a battery that includes an electrode diaphragm, a positive electrode active material, a supporting electrolyte, and a current collector, and uses electromotive force due to a difference in the concentration of the supporting electrolyte between the positive electrode active material and the negative electrode active material, the thickness of the electrode diaphragm is 1 μm or less. Is a battery characterized by.

【0007】[0007]

【好ましい実施態様】次に、好ましい実施態様を挙げ
て、本発明を更に詳細に説明する。本発明の電池は、正
極活物質と負極活物質との支持電解質の濃度差により起
電力を発揮する濃度差電池であり、且つ固体電解質に非
常に薄い超薄膜、例えば、高分子電解質であるポリイミ
ド超薄膜を用いることを特徴とする。尚、一次電池は、
二次電池を充電せず放電のみをした場合と考えられる
為、機能的には二次電池の場合と同じである為、以下、
二次電池に関して扱う。図1は、支持電解質の濃度差を
利用した本発明の電池(以下、濃度差電池とする)の一
例を示す模式図であり、高分子電解質であるポリイミド
の超薄膜を電極隔膜として用いている。図中、15は負
極活物質であり、14は正極活物質であり、13負極活
物質、及び12は正極活物質であり、11は固体電解質
からなる電極隔膜である。尚、図1はあくまでも本発明
の実施態様の一例であり、何ら本発明の電池の構造を限
定するものではない。例えば、固体電解質と活物質との
密着性を更に向上させる為に、両者の間に固体電解質と
活物質との混合膜を挿入することも本発明の好ましい態
様である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to preferred embodiments. The battery of the present invention is a concentration-difference battery that exerts an electromotive force due to the difference in the concentration of the supporting electrolyte between the positive electrode active material and the negative electrode active material, and a very thin ultrathin film for the solid electrolyte, for example, polyimide that is a polymer electrolyte. It is characterized by using an ultra-thin film. The primary battery is
Since it is considered that the secondary battery is only discharged without being charged, it is functionally the same as the case of the secondary battery.
It deals with secondary batteries. FIG. 1 is a schematic diagram showing an example of a battery of the present invention (hereinafter, referred to as a concentration difference battery) that utilizes a concentration difference of a supporting electrolyte, and uses an ultrathin film of polyimide, which is a polymer electrolyte, as an electrode diaphragm. . In the figure, 15 is a negative electrode active material, 14 is a positive electrode active material, 13 is a negative electrode active material, 12 is a positive electrode active material, and 11 is an electrode diaphragm made of a solid electrolyte. Note that FIG. 1 is merely an example of an embodiment of the present invention, and does not limit the structure of the battery of the present invention. For example, in order to further improve the adhesion between the solid electrolyte and the active material, it is also a preferred embodiment of the present invention to insert a mixed film of the solid electrolyte and the active material between them.

【0008】本発明の電池の正極活物質12及び負極活
物質13の構成材料としては、本発明におい下記に挙げ
る様な導電性高分子化合物が好ましく用いられる。導電
性化合物としては、例えば、ポリアニリン、ポリピロー
ル、ポリアセチレン、ポリチオフェン、ポリパラフェニ
エン、ポリアズレン、ジサルファイドポリマー、ポリア
セン及びポリ(2,5−ピリジンジイル)等が挙げら
れ、いずれも好ましく使用することが出来る。本発明に
おいては、ポリアニリンを用いるのが特に好ましい。
As the constituent materials of the positive electrode active material 12 and the negative electrode active material 13 of the battery of the present invention, the following conductive polymer compounds are preferably used in the present invention. Examples of the conductive compound include polyaniline, polypyrrole, polyacetylene, polythiophene, polyparaphenylene, polyazulene, disulfide polymer, polyacene and poly (2,5-pyridinediyl), and any of them is preferably used. I can. In the present invention, it is particularly preferable to use polyaniline.

【0009】又、本発明の電池を構成する電極隔膜とし
ては、高分子固体電解質であればいずれのものも使用す
ることが出来るが、最も好ましいのは、下記の(2)式
に示す様なポリイミド薄膜である。尚、本発明に使用さ
れるポリイミドが、下記に示す(2)式の化合物に特に
限定されないのは、勿論である。
As the electrode diaphragm constituting the battery of the present invention, any polymer solid electrolyte can be used, but the most preferable one is as shown in the following formula (2). It is a polyimide thin film. Of course, the polyimide used in the present invention is not particularly limited to the compound of the formula (2) shown below.

【化1】 [Chemical 1]

