JPH0735809A - Method and aparatus for detecting fault point of power cable - Google Patents

Method and aparatus for detecting fault point of power cable

Info

Publication number
JPH0735809A
JPH0735809A JP17894893A JP17894893A JPH0735809A JP H0735809 A JPH0735809 A JP H0735809A JP 17894893 A JP17894893 A JP 17894893A JP 17894893 A JP17894893 A JP 17894893A JP H0735809 A JPH0735809 A JP H0735809A
Authority
JP
Japan
Prior art keywords
point
temperature
fault
power cable
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17894893A
Other languages
Japanese (ja)
Other versions
JP3305815B2 (en
Inventor
Takeshi Komaba
武司 駒場
Shinichi Tsuchiya
信一 土屋
Shunichi Iida
俊一 飯田
Kazunobu Yokoyama
万暢 横山
Yasuhiro Miyata
康弘 宮田
Yoshio Ijichi
良雄 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP17894893A priority Critical patent/JP3305815B2/en
Publication of JPH0735809A publication Critical patent/JPH0735809A/en
Application granted granted Critical
Publication of JP3305815B2 publication Critical patent/JP3305815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To eliminate erroneous detection by factors other than faults by extracting a point with a variation of temperature larger than a specified value as a fault candidate point to detect a fault point based on the change with time in the temperature at the candidate point and the temperature distribution in front and in rear of the candidate point. CONSTITUTION:When a fault is generated, a trip signal is detected with a trigger signal generator 4. The trigger signal is inputted to a temperature distribution measuring device 3 to start the location of a fault point. The measuring device 3 measures a temperature distribution along the length of an optical fiber 2 based on a detection light from the optical fiber 2 along a pipeline or the like where a power cable 1 is installed. The temperature distribution measured is inputted into a fault location device 5 and when a variation of the temperature exceeds a specified value at a point, the point is extracted as fault candidate point. As the rise in the temperature as caused in case of a ground fault is faster in the rising as compared with the temperature rise by other factors, faster rise in the temperature at the candidate point indicates that the candidate point is the fault point. When a temperature rise occurs in a narrow range before and after the candidate point, the candidate point is identified as a fault point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力ケーブルの長手方
向の温度分布を測定して、その測定を基に電力ケーブル
の故障点を検知する方法及び装置に係り、特に、故障以
外の要因による誤検知をなくする電力ケーブル故障点検
出方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for measuring a temperature distribution in a longitudinal direction of a power cable and detecting a failure point of the power cable based on the measurement, and more particularly to a method and a device other than the failure. The present invention relates to a power cable fault point detection method and apparatus for eliminating false detection.

【0002】[0002]

【従来の技術】電力ケーブルにあっては、落雷による衝
撃電圧が印加されたり、電力ケーブルを構成する絶縁体
が劣化したり、或いは外傷を受けたりして電力ケーブル
が損傷すると、この損傷部分で絶縁破壊が生じて接地系
に大電流が流れ、ひいては電力ケーブルが大破するとい
ういわゆる地絡事故(故障)が起きることがある。例え
ば、図6に示すように送電を行うための地中ケーブル6
1は洞道62内に布設されているが、地絡事故によって
接地系に大電流が流れて大破することがある。
2. Description of the Related Art In a power cable, when a shock voltage due to a lightning strike is applied, the insulator forming the power cable is deteriorated, or the power cable is damaged by damage, the damaged portion is damaged. There is a case where a so-called ground fault (fault) occurs in which a large current flows in the grounding system due to dielectric breakdown, and the power cable is severely damaged. For example, as shown in FIG. 6, an underground cable 6 for transmitting power
Although No. 1 is laid in the cave 62, a large current may flow to the ground system due to a ground fault and may cause a serious damage.

【0003】電気所63では系統電流の監視により故障
発生を検知し、故障が発生したとき、継電器等を自動遮
断する。また、故障の発生場所を検出することも行われ
る。これを故障点の標定という。故障点の標定には、マ
レーループ法やパルスレーダ法が用いられている。マレ
ーループ法は、ブリッジの原理を用い、故障ケーブルの
心線をブリッジの一辺として故障点までの抵抗を測定す
ることによって標定するものである。パルスレーダ法
は、故障点からの電気的なパルスの反射を捕らえるもの
である。
At the electric station 63, the occurrence of a failure is detected by monitoring the system current, and when the failure occurs, the relay and the like are automatically shut off. In addition, the location of the failure is also detected. This is called fault location. The Murray loop method and the pulse radar method are used for locating the failure point. The Murray loop method is based on the principle of the bridge, and measures the resistance up to the failure point by using the core of the failed cable as one side of the bridge. The pulse radar method captures the reflection of electrical pulses from a fault point.

