JPH0737335B2 - Crystallized glass and manufacturing method thereof - Google Patents

Crystallized glass and manufacturing method thereof

Info

Publication number
JPH0737335B2
JPH0737335B2 JP3258349A JP25834991A JPH0737335B2 JP H0737335 B2 JPH0737335 B2 JP H0737335B2 JP 3258349 A JP3258349 A JP 3258349A JP 25834991 A JP25834991 A JP 25834991A JP H0737335 B2 JPH0737335 B2 JP H0737335B2
Authority
JP
Japan
Prior art keywords
glass
ion
temperature
crystallized glass
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3258349A
Other languages
Japanese (ja)
Other versions
JPH0570174A (en
Inventor
明彦 坂本
武宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP3258349A priority Critical patent/JPH0737335B2/en
Publication of JPH0570174A publication Critical patent/JPH0570174A/en
Publication of JPH0737335B2 publication Critical patent/JPH0737335B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Coupling Of Light Guides (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶化ガラスとその製
造方法に関し、より具体的には、石英光ファイバーを融
着して接続する際に、接続部分を補強するための補強部
品として好適な結晶化ガラスとその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystallized glass and a method for producing the same, and more specifically, it is suitable as a reinforcing component for reinforcing a connecting portion when a fused silica optical fiber is connected. The present invention relates to crystallized glass and a method for manufacturing the same.

【0002】[0002]

【従来の技術】石英光ファイバーを永久接続する方法の
一つとして、それらの端部の露出部を融着する方法があ
り、その場合、接続部分の信頼性を高める目的でそれを
補強するための補強部品が用いられる。
2. Description of the Related Art As one of the methods of permanently connecting quartz optical fibers, there is a method of fusing the exposed portions of their ends. In that case, in order to enhance the reliability of the connecting portions, they are reinforced. Reinforcement parts are used.

【0003】この光ファイバーの補強部品材料には、外
力によって接続部分の信頼性が損なわれないように、J
IS R 1601(1981)に規定される試験方法
において2500kgf/cm2 以上の高い曲げ強度を
有すること、光ファイバーに大きな熱応力が発生しない
ように、石英ガラスの熱膨張係数(5.9×10-7
℃)に近似した−3〜10×10-7/℃の熱膨張係数を
有すること、マンホール内や海底で使用された時、地下
水や海水又はその他の外部環境によって劣化しないよう
に優れた耐腐食性を有すること等の特性が要求され、従
来よりその材料としては、金属、セラミック、石英ガラ
ス及び結晶化ガラスが使用されているが、いずれも上記
特性を全て満足するものではない。
In order to prevent the reliability of the connecting portion from being impaired by external force, the reinforcing material of this optical fiber is
According to the test method specified in ISR 1601 (1981), it has a high bending strength of 2500 kgf / cm 2 or more, and the thermal expansion coefficient of silica glass (5.9 × 10 − 7 /
℃) -3 ~ 10 × 10 -7 / ℃ has a coefficient of thermal expansion, when used in the manhole or the sea floor, excellent corrosion resistance so as not to deteriorate by groundwater, seawater or other external environment Properties such as having properties are required, and conventionally, as materials thereof, metals, ceramics, quartz glass, and crystallized glass have been used, but none of them satisfy all the above properties.

【0004】[0004]

【発明が解決しようとする課題】すなわち金属は、曲げ
強度は高いが、熱膨張係数が高すぎ、且つ、腐食性があ
るという欠点を有し、セラミックは、曲げ強度が高く、
耐腐食性を有するが、熱膨張係数が高すぎるという欠点
を有する。また石英ガラスは、熱膨張係数、耐腐食性に
ついては、いずれも良好であるが、曲げ強度が低すぎ、
さらに結晶化ガラスは、耐腐食性を有し、熱膨張係数も
石英ガラスのそれに近似するものも存在するが、やはり
曲げ強度が低すぎるという欠点を有している。
That is, metal has a high flexural strength, but has a drawback that the coefficient of thermal expansion is too high and is corrosive, and ceramic has a high flexural strength.
It has corrosion resistance, but has the drawback of having a too high coefficient of thermal expansion. Quartz glass has good thermal expansion coefficient and corrosion resistance, but the bending strength is too low.
Further, although crystallized glass has corrosion resistance and a thermal expansion coefficient similar to that of quartz glass exists, it still has a drawback that the bending strength is too low.