【0011】上記したポリイミドは、非常に薄く成膜す
ることが可能である。例えば、単分子の厚さを、スピン
コート法で塗布すれば、〜10nmであり、LB法で塗布
すれば、単分子の厚さである〜0.4nmとすることも可
能である。これに支持電解質を作用させれば、通常の固
体電解質と同様に、イオン伝導体及び電子絶縁体として
の機能を持たせることが出来る。この際に使用される支
持電解質としては、塩化水素を用いるが、特にこれに限
定されず、塩化アンモニウム及び硫酸等でもよい。又、
支持電解質は充放電に伴い、正及び負の極活物質のどち
らか一方から放出され他方に吸収される。従って、充放
電に伴って必要とされる支持電解質は、全て固体電解質
中に保持する必要はない。従って、本発明では、上記し
た様に、ポリイミド超薄膜に支持電解質を作用させた擬
似固体電解質(以下これを固体電解質と区別せず固体電
解質と記述する)を使用することにより、固体電解質を
非常に薄く成膜することが可能(1μm以下、好ましく
は400nm〜4nm)となり、イオン伝導度が数桁上
昇したことに相当する効果が得られる。
The above-mentioned polyimide can be formed into a very thin film. For example, the thickness of a single molecule can be set to -10 nm when applied by the spin coating method, and can be set to -0.4 nm which is the thickness of a single molecule when applied by the LB method. If a supporting electrolyte is made to act on this, it can be made to have a function as an ion conductor and an electronic insulator like a normal solid electrolyte. Hydrogen chloride is used as the supporting electrolyte at this time, but it is not particularly limited thereto, and ammonium chloride, sulfuric acid, or the like may be used. or,
The supporting electrolyte is discharged from one of the positive and negative polar active materials and absorbed by the other as the charge and discharge are performed. Therefore, it is not necessary to hold all the supporting electrolyte required for charge / discharge in the solid electrolyte. Therefore, in the present invention, as described above, by using a pseudo solid electrolyte in which a supporting electrolyte is made to act on a polyimide ultrathin film (hereinafter, this is referred to as a solid electrolyte without distinguishing it from the solid electrolyte), the solid electrolyte can be significantly reduced. It becomes possible to form a very thin film (1 μm or less, preferably 400 nm to 4 nm), and an effect equivalent to that the ionic conductivity is increased by several orders of magnitude can be obtained.

【0012】固体電解質の厚さが非常に薄い濃度差電池
は、通常、以下に掲げる様な種々の課題がある。本発明
では、上記のポリイミド超薄膜と支持電解質とからなる
固体電解質を用いることで、下記に示す様に対処するこ
とが出来る。
The concentration difference battery having a very thin solid electrolyte usually has various problems as described below. In the present invention, by using a solid electrolyte composed of the above polyimide ultra-thin film and a supporting electrolyte, the following measures can be taken.

【0013】(A)固体電解質の電子絶縁性の低下の問
題に対して。 ポリイミドの薄膜を使用する為、電子伝導率が非常に低
く(4〜20nmの厚さで10-16 S/cm程度)都合が
よい。又、ポリイミドの薄膜は、ラングミュア−ブロジ
ェット法(以下LB法と略す)で容易に成膜可能である
為、サブナノオーダーで膜厚を調節することが出来、所
望とする電子伝導値を任意に得ることが出来る。
(A) For the problem of deterioration of the electronic insulation of the solid electrolyte. Since a polyimide thin film is used, the electron conductivity is very low (about 10 -16 S / cm at a thickness of 4 to 20 nm), which is convenient. Since a thin film of polyimide can be easily formed by the Langmuir-Blodgett method (hereinafter abbreviated as LB method), the film thickness can be adjusted in the sub-nano order, and a desired electron conduction value can be arbitrarily set. You can get it.

【0014】(B)活物質と高分子固体電解質との密着
性の悪化の問題に対して。 電解質が液状の場合は、活物質(固体)と電解質(液
体)との間でのイオンのやりとりは円滑に進む。これに
対して、電解質が固体の場合には、固体(活物質)と固
体(電解質)間でのイオンのやりとりとなる為、双方の
密着性の良否が電気化学反応の効率のに直接影響する。
特に、二次電池の場合、活物質(一般的にリチウム等の
金属)と高分子固体電解質との接合部に、充放電の繰り
返しによる剥がれが生じたり、或は高分子固体電解質の
薄膜化に伴うクッション性の減少による空隙が生じるこ
とにより、電池性能に著しく悪影響を及ぼす可能性があ
る。しかし、本発明の電池では、図1に示した正極活物
質12及び負極活物質13とを、高分子固体電解質11
と相溶性の高いポリアニリン等の導電性化合物である
為、活物質と高分子固体電解質との接合部に剥がれや空
隙を生じにくくすることが可能である。更に、活物質及
び固体電解質の双方を、LB法で作製すると、LB膜表
面は極めて平滑であることから接合の際に有利である。
又、活物質及び固体電解質をLB法で連続して成膜すれ
ば、分子オーダーで非常に接合部の密着性の高い電池を
作製することが出来る。
(B) For the problem of deterioration of the adhesion between the active material and the solid polymer electrolyte. When the electrolyte is liquid, the exchange of ions between the active material (solid) and the electrolyte (liquid) proceeds smoothly. On the other hand, when the electrolyte is a solid, ions are exchanged between the solid (active material) and the solid (electrolyte), so that the quality of the adhesion of both directly affects the efficiency of the electrochemical reaction. .
Particularly in the case of secondary batteries, peeling may occur at the junction between the active material (generally a metal such as lithium) and the polymer solid electrolyte due to repeated charging / discharging, or thinning of the polymer solid electrolyte may occur. Since the voids are generated due to the decrease in the cushioning property, the battery performance may be significantly adversely affected. However, in the battery of the present invention, the positive electrode active material 12 and the negative electrode active material 13 shown in FIG.
Since it is a conductive compound such as polyaniline having a high compatibility with, it is possible to prevent peeling and voids from being easily generated at the joint between the active material and the solid polymer electrolyte. Furthermore, when both the active material and the solid electrolyte are produced by the LB method, the LB film surface is extremely smooth, which is advantageous for bonding.
Further, by continuously forming the active material and the solid electrolyte by the LB method, it is possible to manufacture a battery having a very high adhesiveness at the bonding portion on a molecular order.