【0004】近年では、電力ケーブル内或いはその表面
に多数の光ファイバを配置し、地絡時に生じるアークエ
ネルギで断線した光ファイバ破断位置をOTDRの手法
で測定し、この破断点から故障点を標定する方法が考え
られている。
In recent years, a large number of optical fibers are arranged in or on the surface of a power cable, and the broken position of the optical fiber broken by arc energy generated at the time of ground fault is measured by the OTDR method, and the failure point is located from this broken point. How to do it is considered.

【0005】また、電力ケーブルに沿わせて光ファイバ
を布設しておき、温度分布測定装置を用いて光ファイバ
の長手方向の温度分布を測定し、この温度分布の変化か
ら地絡時に生じる温度上昇を検知して故障点を標定する
方法が考えられている。
Further, an optical fiber is laid along the power cable, the temperature distribution in the longitudinal direction of the optical fiber is measured using a temperature distribution measuring device, and the temperature rise caused by a ground fault from the change in the temperature distribution. There has been considered a method of detecting a fault and locating a failure point.

【0006】[0006]

【発明が解決しようとする課題】マレーループ法やパル
スレーダ法では、故障が発生したことが分かってからで
ないと測定装置を設置できないため、故障発生後、故障
点を標定するまでに時間がかかる。さらに、故障点標定
の位置精度が悪く、標定を行った後に巡回点検を行って
故障点を見極める必要がある。従って、これらの方法を
用いたのでは、故障復旧が遅くなる。
In the Murray loop method and the pulse radar method, a measuring device cannot be installed until it is known that a failure has occurred. Therefore, it takes time to locate the failure point after the failure occurs. . Further, the location accuracy of the fault location is poor, and it is necessary to conduct a patrol inspection after the location to identify the fault point. Therefore, failure recovery will be slower if these methods are used.

【0007】光ファイバの断線位置をOTDR法で検出
する方式では、地絡エネルギが小さい場合、光ファイバ
が断線しないために標定ができないことがある。また、
地絡の起きた方向が光ファイバの配置されていない方向
である場合には、光ファイバの受ける地絡エネルギの影
響が少ない。この場合も光ファイバが断線しないため標
定ができない。地絡方向や地絡エネルギに左右されない
で故障点標定を行うには極力多数の光ファイバを電力ケ
ーブル内部に配置することが必要になるが、実用上これ
は困難である。
In the method of detecting the disconnection position of the optical fiber by the OTDR method, when the ground fault energy is small, the optical fiber may not be disconnected and the orientation may not be possible. Also,
When the direction in which the ground fault occurs is the direction in which the optical fiber is not arranged, the influence of the ground fault energy received by the optical fiber is small. In this case as well, the optical fiber is not broken, and orientation cannot be performed. It is necessary to arrange as many optical fibers as possible inside the power cable in order to perform fault location without being affected by the ground fault direction or the ground fault energy, but this is difficult in practice.

【0008】長手方向の温度分布から故障点標定を行う
方法は上記の方法に比べて優れたものであるが、地絡時
に生じる温度上昇と、それ以外の温度変動、例えば洞道
内気温の変化、換気扇運転による温度変化等と区別がつ
きにくく、悪くすれば誤った箇所を故障点として標定し
てしまう場合もある。
The method of locating a fault point from the temperature distribution in the longitudinal direction is superior to the above method, but it is accompanied by a temperature rise caused by a ground fault and other temperature fluctuations, such as a change in the temperature in a cave. It is difficult to distinguish it from the temperature change and the like due to the operation of the ventilation fan, and if it becomes worse, the wrong place may be located as the failure point.

【0009】そこで、本発明の目的は、上記課題を解決
し、故障以外の要因による誤検知をなくする電力ケーブ
ル故障点検出方法及びその装置を提供することにある。
Therefore, an object of the present invention is to solve the above problems and provide a power cable fault point detection method and apparatus for eliminating erroneous detection due to factors other than a fault.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、電力ケーブル或いはその電力ケーブルの布
設されている洞道、管路等に沿わせて光ファイバを布設
し、この光ファイバの一端から光を入射してその後方散
乱光分布から光ファイバの長手方向の温度分布を測定
し、その温度分布から電力ケーブルの故障点を検出する
電力ケーブル故障点検出方法において、温度の変化量が
所定量より大きい点を故障候補点として抽出し、その候
補点での温度の時間的変化及び候補点の前後での温度分
布を基に故障点を検知するものである。
In order to achieve the above object, the present invention provides an optical fiber along an electric power cable or a cavern, a duct or the like in which the electric power cable is installed. In the power cable failure point detection method, in which light is incident from one end of the cable, the temperature distribution in the longitudinal direction of the optical fiber is measured from the backscattered light distribution, and the failure point of the power cable is detected from the temperature distribution. Is extracted as a failure candidate point that is larger than a predetermined amount, and the failure point is detected based on the temporal change in temperature at the candidate point and the temperature distribution before and after the candidate point.