【0005】ところで結晶化ガラスについては、それを
イオン交換することによって強化することが各種提案さ
れており、例えば特公昭47−49299号公報には、
結晶化ガラスの結晶相中のアルカリイオンを、より大き
なイオン半径のイオンと置換することによって強化する
方法が開示されている。しかしながらこの方法では、イ
オン交換に用いる溶融塩を高温にする必要があるため、
作業性が悪く、また設備の劣化が激しいという問題があ
る。さらに結晶化度が低い材料では、ガラス相にクラッ
クが入って、逆に強度が低下しやすいという問題もあ
る。
By the way, with respect to crystallized glass, various proposals have been made to strengthen it by ion exchange. For example, Japanese Patent Publication No. 47-49299 discloses that
A method of strengthening alkali ions in the crystalline phase of crystallized glass by replacing them with ions of larger ionic radius is disclosed. However, in this method, since it is necessary to raise the temperature of the molten salt used for ion exchange,
There is a problem that the workability is poor and the equipment is severely deteriorated. Further, in the case of a material having a low degree of crystallinity, there is a problem that the glass phase is cracked, and conversely the strength is easily lowered.

【0006】本発明の目的は、石英ガラスの熱膨張係数
に近似した熱膨張係数を有しながら、2500kgf/
cm2 以上の高い曲げ強度を有しており、光ファイバー
の補強部品に要求される特性を全て満足する結晶化ガラ
ス及びその製造方法を提供することである。
An object of the present invention is to have a coefficient of thermal expansion close to that of quartz glass, while maintaining a coefficient of 2500 kgf /
It is an object of the present invention to provide a crystallized glass having a high bending strength of not less than cm 2 and satisfying all the properties required for a reinforcing component of an optical fiber, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の結晶化ガラス
は、Li2 O−Al23 −SiO2 系ガラス相中に、
β−石英固溶体結晶が20〜70体積%析出し、且つ、
表層のガラス相中のみのLi+ イオンが、それよりもイ
オン半径の大きいイオンによって置換されてなり、30
〜380℃における熱膨張係数が−3〜10×10-7
℃、曲げ強度が2500kgf/cm2 以上であること
を特徴とする。
The crystallized glass of the present invention comprises a Li 2 O--Al 2 O 3 --SiO 2 -based glass phase,
20-70% by volume of β-quartz solid solution crystals are deposited, and
Li + ions only in the surface glass phase are replaced by ions having a larger ionic radius,
Coefficient of thermal expansion at 380 ° C to -3 to 10 × 10 -7 /
It is characterized by having a bending strength of 2500 kgf / cm 2 or more at ℃.

【0008】また本発明の結晶化ガラスの製造方法は、
Li2 O−Al23 −SiO2 系ガラスを、その結晶
核生成速度が極大となる温度以外の温度域で一次熱処理
した後、さらに結晶成長速度の極大となる温度以外の温
度域で二次熱処理することによって、ガラス相中にβ−
石英固溶体結晶を20〜70体積%析出した結晶化ガラ
スを作製し、次いで該結晶化ガラスをLi+ イオンより
もイオン半径の大きいイオンを含み、且つ、600℃以
下の温度の溶融塩中に浸漬することによって、表層のガ
ラス相中のみのLi+ イオンを、それよりもイオン半径
の大きいイオンと置換することを特徴とする。
The method for producing crystallized glass of the present invention is
The Li 2 O—Al 2 O 3 —SiO 2 based glass is subjected to a primary heat treatment in a temperature range other than the temperature at which the crystal nucleation rate is maximized, and then is further treated in a temperature range other than the temperature at which the crystal growth rate is maximized. By the subsequent heat treatment, β-in the glass phase
Crystallized glass is prepared by precipitating 20 to 70% by volume of quartz solid solution crystal, and then the crystallized glass is immersed in a molten salt containing ions having a larger ionic radius than Li + ions and having a temperature of 600 ° C. or less. By doing so, Li + ions only in the glass phase of the surface layer are replaced with ions having a larger ionic radius.