【0015】(C)薄膜化に伴って生じる固体電解質の
絶縁破壊電圧、機械的強度の低下の問題に対して。 スピンコート法により薄膜化を行うとピンホールが発生
し易いが、LB法で作製したポリイミドLB膜は、非常
に緻密でピンホールがない。又、ポリイミドの絶縁破壊
電圧は、10+6 V/cm以上であり、MIM(メタル
/インシュレータ/メタル素子)の1層としてポリイミ
ドLB膜2層(厚さ0.8nm)を用いた場合でも、数ボ
ルトの電圧に耐え得ることが確認されている。又、支持
電解質は、充放電に伴って正及び負の極活物質のいずれ
か一方から放出され、他方に吸収される。この為、支持
電解質の、放出/吸収されることによる活物質の体積収
縮/膨脹は相殺される利点があるが、それらの間にある
高分子固体電解質には引っ張り歪が生じ、これに耐性を
持たせる必要がある。これに対し、本発明の電池に好ま
しく使用されるポリイミド薄膜は、一般的に引っ張り強
度が高い(10Kg/mm2 以上)為、破れや切断に対
する耐性がある。
(C) With respect to the problems of a decrease in the dielectric breakdown voltage and mechanical strength of the solid electrolyte that accompany the thinning of the film. Although pinholes are easily generated when the film is thinned by the spin coating method, the polyimide LB film formed by the LB method is very dense and has no pinhole. Further, the dielectric breakdown voltage of polyimide is 10 +6 V / cm or more, and even when two layers of polyimide LB film (0.8 nm in thickness) are used as one layer of MIM (metal / insulator / metal element), It has been confirmed that it can withstand a voltage of several volts. Further, the supporting electrolyte is released from either one of the positive and negative polar active materials as it is charged and discharged, and is absorbed by the other. Therefore, the volume contraction / expansion of the active material due to the release / absorption of the supporting electrolyte has an advantage of being offset, but the solid polymer electrolyte between them has a tensile strain, which makes it resistant. Need to have. On the other hand, the polyimide thin film preferably used in the battery of the present invention generally has high tensile strength (10 Kg / mm 2 or more), and therefore has resistance to breakage and breakage.

【0016】(D)単電池の性能にばらつきが生じ易く
なることによる単電池の積層の困難性の問題に対して。 単電池を積層させて使用する積層電池の性能は、積層さ
れた単電池のうち、最も性能の悪いものによって左右さ
れる。従って、積層電池を作製する為には、できるだけ
均質な単電池を作成することが要求される。これに対
し、従来の固体電解質を用いた電池に関しては、明確な
作製法がまだ確立されていない為、単電池の性能の均質
化は困難であった。本発明の電池の場合、活物質をLB
法で作製することが可能な為、特に、厚さ方向に対する
スケール信頼性が向上し、更に、上記した様に接合性も
向上することから、単電池の性能のばらつきが生じにく
くなり、単電池の積層が容易になるというメリットがあ
る。
(D) With respect to the problem of difficulty in stacking the unit cells due to variation in the performance of the unit cells. The performance of a laminated battery in which the cells are stacked and used depends on the worst of the stacked cells. Therefore, in order to produce a laminated battery, it is required to produce a unit cell as homogeneous as possible. On the other hand, regarding a battery using a conventional solid electrolyte, it is difficult to homogenize the performance of a single battery because a clear manufacturing method has not been established yet. In the case of the battery of the present invention, the active material is LB
Since it can be manufactured by the method, the scale reliability is improved especially in the thickness direction, and the bondability is also improved as described above, so that the variation in the performance of the unit cell is less likely to occur, Has the advantage of being easy to stack.

【0017】(E)単電池の起電力が小さいことに関す
る問題に対して。 本発明において、活物質及び高分子固体電解質は、上記
した様にLB法によって成膜することが可能である。更
に、集電体をLB法で成膜することも可能である。各層
を全てLB法で作製すると、接合部の密着性や積層電池
の生産性が向上し、又、上記(D)で述べた理由によ
り、別々に作製した時よりも単電池の性能が更にばらつ
きにくくなる。従って、積層電池を比較的容易に作製す
ることが出来、高電位電池の作製が可能となる。一般
に、本発明の様な濃度差電池は、単電池の起電力が小さ
いことが課題であるが、積層電池化して用いることでこ
れを解決することが出来る。
(E) To the problem relating to the small electromotive force of the unit cell. In the present invention, the active material and the solid polymer electrolyte can be formed into a film by the LB method as described above. Further, it is possible to form the current collector by the LB method. When all layers are manufactured by the LB method, the adhesiveness of the joint portion and the productivity of the laminated battery are improved, and due to the reason described in (D) above, the performance of the unit cell is more varied than that when the layers are separately manufactured. It gets harder. Therefore, a laminated battery can be manufactured relatively easily, and a high-potential battery can be manufactured. Generally, the concentration difference battery as in the present invention has a problem that the electromotive force of a single cell is small, but this can be solved by using it as a laminated battery.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明を更に具体的に
説明する。 <実施例1>ポリアニリンを単量体換算濃度で1mMと
なる様に、N,N’−ジメチルアセトアミド(以下DM
ACと略す)に溶解させた後、別途調製したステアリン
酸の同溶媒による1mM溶液を体積比1:1で混合し、
展開溶液を調製した。この溶液を水温20℃の純水の上
に展開し、水面上に単分子膜を形成した。溶媒を蒸発除
去後、表面圧を25mN/mにまで高め、表面厚を一定
に保ちながら基板電極(ガラス基板状に金電極を蒸着し
て集電体とした物)を水面を横切る方向に、速度5mm
/minで静かに浸漬した後、続いて同じ速度で静かに
引き上げ、2層のY型単分子累積膜を作製した。同様の
操作を繰り返して、100層の単分子累積膜を作製し
た。次に、この基板を減圧下(〜1mmHg)、80℃
で10分間加熱焼成して、ステアリン酸を留去し、活物
質ポリアニリンの累積膜を形成した。
EXAMPLES The present invention will be described in more detail below with reference to examples. <Example 1> N, N'-dimethylacetamide (hereinafter referred to as DM) so that the concentration of polyaniline in terms of monomer was 1 mM.
AC), and then mixed with a separately prepared 1 mM solution of stearic acid in the same solvent at a volume ratio of 1: 1,
A developing solution was prepared. This solution was spread on pure water having a water temperature of 20 ° C. to form a monomolecular film on the water surface. After evaporating and removing the solvent, the surface pressure was raised to 25 mN / m, and the substrate electrode (a current collector obtained by vapor-depositing a gold electrode on a glass substrate) was moved across the water surface while keeping the surface thickness constant. Speed 5mm
After gently immersing the film at the same speed / min, the film was gently pulled up at the same speed to form a two-layer Y-type monomolecular cumulative film. The same operation was repeated to produce a 100-layer monomolecular cumulative film. Next, this substrate is depressurized (up to 1 mmHg) at 80 ° C.
And baked for 10 minutes to distill off stearic acid and form a cumulative film of the active material polyaniline.