【0011】上記故障候補点の抽出を行うために、まず
電力ケーブルのトリップ信号を受信し、このトリップ信
号の受信後直ちに温度分布を測定し、トリップ信号受信
前後での温度分布の変化量を求めるようにしてもよい。
In order to extract the failure candidate point, first, a trip signal of the power cable is received, the temperature distribution is measured immediately after the trip signal is received, and the change amount of the temperature distribution before and after the trip signal is received is obtained. You may do it.

【0012】電力ケーブル故障点検出装置は、電力ケー
ブル或いはその電力ケーブルの布設されている洞道、管
路等に沿わせた光ファイバと、この光ファイバの一端か
ら入射した光の後方散乱光分布から光ファイバの長手方
向の温度分布を測定する温度分布測定装置とを有する電
力ケーブル故障点検出装置において、温度の変化量が大
きい順に故障候補点を抽出する抽出手段と、その抽出さ
れた候補点での温度の時間的変化を予め設定した経時デ
ータと比較し、かつ当該候補点の前後での温度分布を予
め設定した分布データと比較して当該候補点が故障点で
あるか否かを検知する故障点検知手段とを備えたもので
ある。
The power cable fault point detecting device is composed of an optical fiber along an electric power cable or a cavern, a conduit, etc. in which the electric power cable is laid, and a backscattered light distribution of light incident from one end of the optical fiber. In the power cable fault point detecting device having a temperature distribution measuring device for measuring the temperature distribution in the longitudinal direction of the optical fiber, the extracting means for extracting the fault candidate points in the descending order of the temperature change amount, and the extracted candidate points. Detects whether or not the candidate point is a failure point by comparing the temporal change in temperature with preset temporal data and comparing the temperature distribution before and after the candidate point with preset distribution data. And a failure point detecting means for performing the operation.

【0013】[0013]

【作用】上記構成により、光ファイバの長手方向の温度
分布が検知される。温度分布が変化すれば、光ファイバ
に沿った温度の変化量が分かる。ある点において温度の
変化量が所定量より大きいとき、その点で故障が起きて
いる可能性があるので、これを故障候補点として抽出す
る。候補点においては、その点での温度の時間的変化及
び候補点の前後での温度分布を調べる。地絡時に生じる
温度上昇は他の要因による温度上昇に比べて立上がりが
速いので、候補点での温度上昇が速ければこの候補点が
故障点であるという標定ができる。また、地絡時に生じ
る温度上昇は他の要因による温度上昇に比べて局所的に
起きるので、候補点の前後の狭い範囲に温度上昇が現れ
ていれば、この候補点が故障点であるという標定ができ
る。それぞれの標定結果を複合的に用いれば信頼のおけ
る標定が得られる。例えば、温度変化による標定で候補
点を1点に絞り込み、温度分布による標定で確認を行
う。
With the above structure, the temperature distribution in the longitudinal direction of the optical fiber can be detected. If the temperature distribution changes, the amount of change in temperature along the optical fiber can be known. When the amount of change in temperature at a certain point is larger than a predetermined amount, there is a possibility that a failure has occurred at that point, so this is extracted as a failure candidate point. At a candidate point, the temporal change in temperature at that point and the temperature distribution before and after the candidate point are examined. Since the rise in temperature caused by a ground fault rises faster than the rise in temperature due to other factors, if the rise in temperature at a candidate point is fast, it can be determined that this candidate point is a failure point. In addition, the temperature rise that occurs during a ground fault occurs more locally than the temperature rise due to other factors, so if the temperature rise appears in a narrow range before and after the candidate point, it is determined that this candidate point is a failure point. You can Reliable orientation can be obtained by using each orientation result in combination. For example, candidate points are narrowed down to one point by orientation based on temperature change, and confirmation is performed by orientation based on temperature distribution.