【0009】さらに本発明の結晶化ガラスの他の製造方
法は、Li2 O−Al23 −SiO2 系ガラスを、そ
の結晶核生成速度と結晶成長速度の各々の極大となる温
度の間の温度域で熱処理することによって、ガラス相中
にβ−石英固溶体結晶を20〜70体積%析出した結晶
化ガラスを作製し、次いで該結晶化ガラスをLi+ イオ
ンよりもイオン半径の大きいイオンを含み、且つ、60
0℃以下の温度の溶融塩中に浸漬することによって、表
層のガラス相中のみのLi+ イオンを、それよりもイオ
ン半径の大きいイオンと置換することを特徴とする。
Further, another method for producing crystallized glass of the present invention is one in which a Li 2 O--Al 2 O 3 --SiO 2 -based glass is provided between the temperatures at which the crystal nucleation rate and the crystal growth rate are maximized. By heat treatment in the temperature range of 10 to prepare a crystallized glass in which β-quartz solid solution crystals are precipitated in the glass phase in an amount of 20 to 70% by volume, and then the crystallized glass is treated with ions having an ion radius larger than that of Li + ions. Including and 60
By immersing in a molten salt at a temperature of 0 ° C. or lower, Li + ions only in the glass phase of the surface layer are replaced with ions having a larger ionic radius.

【0010】[0010]

【作用】本発明において、ガラス相中におけるβ−石英
固溶体結晶の析出割合、結晶化度を20〜70体積%に
した理由は、以下に述べるとおりである。
In the present invention, the reason why the β-quartz solid solution crystal precipitation ratio and the crystallinity in the glass phase are set to 20 to 70% by volume is as described below.

【0011】すなわち結晶化度が70体積%以上になる
と、イオン交換の対象であるガラス層が少なくなりす
ぎ、所望の曲げ強度を得ることができなくなると共に、
負の熱膨張係数を有する結晶相が優勢になりすぎるた
め、30〜380℃における熱膨張係数が−3×10-7
/℃以下となる。一方、結晶化度が20体積%以下にな
ると、正の熱膨張係数を有するガラス相が優勢になりす
ぎるため、熱膨張係数が10×10-7/℃以上となる。
That is, when the crystallinity is 70% by volume or more, the glass layer to be subjected to ion exchange becomes too small, and it becomes impossible to obtain a desired bending strength.
Since the crystal phase having a negative coefficient of thermal expansion becomes too predominant, the coefficient of thermal expansion at 30 to 380 ° C. is −3 × 10 −7.
/ ° C or less. On the other hand, when the crystallinity is 20% by volume or less, the glass phase having a positive coefficient of thermal expansion becomes too predominant, so that the coefficient of thermal expansion becomes 10 × 10 −7 / ° C. or more.

【0012】また本発明においては、結晶核生成速度が
極大となる温度以外の温度域で一次熱処理した後、結晶
成長速度が極大となる温度以外の温度域で二次熱処理す
るため、あるいは結晶核生成速度と結晶成長速度の各々
の極大となる温度の間の温度で一度だけ熱処理するた
め、核の生成がゆっくりと行われ、任意の数の結晶核を
生成させた後、結晶の成長もゆっくりと行われ、任意の
大きさの結晶を析出させることができる。その結果、結
晶化度を20〜70体積%の所望の値に制御することが
可能となる。つまり結晶核生成速度又は結晶成長速度が
極大となる温度で熱処理すると、結晶化速度が速すぎ、
結晶化度を所望の値に制御できなくなるため好ましくな
い。
In the present invention, the primary heat treatment is performed in a temperature range other than the temperature at which the crystal nucleation rate is maximized, and then the secondary heat treatment is performed in a temperature range other than the temperature at which the crystal growth rate is maximized. Since the heat treatment is performed only once at a temperature between the maximum of the production rate and the maximum of the crystal growth rate, the nucleation is performed slowly, and after the arbitrary number of crystal nuclei are produced, the crystal growth is also slow. Then, crystals of any size can be deposited. As a result, the crystallinity can be controlled to a desired value of 20 to 70% by volume. That is, when heat treatment is performed at a temperature at which the crystal nucleation rate or the crystal growth rate is maximized, the crystallization rate is too fast,
It is not preferable because the crystallinity cannot be controlled to a desired value.