【0019】次に、ポリアミック酸を単量体換算濃度で
1mMになる様にDMACに溶解させた後、別途調製し
たN−メチル−N,N−ジアルキルのDMACによる
2mM溶液を体積比1:1で混合し、下記の(1)式に
示すポリアミド酸アルキルアミン塩の展開溶液を調製し
た。
Next, after the polyamic acid is dissolved in DMAC As will 1mM in monomer concentration in terms, N- methyl -N separately prepared, N '- volume 2mM solution by dialkyl DMAC ratio of 1: 1 and mixed to prepare a developing solution of a polyamic acid alkylamine salt represented by the following formula (1).

【0020】[0020]

【化2】 [Chemical 2]

【0021】上記の様にして得た展開溶液を水温20℃
の純水の上に展開し、水面上に単分子膜を形成した。溶
媒を蒸発除去後、表面圧を30mN/mにまで高め、表
面厚を一定に保ちながら上記ポリアニリンを累積した基
板電極を、水面を横切る方向に速度5mm/minで静
かに浸漬した後、続いて同じ速度で静かに引き上げ、2
層のY型単分子累積膜を作成した。同様の操作を繰り返
して、10層のポリアミド酸アルキルアミン塩の単分子
累積膜を形成した。この基板を減圧下(〜1mmH
g)、250℃で10分間加熱焼成してポリアミド酸ア
ルキルアミン塩をイミド化し(下記の(2)式参照)、
電極隔膜としてポリイミド単分子累積膜を形成した。
The developing solution obtained as described above is treated at a water temperature of 20 ° C.
It was developed on pure water, and a monomolecular film was formed on the water surface. After the solvent was removed by evaporation, the surface pressure was raised to 30 mN / m, and the substrate electrode on which the polyaniline was accumulated while keeping the surface thickness constant was gently immersed in a direction across the water surface at a speed of 5 mm / min, and then, Gently pull up at the same speed, 2
A Y-type monomolecular cumulative film of layers was created. The same operation was repeated to form 10 layers of a monomolecular polyamic acid alkylamine salt monomolecular film. This substrate is decompressed (up to 1 mmH
g), and heat-baking at 250 ° C. for 10 minutes to imidize the polyamic acid alkylamine salt (see the following formula (2)),
A polyimide monomolecular cumulative film was formed as an electrode diaphragm.

【0022】[0022]

【化3】 [Chemical 3]

【0023】上記の様にして形成したポリイミド単分子
累積膜形成基板上に、更に、ポリアニリンの単分子累積
膜を前記した同様の方法によって100層堆積させ、図
2の(2)に示す様な構成とした。これを塩酸ガス雰囲
気下に1時間放置して作用させ、支持電解質のドーピン
グを行い、80℃恒温層にて10分間定着させた。最後
に、この基板の上に金を蒸着し、他極の集電体とした。
上記の方法で得られた電池の充放電特性を調べたとこ
ろ、自己放電が少なく電流密度が大きいという良好な結
果が得られた。
On the polyimide monomolecular cumulative film forming substrate formed as described above, 100 layers of polyaniline monomolecular cumulative film were further deposited by the same method as described above, and as shown in (2) of FIG. It was configured. This was left to act in a hydrochloric acid gas atmosphere for 1 hour to act to dope the supporting electrolyte and fix it in an 80 ° C. constant temperature layer for 10 minutes. Finally, gold was vapor-deposited on this substrate to obtain a collector for the other electrode.
When the charge and discharge characteristics of the battery obtained by the above method were examined, good results were obtained that the self-discharge was small and the current density was large.