【0014】地絡時に電力ケーブルに生じるトリップ信
号を受信するようにしておけば、トリップ信号の受信を
もって電力ケーブルのどこかで地絡が発生したことが分
かる。この時点から温度分布の測定を行うと、地絡時前
後での温度変化を捕らえることができるので、上記候補
点の抽出、故障点の標定が迅速かつ精度よく行える。
By receiving the trip signal generated in the power cable at the time of the ground fault, it can be known that the ground fault has occurred somewhere in the power cable when the trip signal is received. If the temperature distribution is measured from this point in time, the temperature change before and after the ground fault can be captured, so that the candidate points can be extracted and the fault points can be located quickly and accurately.

【0015】また、候補点の抽出は、変化量の大きい順
に行ってもよい。当該候補点での温度の時間的変化から
故障点の標定を行うには、予め地絡によって発生する温
度変化或いはその特徴量を経時データとして設定してお
き、実測値と経時データとを比較するとよい。当該候補
点の前後での温度分布から故障点の標定を行うには、予
め地絡によって発生する温度分布或いはその特徴量を分
布データとして設定しておき、実測値と分布データと比
較するとよい。それぞれの標定結果を複合的に用いれば
信頼のおける標定が得られる。例えば、温度変化による
標定と、温度分布による標定とが一致したときのみ、そ
の候補点を故障点とする。
Further, the extraction of the candidate points may be performed in descending order of the amount of change. In order to locate the failure point from the temporal change of the temperature at the candidate point, the temperature change or its characteristic amount caused by the ground fault is set in advance as the time data, and the measured value and the time data are compared. Good. In order to locate the failure point from the temperature distribution before and after the candidate point, it is preferable to set the temperature distribution generated by the ground fault or its characteristic amount in advance as distribution data and compare the measured value with the distribution data. Reliable orientation can be obtained by using each orientation result in combination. For example, only when the orientation based on the temperature change and the orientation based on the temperature distribution match, the candidate point is set as the failure point.

【0016】[0016]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0017】図1に示されるように、電力ケーブル故障
点検出システムは、主に、電力ケーブル1や洞道、管路
等のケーブル布設設備に沿わせて布設され、温度分布を
検知するための光を伝送する光ファイバ2、光ファイバ
2からの検知光に基づきその長手方向の温度分布を測定
する温度分布測定装置3、地絡発生時に電力ケーブル1
に流れるトリップ信号を検出して標定開始用のトリガ信
号を発生するトリガ信号発生器4、測定された温度分布
を基に故障点を標定する故障点標定装置5から構成され
る。
As shown in FIG. 1, the power cable fault point detection system is installed mainly along the power cable 1 and cable installation equipment such as a cave and a pipeline to detect the temperature distribution. An optical fiber 2 that transmits light, a temperature distribution measuring device 3 that measures the temperature distribution in the longitudinal direction based on the detection light from the optical fiber 2, and a power cable 1 when a ground fault occurs.
It comprises a trigger signal generator 4 for detecting a trip signal flowing through and generating a trigger signal for locating start, and a fault point locating device 5 for locating a fault point based on the measured temperature distribution.

【0018】本実施例では、電力ケーブルは3つの導体
を有し、電源部より3相の電力を供給されている。光フ
ァイバ2、温度分布測定装置3は公知のものでよい。ト
リガ信号発生器4は、各相の導体に取付けたCT(電流
変換コイル)6から電力ケーブル1のトリップ信号を受
信する受信手段として構成され、トリップ信号を受信す
ると即座に、測定途中であっても温度分布測定装置3を
リセットして測定を再開させるべくトリガ信号を発生す
ることができる。
In the present embodiment, the power cable has three conductors and is supplied with three-phase power from the power supply section. The optical fiber 2 and the temperature distribution measuring device 3 may be known ones. The trigger signal generator 4 is configured as a receiving unit that receives the trip signal of the power cable 1 from the CT (current conversion coil) 6 attached to the conductor of each phase. Also, a trigger signal can be generated to reset the temperature distribution measuring device 3 and restart the measurement.

【0019】本システムの具体的な動作について説明す
る。
A specific operation of this system will be described.

【0020】本システムの動作は大きく2つに分かれ
る。まず、第1は故障が発生する以前の動作であり、第
2は故障が発生した後の動作である。
The operation of this system is roughly divided into two. First, the first is the operation before the failure occurs, and the second is the operation after the failure occurs.