【0013】尚、具体的な一次熱処理の条件としては、
結晶核生成速度が極大となる温度から20℃以上離れた
温度で、0.25〜4時間が適しており、また二次熱処
理の条件としては、結晶成長速度が極大となる温度から
20℃以上離れた温度で0.25〜4時間が適してい
る。さらに一度の熱処理で結晶化を行う場合は、結晶核
生成速度と結晶成長速度の各々の極大となる温度の中間
温度から20℃以内の温度で、1〜10時間が適してい
る。
The specific conditions for the primary heat treatment are as follows:
Suitable for 0.25 to 4 hours at a temperature 20 ° C. or more away from the temperature at which the crystal nucleation rate is maximum, and as the condition for the secondary heat treatment, 20 ° C. or more from the temperature at which the crystal growth rate is maximum. Suitable for remote temperatures of 0.25-4 hours. Further, when crystallization is performed by one heat treatment, it is suitable that the temperature is within 20 ° C. from the intermediate temperature of the temperatures at which the crystal nucleation rate and the crystal growth rate are maximized for 1 to 10 hours.

【0014】さらに本発明において、イオン交換を60
0℃以下の溶融塩を用いて行うのは、600℃以上の高
温でイオン交換すると、装置の劣化が早く、作業性が悪
いと共に、ガラス相の表面にイオンが入りすぎてクラッ
クが生じ易くなるからである。またイオン交換を行うた
めの溶融塩としては、KNO3 やNaNO3 が使用可能
であるが、短時間で高強度のものを得るためには、KN
3 を使用するのが好ましく、これらの溶融塩の中に結
晶化ガラスを1〜20時間浸漬することによって、結晶
化ガラスのガラス相の深さ数十ミクロンにまで強化層が
形成される。
Further, in the present invention, ion exchange is performed at 60
When using a molten salt of 0 ° C or lower, when the ion exchange is performed at a high temperature of 600 ° C or higher, the deterioration of the apparatus is fast, the workability is poor, and the surface of the glass phase is excessively ionized and cracks easily occur. Because. KNO 3 or NaNO 3 can be used as the molten salt for ion exchange, but KN 3 or NaNO 3 can be used in order to obtain high strength in a short time.
O 3 is preferably used, and by immersing the crystallized glass in these molten salts for 1 to 20 hours, a strengthening layer is formed up to a depth of several tens of microns of the glass phase of the crystallized glass.

【0015】溶融塩について、より具体的に述べると、
KNO3 を使用する場合は、600℃以下でイオン交換
を行うことができるが、作業性、設備の劣化を考慮する
と、550℃以下で行うことが好ましい。またNaNO
3 を使用する場合は、500℃以下でイオン交換を行う
ことができるが、やはり作業性を考慮すると、450℃
以下で行うことが好ましい。
More specifically, the molten salt will be described.
When KNO 3 is used, ion exchange can be performed at 600 ° C. or lower, but it is preferably performed at 550 ° C. or lower in consideration of workability and deterioration of equipment. Also NaNO
When 3 is used, ion exchange can be performed at 500 ° C or lower, but considering workability, 450 ° C
It is preferable to perform the following.

【0016】尚、本発明において使用するLi2 O−A
23 −SiO2 系ガラスとしては、重量百分率で、
Li2 O 3〜5%、Al23 20〜35%、Si
255〜70%、TiO2 1〜3%、ZrO2
〜4%、P25 1〜5%、Na2 O 0〜4%、K
2 O 0〜4%、Na2 O+K2 O 0.5〜4%の組
成を有するガラスが好適である。すなわちこのガラス
は、核形成材として、TiO2 とZrO2 の両方を含有
するため、結晶核生成速度や結晶成長速度の調整を容易
に行うことが可能である。
The Li 2 O--A used in the present invention
The l 2 O 3 -SiO 2 based glass, in weight percent,
Li 2 O 3~5%, Al 2 O 3 20~35%, Si
O 2 55 to 70%, TiO 2 1 to 3%, ZrO 2 1
~4%, P 2 O 5 1~5 %, Na 2 O 0~4%, K
2 O 0 to 4%, the glass having a composition of Na 2 O + K 2 O 0.5~4 % is preferred. That is, since this glass contains both TiO 2 and ZrO 2 as the nucleating material, it is possible to easily adjust the crystal nucleation rate and the crystal growth rate.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。
EXAMPLES The present invention will be described in detail below based on examples.