【0024】<実施例2>固体電解質であるポリイミド
と、活物質であるポリアニリンの密着性を向上させる為
に、両者の間にポリイミドとポリアニリンの混合膜を挿
入した以外は実施例1と同様にして、図2の(2)に示
す構成の電池を作成した。この電池の充放電性特性を調
べたところ、実施例1と同様に良好な結果が得られた。
以下に本実施例で使用したポリイミドとポリアニリンの
混合膜の作成方法の詳細を示す。先ず、ポリアニリンを
単量体換算濃度で1mMになる様にDMACに溶解させ
た後、別途調製したステアリン酸の同溶媒による1mM
溶液を体積比1:1で混合した。次に、ポリアミック酸
を単量体換算濃度で1mMになる様にDMACに溶解さ
せた後、別途調製したN−メチル−N,N’−ジアルキ
ルの同溶媒による2mM溶液を、体積比1:1で混合
し、展開溶液を調製した。この溶液を水温20℃の純水
の上に展開し、水面上に単分子膜を形成した。溶媒蒸発
除去後、表面圧を30mN/mにまで高め、表面厚を一
定に保ちながら、基板電極を水面を横切る方向に速度5
mm/minで静かに浸漬した後、続いて同じ速度で静
かに引き上げ、2層のY型単分子累積膜を作成した。同
様の操作を繰り返して、4層のポリアニリンとポリアミ
ド酸からなる混合単分子累積膜を形成した。全ての堆積
が終了後、この基板を減圧下(〜1mmHg)、250
℃で10分間加熱焼成してポリアミド酸アルキルアミン
塩をイミド化し、ステアリン酸を除去した。
Example 2 The same as Example 1 except that a mixed film of polyimide and polyaniline was inserted between polyimide, which is a solid electrolyte, and polyaniline, which is an active material, in order to improve adhesion. As a result, a battery having the configuration shown in (2) of FIG. 2 was created. When the charge and discharge characteristics of this battery were examined, good results were obtained as in Example 1.
The details of the method for producing the mixed film of polyimide and polyaniline used in this example are shown below. First, polyaniline was dissolved in DMAC to a monomer conversion concentration of 1 mM, and then 1 mM of separately prepared stearic acid was added using the same solvent.
The solutions were mixed in a volume ratio of 1: 1. Next, the polyamic acid was dissolved in DMAC to a monomer conversion concentration of 1 mM, and then a separately prepared 2 mM solution of N-methyl-N, N′-dialkyl in the same solvent was added at a volume ratio of 1: 1. And mixed to prepare a developing solution. This solution was spread on pure water having a water temperature of 20 ° C. to form a monomolecular film on the water surface. After removing the solvent by evaporation, increase the surface pressure to 30 mN / m, keep the surface thickness constant, and move the substrate electrode across the water surface at a speed of 5
After gently soaking at mm / min, the film was gently pulled up at the same speed to form a two-layer Y-type monomolecular cumulative film. The same operation was repeated to form a mixed monomolecular cumulative film composed of four layers of polyaniline and polyamic acid. After the completion of all depositions, the substrate is put under reduced pressure (~ 1 mmHg) at 250
The polyamic acid alkylamine salt was imidized by heating at 10 ° C. for 10 minutes to remove stearic acid.

【0025】<実施例3>活物質であるポリアニリン
を、単量体換算濃度で100mMになる様にDMACに
溶解した後、1500rpm/1μmの条件下でスピン
コート法によって成膜し、その上に実施例1に示した様
にポリイミドをLB法で堆積/イミド化し、更に、その
上にポリアニリンをスピンコート法により同様に成膜し
た他は、実施例1と同様に作製して、図2の(3)に示
す構成の電池を作製した。この電池について充放電特性
を調べたところ、実施例1と同様に良好な結果が得られ
た。
Example 3 Polyaniline, which is an active material, was dissolved in DMAC to a monomer conversion concentration of 100 mM, and then a film was formed by spin coating under the condition of 1500 rpm / 1 μm, and the polyaniline was formed thereon. 2 was prepared in the same manner as in Example 1 except that polyimide was deposited / imidized by the LB method as shown in Example 1, and polyaniline was similarly formed thereon by the spin coating method. A battery having the configuration shown in (3) was produced. When the charge and discharge characteristics of this battery were examined, good results were obtained as in Example 1.

【0026】<実施例4>活物質であるポリアニリンを
単量体換算濃度で100mMになる様にDMACに溶解
した後、1500rpm /1μmの条件でスピンコー
ト法によって成膜した他は、実施例2と同様にして、図
2の(4)に示すポリイミドとポリアニリンの混合膜を
有する構成の電池を作製した。この電池について充放電
特性を調べたところ、実施例2と同様に良好な結果が得
られた。
Example 4 Example 2 was repeated except that polyaniline, which was an active material, was dissolved in DMAC to a monomer conversion concentration of 100 mM, and then a film was formed by spin coating under the condition of 1500 rpm / 1 μm. Similarly to the above, a battery having a structure having a mixed film of polyimide and polyaniline shown in (4) of FIG. 2 was produced. When the charge and discharge characteristics of this battery were examined, good results were obtained as in Example 2.

【0027】<実施例5>スピンコート法によって作製
した活物質であるポリアニリン層とLB法により作製し
た電極隔膜であるポリイミド層との間に、実施例1と同
様のLB法によって作製したポリアニリン層を4層挿入
した他は、実施例3と同様にして図2の(5)に示す構
成の電池を作製した。この電池について充放電性特性を
調べたところ、実施例3と同様に良好な結果が得られ
た。
Example 5 A polyaniline layer produced by the LB method similar to that of Example 1 is interposed between a polyaniline layer which is an active material produced by the spin coating method and a polyimide layer which is an electrode diaphragm produced by the LB method. A battery having the configuration shown in (5) of FIG. 2 was produced in the same manner as in Example 3 except that four layers were inserted. When the charge / discharge characteristics of this battery were examined, good results were obtained as in Example 3.