【0021】故障が発生する以前の第1の動作におい
て、本システムは電力ケーブル設備の運転状況の監視を
行うことができる。すなわち、電力ケーブル表面及び各
種電力設備の温度を測定することにより送電線路運転時
の異常温度監視、並びに洞道内の火災発見等の常時監視
を行える。具体的には、温度分布測定装置3により送電
線路の温度分布を測定し、測定された線路の各点の温度
データを故障点標定装置5に転送する。故障点標定装置
5では予め各点についての異常温度を設定しておき、こ
れを越えた点を異常点として表示・警報を発生する。な
お、異常をいちはやく検出するためには、温度分布測定
装置3の測定時間ができるだけ短いほうが望ましく、本
システムの場合は測定時間を数十秒とした。また、故障
点標定装置5では送られた温度データをもとにして、各
点の平均温度値を求めておき、この平均温度値と1回の
測定値とを比較して異常温度の検出を行う。平均温度値
を用いたのは測定温度値の測定誤差の影響を小さくし異
常温度検出を精度良く行うためである。本システムで
は、平均を行う時間幅を電力設備温度の日変動時間より
かなり小さくするため、数十分とした。
In the first operation before the failure occurs, the system can monitor the operating status of the power cable equipment. That is, by measuring the temperature of the surface of the power cable and the temperature of various power facilities, it is possible to monitor the abnormal temperature during the operation of the transmission line, and to constantly monitor the fire in the cave. Specifically, the temperature distribution measuring device 3 measures the temperature distribution of the transmission line, and the measured temperature data of each point of the line is transferred to the fault point locating device 5. The fault point locator 5 sets an abnormal temperature at each point in advance, and points beyond this are set as abnormal points and an alarm is issued. In order to detect an abnormality quickly, it is desirable that the measurement time of the temperature distribution measuring device 3 be as short as possible. In the case of this system, the measurement time was set to several tens of seconds. In addition, the failure point locator 5 obtains an average temperature value at each point based on the temperature data sent, and compares the average temperature value with one measurement value to detect an abnormal temperature. To do. The reason why the average temperature value is used is to reduce the influence of the measurement error of the measured temperature value and accurately detect the abnormal temperature. In this system, the averaging time width was set to several tens of minutes in order to make it considerably smaller than the daily fluctuation time of the power equipment temperature.

【0022】故障が発生した場合の第2の動作におい
て、トリップ信号がトリガ信号発生器4で検出される。
この場合、トリガ信号発生器4としては、簡単な部品で
構成できるCT6を用いることが好ましい。さて、トリ
ガ信号発生器4は、トリガ信号を温度分布測定装置3に
入力し、これより故障点の標定が開始される。温度分布
測定装置3は、トリガ信号により即座にそれまでの測定
途中の温度分布測定データをリセットし測定を再開す
る。地絡発生時刻と温度分布測定装置3の測定開始時刻
が同時になるので、地絡時の温度上昇をより正確にかつ
効率良く測定することができる。
In the second operation when a failure occurs, the trip signal is detected by the trigger signal generator 4.
In this case, as the trigger signal generator 4, it is preferable to use the CT 6 which can be configured by simple parts. Now, the trigger signal generator 4 inputs the trigger signal to the temperature distribution measuring device 3, and the fault point localization is started from this. The temperature distribution measuring device 3 immediately resets the temperature distribution measurement data during the measurement up to that point and restarts the measurement by the trigger signal. Since the ground fault occurrence time and the measurement start time of the temperature distribution measuring device 3 are the same, the temperature rise at the time of the ground fault can be measured more accurately and efficiently.

【0023】次に、故障点標定装置5の動作を説明す
る。
Next, the operation of the fault point locating device 5 will be described.

【0024】故障点標定装置5ではトリガ信号を受けた
後、まず、(1)光ファイバが断線したかどうかをチェ
ックし、次に(2)地絡点の候補点を抽出し、(3)候
補点の中から温度上昇立上がり時間及び(4)候補点近
傍の温度上昇の拡がりをもとに、地絡点を標定する。こ
れで標定できなかったときには、候補点の再抽出を行
い、(3)(4)と同様の処理により地絡点を標定す
る。
After receiving the trigger signal, the fault point locating device 5 first checks (1) whether or not the optical fiber is broken, and (2) extracts a ground fault candidate point, and (3) The ground fault point is located from the candidate points based on the rise time of the temperature rise and (4) the spread of the temperature rise near the candidate point. When it cannot be located by this, the candidate points are re-extracted and the ground fault points are located by the same processing as in (3) and (4).

【0025】以下に、各項目について説明する。Each item will be described below.