【0018】重量百分率で、SiO2 66%、Al2
3 23%、Li2 O 4%、TiO 2 2%、ZrO2
%、P25 1%、Na2 O 0.5%、K2 O 0.
5%の組成になるように原料を調合し、白金ルツボにお
いて1580℃で16時間溶融した後、厚さ6mmの板
状に成形し、次いで3×4×50mmの角柱に成形し
た。
In weight percentage, SiO2 66%, Al2 O
3 23%, Li2 O 4%, TiO 2 2%, ZrO2 Three
%, P2 OFive 1%, Na2 O 0.5%, K2 O 0.
Mix the raw materials so that the composition becomes 5%, and put it in a platinum crucible.
After melting for 16 hours at 1580 ° C, a plate with a thickness of 6 mm
And then into a 3x4x50mm prism.
It was

【0019】尚、このガラスの結晶核生成速度が極大と
なる温度は、750℃であり、結晶成長速度が極大とな
る温度は、840℃である。
The temperature at which the crystal nucleation rate of this glass is maximized is 750 ° C., and the temperature at which the crystal growth rate is maximized is 840 ° C.

【0020】次にこのガラス成形体を表1に示すよう
に、各種の条件で熱処理して結晶化させ、その結晶化度
と熱膨張係数を測定し、さらに各種の条件でイオン交換
して、その曲げ強度をJIS R 1601(198
1)に従って測定した。
Next, as shown in Table 1, this glass molded body was heat-treated under various conditions to be crystallized, its crystallinity and coefficient of thermal expansion were measured, and further ion exchanged under various conditions, Its bending strength is JIS R 1601 (198
It measured according to 1).

【0021】[0021]

【表1】 [Table 1]

【0022】実施例であるNo.1〜6の各試料は、結
晶核生成速度が極大となる温度以外の温度域で一次熱処
理を行い、さらに結晶成長速度が極大となる温度以外の
温度域で二次熱処理を行い、またNo.7の試料は、結
晶核生成速度と結晶成長速度の各々の極大となる温度の
間の温度域で一度だけ熱処理を行った後、各試料の結晶
化度と熱膨張係数を測定し、次いで400〜500℃で
3〜6時間イオン交換した後、曲げ強度を測定したもの
である。
No. Each of the samples 1 to 6 was subjected to the primary heat treatment in a temperature range other than the temperature at which the crystal nucleation rate was maximized, and was further subjected to the secondary heat treatment in a temperature range other than the temperature at which the crystal growth rate was maximized. Sample No. 7 was heat-treated only once in a temperature range between the maximum temperatures of the crystal nucleation rate and the crystal growth rate, and the crystallinity and thermal expansion coefficient of each sample were measured. Bending strength was measured after ion exchange at ˜500 ° C. for 3 to 6 hours.

【0023】一方、比較例であるNo.8の試料は、結
晶核生成速度が極大となる温度、すなわち750℃で一
次熱処理を行い、さらに結晶成長速度が極大となる温
度、すなわち840℃で二次熱処理を行った後、結晶化
度と熱膨張係数を測定し、次いで550℃で6時間イオ
ン交換した後、曲げ強度を測定したものである。さらに
No.9の試料は、No.1の試料と同様の条件で熱処
理を行った後、結晶化度と熱膨張係数を測定し、次いで
2 SO4 を48重量%、KClを52重量%含有する
溶融塩を用いて、720℃で5時間イオン交換した後、
曲げ強度を測定したものである。
On the other hand, No. Sample No. 8 was subjected to a primary heat treatment at a temperature at which the crystal nucleus generation rate was a maximum, that is, 750 ° C., and a secondary heat treatment at a temperature at which the crystal growth rate was a maximum, that is, 840 ° C. The thermal expansion coefficient was measured, and then the ion exchange was performed at 550 ° C. for 6 hours, and then the bending strength was measured. Furthermore, No. The sample of No. 9 is No. After heat treatment under the same conditions as for the sample of No. 1, the crystallinity and the coefficient of thermal expansion were measured, and then a molten salt containing 48% by weight of K 2 SO 4 and 52% by weight of KCl was used to obtain 720 ° C. After ion exchange for 5 hours,
Bending strength is measured.