【0028】<実施例6>LB法により作製した(ポリ
アニリン+ポリイミド混合層)/電極隔膜であるポリイ
ミド層/(ポリアニリン+ポリイミド混合層)と、スピ
ンコート法によって作製したポリアニリン層との間に、
実施例1と同様のLB法によって作製したポリアニリン
層を4層挿入した他は、実施例4と同様にして図2の
(6)に示す様な構成の電池を作製した。この電池につ
いて充放電特性を調べたところ、実施例4と同様に良好
な結果が得られた。
<Example 6> Between (polyaniline + polyimide mixed layer) / polyimide layer / (polyaniline + polyimide mixed layer), which is an electrode diaphragm, produced by the LB method, and polyaniline layer produced by the spin coating method,
A battery having a structure as shown in (6) of FIG. 2 was produced in the same manner as in Example 4 except that four polyaniline layers produced by the same LB method as in Example 1 were inserted. When the charge and discharge characteristics of this battery were examined, good results were obtained as in Example 4.

【0029】<実施例7〜実施例12>単電池間の集電
体に導電性(イオン絶縁性)材料(ポリイソブチロメタ
クリル酸メチル(以下PIBMと略記)+C60)を用
い、実施例1〜実施例6で得られた夫々の単電池を積層
させ、積層電池を作製した。これらの積層電池について
充放電特性を調べたところ、実施例1〜実施例6の単電
池の場合と同様に良好な結果が得られた。図3に、実施
例1の単電池を3個積層した場合の例を示す。この場
合、活物質、高分子固体電解質(電極隔膜)及び単電池
間の集電体の全てについて、LB法によって連続的に作
製することが出来る。以下に集電体の作製法を詳細に示
す。PIBMの1mMベンゼン溶液とC60の1mMベ
ンゼン溶液とを等量混合し、展開溶液を調製した。係る
溶液を水温20℃の純水の上に展開し、水面上に単分子
膜を形成した。溶媒蒸発除去後、表面圧を30mN/m
にまで高め、表面厚を一定に保ちながら、基板電極を水
面を横切る方向に速度5mm/minで静かに浸漬した
後、続いて同じ速度で静かに引き上げ、2層のY型単分
子累積膜を成膜した。同様の操作を繰り返して、10層
のPIBMとC60の混合単分子累積膜を形成し、集電
体とした。
<Examples 7 to 12> A conductive (ion insulating) material (polyisobutyromethylmethacrylate (hereinafter abbreviated as PIBM) + C60) was used as a current collector between the cells, and Example 1 was used. -The unit cells obtained in Example 6 were laminated to produce a laminated battery. When the charge / discharge characteristics of these laminated batteries were examined, good results were obtained as in the case of the unit cells of Examples 1 to 6. FIG. 3 shows an example in which three unit cells of Example 1 are stacked. In this case, all of the active material, the solid polymer electrolyte (electrode diaphragm), and the current collector between the single cells can be continuously manufactured by the LB method. The method for producing the current collector will be described in detail below. An equal volume of a 1 mM benzene solution of PIBM and a 1 mM benzene solution of C60 were mixed to prepare a developing solution. The solution was spread on pure water having a water temperature of 20 ° C. to form a monomolecular film on the water surface. After removing the solvent by evaporation, the surface pressure is 30mN / m
The substrate electrode is gently immersed in a direction crossing the water surface at a speed of 5 mm / min, and then gently pulled up at the same speed to form a two-layer Y-type monomolecular cumulative film. A film was formed. The same operation was repeated to form 10 layers of a mixed monomolecular cumulative film of PIBM and C60, which was used as a current collector.

【0030】<実施例13〜実施例24>正極活物質及
び負極活物質のポリアニリンの代わりに可溶性ポリピロ
ールを用いた他は、実施例1〜実施例12と同様にして
本発明の電池を夫々作製した。これらの電池について充
放電特性を調べたところ、実施例1〜実施例12と同様
に良好な結果が得られた。
<Examples 13 to 24> The batteries of the present invention were prepared in the same manner as in Examples 1 to 12 except that soluble polypyrrole was used instead of polyaniline as the positive electrode active material and the negative electrode active material. did. When the charge and discharge characteristics of these batteries were examined, good results were obtained as in Examples 1 to 12.

【0031】<実施例25〜実施例36>正極活物質に
ポリアニリン、負極活物質に可溶性ポリピロールを用い
た他は実施例1〜実施例12と同様にして本発明の電池
を夫々作製した。これらの電池について充放電特性を調
べたところ、実施例1〜実施例12と同様に良好な結果
が得られた。
<Examples 25 to 36> The batteries of the present invention were manufactured in the same manner as in Examples 1 to 12 except that polyaniline was used as the positive electrode active material and soluble polypyrrole was used as the negative electrode active material. When the charge and discharge characteristics of these batteries were examined, good results were obtained as in Examples 1 to 12.

【0032】<実施例37〜実施例38>正極活物質に
ポリアニリン、負極活物質にポリチオフェンを用いた以
外は実施例1、実施例3と同様にして本発明の電池を夫
々作製した。これらの作製した電池について充放電特性
を調べたところ、実施例1及び実施例3と同様に良好な
結果が得られた。
<Examples 37 to 38> Batteries of the present invention were produced in the same manner as in Examples 1 and 3 except that polyaniline was used as the positive electrode active material and polythiophene was used as the negative electrode active material. When the charge / discharge characteristics of these fabricated batteries were examined, good results were obtained as in Examples 1 and 3.