【0026】(1)光ファイバの断線点の検出 光ファイバ2が断線した場合、温度分布測定装置3に
は、図3(a)に示すように、断線点以降の点で温度が
大きく変動しているような測定結果が得られる。この変
動を検出するために予め温度差を設定(Taとする:例
として数十〜数百度)しておく。即ち、トリップ信号発
生前後で光ファイバ2上の各点の温度差(過去の平均温
度と現在の温度との差)を求め、この温度差の絶対値が
設定値Ta以上になった場合、地絡により光ファイバ2
が断線したものと判断して、温度分布測定装置3側の近
端を地絡点として標定する。
(1) Detection of Break Point of Optical Fiber When the optical fiber 2 is broken, the temperature distribution measuring device 3 has a large temperature change at points after the break point as shown in FIG. 3 (a). The measurement result is as follows. In order to detect this variation, a temperature difference is set in advance (Ta is set: several tens to several hundreds of degrees). That is, the temperature difference (difference between the past average temperature and the current temperature) at each point on the optical fiber 2 before and after the generation of the trip signal is obtained, and when the absolute value of this temperature difference exceeds the set value Ta, Optical fiber 2
Is determined to be broken, and the near end on the temperature distribution measuring device 3 side is located as a ground fault point.

【0027】(2)候補点の抽出 光ファイバ2が断線していない場合、図3(b)に示す
ように、地絡点としての候補点を抽出する。これには予
め地絡時に発生する上昇温度値を設定(Tbとする:例
として数十度)しておく。上記(1)で求めたトリップ
信号発生以前の平均温度分布と発生後の温度差が設定温
度値Tbを越えた点を候補点としてピックアップする。
ここで設定温度値Tbについては、地絡以外の種々の要
因による温度上昇と区別するために、初めは数十度に設
定する。この設定を越える点がなければ、設定値を徐々
に下げていき、候補点を抽出するまでこれを繰り返す。
なお、最終的に候補点が見付からない場合には、候補点
なしという標定を下す。
(2) Extraction of Candidate Point When the optical fiber 2 is not broken, a candidate point as a ground fault point is extracted as shown in FIG. 3 (b). For this, the temperature rise value that occurs at the time of a ground fault is set in advance (Tb: several tens of degrees as an example). A point where the difference between the average temperature distribution before the trip signal is generated and the temperature difference after the trip signal obtained in (1) exceeds the set temperature value Tb is picked up as a candidate point.
Here, the set temperature value Tb is initially set to several tens of degrees in order to distinguish it from the temperature increase due to various factors other than the ground fault. If there is no point that exceeds this setting, the set value is gradually lowered and this is repeated until a candidate point is extracted.
If no candidate point is found at the end, then the candidate point is absent.

【0028】(3)候補点の温度の時間特性の評価 候補点について、温度上昇の経時変化を求め、その立上
がり時間を求める。図3(c)に示されるように、地絡
による温度上昇の立上がり時間は、他の要因による温度
上昇(洞道内気温変化や換気扇運転による温度変動等)
に比べて短くなるため、これを判断基準として候補点を
絞り込む。
(3) Evaluation of Temporal Characteristics of Temperature of Candidate Point The temperature change of the candidate point with time is obtained, and the rise time thereof is obtained. As shown in FIG. 3C, the rise time of the temperature rise due to the ground fault is the temperature rise due to other factors (temperature change in the cavern, temperature fluctuation due to ventilation fan operation, etc.).
Since it is shorter than that of, the candidate points are narrowed down using this as a criterion.

【0029】(4)候補点近傍の温度上昇の拡がり(距
離特性と呼ぶ)の評価 絞り込んだ候補点について、候補点近傍の温度上昇の拡
がりを評価し、地絡点としての確認を行う。図3(d)
に示されるように、地絡点における温度上昇の拡がり
は、他の要因によるものに比べて狭いことを利用する。
(4) Evaluation of spread of temperature rise near the candidate point (referred to as distance characteristic) The narrowed candidate point is evaluated for spread of temperature rise near the candidate point and confirmed as a ground fault point. Figure 3 (d)
As shown in (3), the spread of the temperature rise at the ground fault is used as compared with that due to other factors.

【0030】次に本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0031】図2に示したように、故障点検出装置20
は、図1と同様の光ファイバ2及び温度分布測定装置3
を用いるシステムであり、温度分布測定装置3で測定さ
れた温度分布情報を保持する温度保持回路21、保持さ
れた温度分布情報の所定時間での差を求め、差が現れて
いる点の温度差と位置情報とを検出する温度差検出回路
22、温度差の大きい順に位置情報を並べ換える並べ換
え回路23、地絡条件をチェックする地絡条件チェック
回路24、及び標定結果を表示する標定結果表示装置2
5から構成される。
As shown in FIG. 2, the failure point detection device 20
Is the same optical fiber 2 and temperature distribution measuring device 3 as in FIG.
The temperature holding circuit 21 holds the temperature distribution information measured by the temperature distribution measuring device 3, the difference in the held temperature distribution information at a predetermined time is obtained, and the temperature difference at the point where the difference appears. Difference detection circuit 22 that detects the position information and the position information, a rearrangement circuit 23 that rearranges the position information in order of increasing temperature difference, a ground fault condition check circuit 24 that checks the ground fault condition, and an orientation result display device that displays the orientation result. Two
It consists of 5.