【0024】表1から明らかなようにNo.1〜7の各
試料は、結晶化度が35〜60%であり、−1.0〜
6.5×10-7/℃の良好な熱膨張係数と3000kg
f/cm2 以上の高い曲げ強度を有していた。
As is clear from Table 1, No. Each of the samples 1 to 7 has a crystallinity of 35 to 60% and a crystallinity of -1.0 to
Good thermal expansion coefficient of 6.5 × 10 -7 / ° C and 3000 kg
It had a high bending strength of f / cm 2 or more.

【0025】それに対し、No.8の試料は、、熱膨張
係数が−6.0×10-7/℃と低すぎ、また曲げ強度も
1500kgf/cm2 と低かった。さらにNo.9の
試料は、熱膨張係数は、6.5×10-7/℃であった
が、曲げ強度が1100kgf/cm2 と低かった。
On the other hand, No. Sample No. 8 had a thermal expansion coefficient of -6.0 × 10 -7 / ° C, which was too low, and a bending strength of 1500 kgf / cm 2 . Furthermore, No. Sample No. 9 had a thermal expansion coefficient of 6.5 × 10 −7 / ° C., but had a low bending strength of 1100 kgf / cm 2 .

【0026】表2は、No.1の試料とNo.9の試料
のイオン交換が、結晶化ガラス中のどの部位で行われた
のかを調べた結果を示すものである。
Table 2 shows No. Sample No. 1 and No. 1 9 shows the results of investigating at which site in the crystallized glass the ion exchange of the sample 9 was performed.

【0027】表2から明らかなようにNo.1の試料
は、イオン交換前後で結晶単位格子の体積がほとんど変
化しておらず、従って結晶相中には、K+イオンが入り
込んでおらず、イオン交換反応がガラス相中のみで起こ
っていることが理解される。
As is clear from Table 2, No. In the sample of No. 1, the volume of the crystal unit cell hardly changed before and after the ion exchange, therefore, K + ions did not enter into the crystal phase, and the ion exchange reaction occurred only in the glass phase. Be understood.

【0028】一方、No.9の試料は、結晶単位格子の
体積がイオン交換後に増大しており、従って結晶相中に
+ イオンが入り込んだ事が明らかである。またNo.
9の試料の曲げ強度が1100Kgf/cm 2 と低いの
は、イオン交換温度が720℃と高いため、ガラス相中
にも大量のK+ が入り込み、ガラス相の構造を破壊し、
クラックが入ったためであると考えられる。
On the other hand, No. In the sample of No. 9, the volume of the crystal unit cell was increased after the ion exchange, and therefore it is clear that K + ions have entered the crystal phase. In addition, No.
The bending strength of the sample No. 9 is 1100 Kgf / cm 2 What is low is that the ion exchange temperature is as high as 720 ° C., so a large amount of K + also enters the glass phase, destroying the structure of the glass phase,
It is thought that it was because of cracks.

【0029】尚、上記の結晶化度は、X線回折法によっ
て測定し、熱膨張係数は、ディラトメーターによって測
定したものである。さらに曲げ強度は、JIS R 1
601(1981)に規定されている方法に従って測定
した。
The crystallinity is measured by an X-ray diffraction method, and the thermal expansion coefficient is measured by a dilatometer. Furthermore, the bending strength is JIS R 1
It was measured according to the method defined in 601 (1981).

【0030】[0030]

【発明の効果】以上のように本発明の結晶化ガラスは、
2500kgf/cm2 以上の高い曲げ強度を有し、熱
膨張係数が−3〜10×10-7/℃と、石英ガラスのそ
れに近似し、しかも耐腐食性に優れているため、光ファ
イバーの補強部品として好適であり、また本発明の製造
方法によると、それを作業性良く、且つ、設備の激しい
劣化を招くことなく製造することが可能である。
As described above, the crystallized glass of the present invention is
It has a high flexural strength of 2500 kgf / cm 2 or more, a coefficient of thermal expansion of -3 to 10 x 10 -7 / ° C, which is similar to that of silica glass and is also excellent in corrosion resistance. According to the manufacturing method of the present invention, it can be manufactured with good workability and without causing severe deterioration of equipment.