【0033】<実施例39〜実施例40>実施例1及び
実施例3と同様にして夫々作製した活物質/電極隔膜=
ポリアニリン/ポリイミド薄膜に、厚さ50μmのリチ
ウム薄膜を圧着した電池を作製した。これらの電池につ
いて充放電特性を調べたところ、実施例1及び実施例3
と同様に良好な結果が得られた。
<Examples 39 to 40> Active material / electrode diaphragm produced in the same manner as in Examples 1 and 3
A battery was manufactured by press-bonding a lithium thin film having a thickness of 50 μm to a polyaniline / polyimide thin film. When the charge and discharge characteristics of these batteries were examined, Example 1 and Example 3 were obtained.
Similar good results were obtained.

【0034】[0034]

【発明の効果】以上説明した様に、本発明は下記に挙げ
る優れた効果を有する。 (1)電極隔膜(高分子固体電解質)が超薄膜化するこ
とが出来る為、イオン伝導性が向上し、電流密度が向上
する。 (2)活物質と電極隔膜(高分子固体電解質)との密着
性が向上し、接合部の剥れ等の問題が解決される。 (3)ポリイミド等の高分子固体電解質を電極隔膜とし
て用いることで、高い機械的強度及び電子絶縁性を持た
せることが出来る。 (4)単電池の性能のばらつきが少なくなる為、超薄膜
の積層電池を作製することが出来る為、高い起電力を持
つ電池が容易に得られる。 (5)電極隔膜(高分子固体電解質)の電子絶縁性が高
く、又、LB法という不純物が入りにくい成膜法を用い
ることにより、自己放電の少ない電池が得られる。 (6)固体電解質は、小型電源、センサー、コンデンサ
ー及びディスプレー等の方面での応用が期待されてい
る。本発明は固体電解質を用いる応用技術として電池に
関して示したが、応用化が期待されている電池以外の固
体電解質に関してもポリイミド薄膜を用いることによっ
て性能が向上し得る可能性が示唆された。
As described above, the present invention has the following excellent effects. (1) Since the electrode diaphragm (polymer solid electrolyte) can be made into an ultrathin film, ionic conductivity is improved and current density is improved. (2) The adhesion between the active material and the electrode diaphragm (polymer solid electrolyte) is improved, and problems such as peeling of the joint are solved. (3) High mechanical strength and electronic insulation can be provided by using a polymer solid electrolyte such as polyimide as an electrode diaphragm. (4) Since there is less variation in the performance of the unit cell, an ultra-thin layered battery can be manufactured, and thus a battery having high electromotive force can be easily obtained. (5) A battery having less self-discharge can be obtained by using a film forming method having a high electron insulating property of the electrode diaphragm (polymer solid electrolyte) and in which impurities are less likely to enter. (6) Solid electrolytes are expected to find applications in areas such as small power supplies, sensors, capacitors and displays. Although the present invention has been shown for a battery as an application technique using a solid electrolyte, it is suggested that the performance of a solid electrolyte other than a battery expected to be applied may be improved by using a polyimide thin film.

【図面の簡単な説明】[Brief description of drawings]

【図1】固体電解質を用いる本発明の電池の一例を示す
模式図である。
FIG. 1 is a schematic view showing an example of a battery of the present invention using a solid electrolyte.

【図2】実施例1〜6の電池の構成を示す図である。FIG. 2 is a diagram showing a configuration of batteries of Examples 1 to 6.

【図3】実施例7の積層電池構成を示す模式図である。FIG. 3 is a schematic diagram showing a laminated battery configuration of Example 7.

【符号の説明】[Explanation of symbols]

11、11a、11b、11c:電極隔膜 12、12a、12b、12c:活物質(正極) 13、13a、13b、13c:活物質(負極) 14:集電体(正極) 15:集電体(負極) 16a、16b:単電池間の集電体 11, 11a, 11b, 11c: Electrode diaphragm 12, 12a, 12b, 12c: Active material (positive electrode) 13, 13a, 13b, 13c: Active material (negative electrode) 14: Current collector (positive electrode) 15: Current collector ( Negative electrode) 16a, 16b: current collector between single cells

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質、電極隔膜、正極活物質、支
持電解質及び集電体から成り、正極活物質と負極活物質
との支持電解質の濃度差による起電力を利用する電池に
おいて、電極隔膜の厚さが1μm以下であることを特徴
とする電池。
1. A battery comprising an anode active material, an electrode diaphragm, a cathode active material, a supporting electrolyte, and a current collector, which utilizes an electromotive force due to a difference in the concentration of the supporting electrolyte between the cathode active material and the anode active material. A battery having a thickness of 1 μm or less.
【請求項2】 電極隔膜を100nm以下である請求項
1に記載の電池。
2. The battery according to claim 1, wherein the electrode diaphragm has a thickness of 100 nm or less.
【請求項3】 電極隔膜を10nm以下である請求項1
に記載の電池。
3. The electrode diaphragm is 10 nm or less.
The battery described in.
【請求項4】 負極活物質及び/又は正極活物質が導電
性高分子化合物である請求項1に記載の電池。
4. The battery according to claim 1, wherein the negative electrode active material and / or the positive electrode active material is a conductive polymer compound.
【請求項5】 負極活物質及び/又は正極活物質及び/
又は電極隔膜がラングミュアーブロジェット法により形
成されている請求項1に記載の電池。
5. A negative electrode active material and / or a positive electrode active material and / or
Alternatively, the battery according to claim 1, wherein the electrode diaphragm is formed by the Langmuir-Blodgett method.
【請求項6】 電極隔膜が100nm以下のポリイミド
薄膜である請求項1に記載の電池。
6. The battery according to claim 1, wherein the electrode diaphragm is a polyimide thin film having a thickness of 100 nm or less.
【請求項7】 集電体がラングミュア−ブロジェット法
により形成されている請求項1に記載の電池。
7. The battery according to claim 1, wherein the current collector is formed by a Langmuir-Blodgett method.
【請求項8】 負極活物質、厚さが1μm以下の電極隔
膜、正極活物質及び集電体を一単位とし、これが複数積
層され、且つこれらが全てラングミュア−ブロジェット
法により形成されていることを特徴とする電池。
8. A negative electrode active material, an electrode diaphragm having a thickness of 1 μm or less, a positive electrode active material, and a current collector as one unit, and a plurality of these are laminated, and all are formed by a Langmuir-Blodgett method. A battery characterized by.
JP5202463A 1993-07-26 1993-07-26 Battery Pending JPH0737604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5202463A JPH0737604A (en) 1993-07-26 1993-07-26 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5202463A JPH0737604A (en) 1993-07-26 1993-07-26 Battery