【0032】温度保持回路21と温度差検出回路22と
並べ換え回路23は、温度の変化量が大きい順に故障候
補点を抽出する抽出手段7である。地絡条件チェック回
路24は、抽出された候補点での温度の時間的変化を予
め設定した経時データと比較し、かつ当該候補点の前後
での温度分布を予め設定した分布データと比較して当該
候補点が故障点であるか否かを検知する故障点検知手段
8である。
The temperature holding circuit 21, the temperature difference detection circuit 22, and the rearrangement circuit 23 are the extraction means 7 for extracting the failure candidate points in the descending order of the temperature change amount. The ground fault condition check circuit 24 compares the temporal change of the temperature at the extracted candidate point with preset time-dependent data, and compares the temperature distribution before and after the candidate point with preset distribution data. The failure point detection means 8 detects whether or not the candidate point is a failure point.

【0033】図2において、光ファイバ2を1m単位で
区切った点での温度分布データが1分毎に入力される。
温度保持回路21では各点での温度変化を検知するため
にこれらのデータを保持する。温度差検出回路22では
各点での1分毎の温度変化量を算出する。温度差の大き
い点は故障点である可能性が高いので、並べ換え回路2
3で温度差の大きい順に位置情報を並べ換える。このよ
うに候補点が1箇所とは限らないから、標定を行う順序
を決めなければならないが、変化量の大きい順に行うの
がよい。
In FIG. 2, the temperature distribution data at the point where the optical fiber 2 is divided by 1 m is inputted every 1 minute.
The temperature holding circuit 21 holds these data in order to detect the temperature change at each point. The temperature difference detection circuit 22 calculates the amount of temperature change at each point for each minute. Since the point with a large temperature difference is likely to be a failure point, the rearrangement circuit 2
In 3, the position information is rearranged in the order of increasing temperature difference. As described above, the number of candidate points is not limited to one, and therefore the order in which the orientation is performed must be determined, but it is preferable to perform the order in which the amount of change is large.

【0034】地絡条件チェック回路24では、並べ換え
回路23で並べた順に、当該候補点の前後での温度分布
を予め設定した分布データと比較する。即ち、温度上昇
の拡がりが地絡時の特徴を有しているかどうかをチェッ
クする。地絡時の特徴がある場合には、当該候補点での
温度の時間的変化を予め設定した経時データと比較す
る。即ち、温度保持回路21の保持している温度分布情
報の中から当該候補点のデータを時間順に並べる。そし
て、温度変化の様子が地絡時の特徴を有しているかどう
かをチェックする。温度分布の特徴と時間的変化の特徴
とがいずれも地絡時の特徴を有しているとき、標定結果
表示装置25に故障点の標定結果を表示する。
In the ground fault condition check circuit 24, the temperature distribution before and after the candidate point is compared with preset distribution data in the order arranged by the rearrangement circuit 23. That is, it is checked whether the spread of the temperature rise has the characteristic at the time of the ground fault. If there is a characteristic at the time of a ground fault, the temporal change of the temperature at the candidate point is compared with preset time-dependent data. That is, the data of the candidate points are arranged in time order from the temperature distribution information held by the temperature holding circuit 21. Then, it is checked whether the state of the temperature change has the characteristic at the time of the ground fault. When both the characteristics of the temperature distribution and the characteristics of the temporal change have the characteristics at the time of the ground fault, the orientation result display device 25 displays the orientation result of the failure point.

【0035】上記実施例では、故障点の標定を常時行う
ようにしたが、トリップ信号によって地絡の発生を検知
した後、故障点の標定を行ってもよい。また、並べ換え
回路23においてケーブル全長に亘って点を並べ換える
のではなく、温度差の大きい方から必要な個数だけ並べ
換えるようにしてもよい。
In the above embodiment, the fault point is always located, but the fault point may be located after the occurrence of the ground fault is detected by the trip signal. Further, in the rearrangement circuit 23, the points may not be rearranged over the entire length of the cable, but the necessary number may be rearranged from the one having the largest temperature difference.