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Li2 O−Al23 −SiO2 系ガラ
ス相中に、β−石英固溶体結晶が20〜70体積%析出
し、且つ、表層のガラス相中のみのLi+ イオンが、そ
れよりもイオン半径の大きいイオンによって置換されて
なり、30〜380℃における熱膨張係数が−3〜10
×10-7/℃、曲げ強度が2500kgf/cm2 以上
であることを特徴とする結晶化ガラス。
1. A β-quartz solid solution crystal is precipitated in a Li 2 O-Al 2 O 3 -SiO 2 -based glass phase in an amount of 20 to 70% by volume, and Li + ions only in the surface glass phase are It is replaced by ions having a larger ionic radius than that, and has a thermal expansion coefficient of -3 to 10 at 30 to 380 ° C.
A crystallized glass characterized by having a bending strength of 2500 kgf / cm 2 or more at × 10 -7 / ° C.
【請求項2】 Li2 O−Al23 −SiO2 系ガラ
スを、その結晶核生成速度が極大となる温度以外の温度
域で一次熱処理した後、さらに結晶成長速度が極大とな
る温度以外の温度域で二次熱処理することによって、ガ
ラス相中にβ−石英固溶体結晶を20〜70体積%析出
した結晶化ガラスを作製し、次いで該結晶化ガラスをL
+ イオンよりもイオン半径の大きいイオンを含み、且
つ、600℃以下の温度の溶融塩中に浸漬することによ
って、表層のガラス相中のみのLi+ イオンを、それよ
りもイオン半径の大きいイオンと置換することを特徴と
する結晶化ガラスの製造方法。
2. A Li 2 O—Al 2 O 3 —SiO 2 based glass is subjected to primary heat treatment in a temperature range other than the temperature at which the crystal nucleation rate is maximized, and then at a temperature other than the temperature at which the crystal growth rate is maximized. The second heat treatment in the temperature range of 10 to prepare a crystallized glass in which β-quartz solid solution crystals are precipitated in the glass phase in an amount of 20 to 70% by volume, and then the crystallized glass is mixed with L
An ion having an ion radius larger than that of the Li + ion only in the glass phase of the surface layer is contained by immersing in a molten salt at a temperature of 600 ° C. or less and containing an ion having an ion radius larger than that of i + ion. And a method for producing crystallized glass, the method comprising:
【請求項3】 Li2 O−Al23 −SiO2 系ガラ
スを、その結晶核生成速度と結晶成長速度の各々の極大
となる温度の間の温度域で熱処理することによって、ガ
ラス相中にβ−石英固溶体結晶を20〜70体積%析出
した結晶化ガラスを作製し、次いで該結晶化ガラスをL
+ イオンよりもイオン半径の大きいイオンを含み、且
つ、600℃以下の温度の溶融塩中に浸漬することによ
って、表層のガラス相中のみのLi+ イオンを、それよ
りもイオン半径の大きいイオンと置換することを特徴と
する結晶化ガラスの製造方法。
3. Li 2 O—Al 2 O 3 —SiO 2 -based glass is heat-treated in a temperature range between temperatures at which the crystal nucleation rate and the crystal growth rate reach their respective maximums, whereby a glass phase is formed. To prepare a crystallized glass in which 20 to 70% by volume of β-quartz solid solution crystal is deposited, and then the crystallized glass is mixed with L
An ion having an ion radius larger than that of the Li + ion only in the glass phase of the surface layer is contained by immersing in a molten salt at a temperature of 600 ° C. or less and containing an ion having an ion radius larger than that of i + ion. And a method for producing crystallized glass, the method comprising:
JP3258349A 1991-09-10 1991-09-10 Crystallized glass and manufacturing method thereof Expired - Lifetime JPH0737335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258349A JPH0737335B2 (en) 1991-09-10 1991-09-10 Crystallized glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258349A JPH0737335B2 (en) 1991-09-10 1991-09-10 Crystallized glass and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0570174A JPH0570174A (en) 1993-03-23
JPH0737335B2 true JPH0737335B2 (en) 1995-04-26