Publications (1)

Publication Number Publication Date
JPH0737604A true JPH0737604A (en) 1995-02-07

Family

ID=16457951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5202463A Pending JPH0737604A (en) 1993-07-26 1993-07-26 Battery

Country Status (1)

Country Link
JP (1) JPH0737604A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320278B1 (en) 1997-06-30 2001-11-20 Nec Corporation Power supply circuit
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
EP1623460A2 (en) * 2003-05-13 2006-02-08 Solicore, Inc. Card with embedded ic and electrochemical cell
EP1639663A2 (en) * 2003-05-13 2006-03-29 Solicore, Inc. Polyimide based electrolyte and improved batteries therefrom
CN100386911C (en) * 2003-05-13 2008-05-07 瑟利寇公司 Polyimide matrix electrolyte
CN112421184A (en) * 2020-11-18 2021-02-26 中国科学院近代物理研究所 Solid electrolyte diaphragm based on nuclear pore membrane and preparation method thereof
WO2024176902A1 (en) * 2023-02-21 2024-08-29 荒川化学工業株式会社 Power-storage-device aqueous binder solution, power-storage-device slurry, power-storage-device electrode, power-storage-device separator, power-storage-device separator/electrode stack, and power storage device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320278B1 (en) 1997-06-30 2001-11-20 Nec Corporation Power supply circuit
WO2004001771A1 (en) * 2002-06-19 2003-12-31 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
US7544445B2 (en) 2002-06-19 2009-06-09 Ube Industries, Ltd. Polyelectrolyte membrane and production method therefor
EP1623460A2 (en) * 2003-05-13 2006-02-08 Solicore, Inc. Card with embedded ic and electrochemical cell
EP1639663A2 (en) * 2003-05-13 2006-03-29 Solicore, Inc. Polyimide based electrolyte and improved batteries therefrom
CN100386912C (en) * 2003-05-13 2008-05-07 瑟利寇公司 Polyimide based electrolyte and improved batteries therefrom
CN100386911C (en) * 2003-05-13 2008-05-07 瑟利寇公司 Polyimide matrix electrolyte
EP1639663A4 (en) * 2003-05-13 2009-11-25 Solicore Inc Polyimide based electrolyte and improved batteries therefrom
EP1623460A4 (en) * 2003-05-13 2009-11-25 Solicore Inc Card with embedded ic and electrochemical cell
CN112421184A (en) * 2020-11-18 2021-02-26 中国科学院近代物理研究所 Solid electrolyte diaphragm based on nuclear pore membrane and preparation method thereof
WO2024176902A1 (en) * 2023-02-21 2024-08-29 荒川化学工業株式会社 Power-storage-device aqueous binder solution, power-storage-device slurry, power-storage-device electrode, power-storage-device separator, power-storage-device separator/electrode stack, and power storage device

Similar Documents

Publication Publication Date Title
US7939205B2 (en) Thin-film batteries with polymer and LiPON electrolyte layers and method
US8863363B2 (en) Method for fabricating a supercapacitor electronic battery
US7931989B2 (en) Thin-film batteries with soft and hard electrolyte layers and method
US20190378663A1 (en) Apparatus and Associated Methods
US20070012244A1 (en) Apparatus and method for making thin-film batteries with soft and hard electrolyte layers
CN1639816A (en) Quick recharge energy storage device, in the form of thin films
TWI457956B (en) Integration of energy storage devices onto substrates for microelectronics and mobile devices
US20020089807A1 (en) Polymer electrochemical capacitors
JP2003526899A (en) Capacitor with double electric layer
KR100403675B1 (en) Microbattery - microcapacitor hybrid device and manufacturing method of the same
JP5066805B2 (en) Electricity storage device
WO2005078831A1 (en) Electric storage device
JPH0737604A (en) Battery
US8663730B1 (en) Method to fabricate a three dimensional battery with a porous dielectric separator
US20160226061A1 (en) Batteries using vertically free-standing graphene, carbon nanosheets, and/or three dimensional carbon nanostructures as electrodes
Kim et al. An All-solid-state electrochemical supercapacitor based on Poly3-(4-fluorophenylthiophene) composite electrodes
JP2000212322A (en) Finely porous polyolefin-based membrane
US20210135188A1 (en) Anisotropic Expansion of Silicon-Dominant Anodes
JP3839706B2 (en) Adhesive porous membranes, polymer gel electrolytes obtained from them, and their applications
JP3492001B2 (en) Battery electrode
JP2944503B2 (en) All solid state electric double layer capacitor
CN103325580A (en) Redox polymer energy storage system
US20240313261A1 (en) Flexible all-solid-state battery and method for manufacturing the same
JP3028869B2 (en) Positive electrode of metal-halogen battery
KR20240025393A (en) Electrode for secondary cell and secondary cell including the same