Family

ID=17319007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258349A Expired - Lifetime JPH0737335B2 (en) 1991-09-10 1991-09-10 Crystallized glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0737335B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3526047B2 (en) 1998-06-19 2004-05-10 日本電気硝子株式会社 Li2O-Al2O3-SiO2-based transparent crystallized glass
US7727917B2 (en) * 2003-10-24 2010-06-01 Schott Ag Lithia-alumina-silica containing glass compositions and glasses suitable for chemical tempering and articles made using the chemically tempered glass
JP4467597B2 (en) * 2007-04-06 2010-05-26 株式会社オハラ Inorganic composition article
CN111268912B (en) 2013-08-30 2022-08-30 康宁股份有限公司 Ion exchangeable glasses, glass-ceramics and methods of making the same
CN106277797A (en) * 2015-06-26 2017-01-04 安徽建晟纪元新材料科技有限公司 A kind of processing technique of micro-crystal stone plate
CN105152536B (en) * 2015-09-21 2017-11-17 北京科技大学 A kind of method that microcrystal glass material is synthesized using ferrochrome slag
CN110944954A (en) * 2017-07-26 2020-03-31 Agc株式会社 Glass for chemical strengthening, chemically strengthened glass, and electronic device case
CN115196874A (en) * 2018-06-01 2022-10-18 日本电气硝子株式会社 Tempered glass and glass for tempering
US11577989B2 (en) * 2018-08-09 2023-02-14 Ohara Inc. Crystallized glass substrate
US11584685B2 (en) * 2018-08-09 2023-02-21 Ohara Inc. Crystallized glass substrate
CN109592903A (en) * 2018-12-28 2019-04-09 江西沁园春陶瓷有限公司 A kind of manufacturing method of delicate china walltile
KR20210080689A (en) * 2019-12-20 2021-07-01 삼성디스플레이 주식회사 Glass article and display device including the same
JPWO2021235547A1 (en) * 2020-05-22 2021-11-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2263234C3 (en) * 1972-12-23 1975-07-10 Jenaer Glaswerk Schott & Gen., 6500 Mainz Process for the production of high-strength glass objects which are resistant to temperature changes by surface crystallization using ion exchange within the glass

Also Published As

Publication number Publication date
JPH0570174A (en) 1993-03-23

Similar Documents

Publication Publication Date Title
Duke et al. Crystallization and chemical strengthening of nepheline glass‐ceramics
US9850163B2 (en) Fusion formed and ion exchanged glass-ceramics
JP5767253B2 (en) Lithium aluminosilicate glass having high elastic modulus and method for producing the same
JPH0737335B2 (en) Crystallized glass and manufacturing method thereof
JP3657453B2 (en) Information processing recording medium
Pinckney et al. Microstructural evolution in some silicate glass–ceramics: a review
JP2602188B2 (en) Transparent crystallized glass based on Li lower 2 O-A1 lower 2 O lower 3-SiO lower 2 for combustion device windows
CN111635138B (en) Glass ceramic with transmittance close to that of glass precursor and preparation method thereof
WO2021135992A1 (en) Microcrystalline glass with high crystal content and preparation method therefor
US4820660A (en) Light transmitting calcium phosphate glass-ceramics
TW201827371A (en) Glass ceramics
JPS6320781B2 (en)
JPH0157055B2 (en)
WO2011105246A1 (en) Process for production of las-system crystalline glass
JPS58199749A (en) Glass ceramic product with metal surface
JP2004075441A (en) Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP3829338B2 (en) Surface crystallized high-strength glass, its production method and its use
US3992179A (en) Glass ceramic and process therefor
US12006248B2 (en) White glass-ceramic substrates and articles including tetragonal zirconia crystalline phase, and method of manufacturing the same
US3764444A (en) Glass ceramic and process therefor
US4341544A (en) Method of making peraluminous nepheline/kalsilite glass-ceramics
JPH07309636A (en) Transparent glass ceramic articles and their production
JPH06329439A (en) Li2o-al2o3-sio2 crystallized glass
US3990877A (en) Glass-ceramic and process therefor
US3846099A (en) Glass-ceramic and process therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 17