【0036】次に、他の実施例について述べる。Next, another embodiment will be described.

【0037】地絡時に発生するエネルギにおいては、単
に地絡のアークエネルギによる発熱即ち温度上昇だけで
なく、電力ケーブルに布設した光ファイバに何らかのテ
ンション(例えばケーブル接続部の膨脹による)がかか
ることもある。テンションによって、光ファイバにマイ
クロベンドが発生し、結果的に光ファイバの伝送損失が
地絡発生箇所で変化することが考えられる。
In the energy generated at the time of the ground fault, not only the heat generated by the arc energy of the ground fault, that is, the temperature rise, but also some tension (for example, the expansion of the cable connection portion) is applied to the optical fiber laid on the power cable. is there. It is conceivable that the tension causes microbending in the optical fiber, resulting in a change in the transmission loss of the optical fiber at the place where the ground fault occurs.

【0038】この結果、マイクロベンド発生箇所以降で
の伝送損失には変化が生じる。図4に示される伝送損失
測定結果を見ると、温度を求めるための散乱光AとSの
2種類において共に変化している。これを温度に換算し
た場合には図5のように地絡点以降の点の温度が地絡点
までに比べ変化することになる。図5のように温度が低
くなる場合もあれば逆に高くなる場合もある。そこで標
定の手順の中で光ファイバの断線チェック時に温度値
の絶対値を基準とする方法と、光ファイバの伝送損失
を毎回チェックする方法等が挙げられる。この方法は温
度上昇値が小さい地絡条件時の検出に有効である。
As a result, the transmission loss changes after the microbend occurs. Looking at the transmission loss measurement result shown in FIG. 4, both of the scattered lights A and S for determining the temperature change. When this is converted into temperature, the temperature at the point after the ground fault point changes as compared with that up to the ground fault point as shown in FIG. As shown in FIG. 5, the temperature may be low or may be high. Therefore, in the orientation procedure, there are a method of using the absolute value of the temperature value as a reference when checking the disconnection of the optical fiber, and a method of checking the transmission loss of the optical fiber every time. This method is effective for detection under the ground fault condition where the temperature rise value is small.

【0039】[0039]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0040】(1)地絡以外の温度変動は地絡の温度変
動と区別され、地絡点のみが正確に標定される。
(1) Temperature fluctuations other than the ground fault are distinguished from the temperature fluctuations of the ground fault, and only the ground fault points are accurately located.

【0041】(2)故障点の標定が正確かつ瞬時にでき
るので、故障復旧が迅速にできるようになる。
(2) Since the fault point can be located accurately and instantaneously, the fault can be quickly recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す電力ケーブル故障点検
出システムのブロック図である。
FIG. 1 is a block diagram of a power cable fault point detection system showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す故障点検出装置のブ
ロック図である。
FIG. 2 is a block diagram of a fault point detection device showing another embodiment of the present invention.

【図3】故障点標定装置の動作を説明するためのグラフ
である。
FIG. 3 is a graph for explaining the operation of the fault point locating device.

【図4】マイクロベンド発生による伝送損失変化を示す
グラフである。
FIG. 4 is a graph showing a change in transmission loss due to generation of a microbend.

【図5】マイクロベンド発生時の温度分布測定結果を示
すグラフである。
FIG. 5 is a graph showing measurement results of temperature distribution when microbends occur.

【図6】電力ケーブルの説明図である。FIG. 6 is an explanatory diagram of a power cable.

【符号の説明】[Explanation of symbols]

1 電力ケーブル 2 光ファイバ 3 温度分布測定装置 4 トリガ信号発生器 5 故障点標定装置 7 抽出手段 8 故障点検知手段 1 Power Cable 2 Optical Fiber 3 Temperature Distribution Measuring Device 4 Trigger Signal Generator 5 Fault Point Locating Device 7 Extracting Means 8 Fault Point Detecting Means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 俊一 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 横山 万暢 東京都千代田区内幸町一丁目1番3号 東 京電力株式会社内 (72)発明者 宮田 康弘 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 (72)発明者 伊地知 良雄 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shunichi Iida 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Within Tokyo Electric Power Company (72) Mannobu Yokoyama 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside the Tokyo Electric Power Company (72) Inventor Yasuhiro Miyata 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Optro System Research Laboratory (72) Inventor Yoshio Ichi 5 Hidaka-cho, Hitachi City, Ibaraki Prefecture 1-1-1 Hitachi Cable Co., Ltd. Optro System Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブル或いはその電力ケーブルの
布設されている洞道、管路等に沿わせて光ファイバを布
設し、この光ファイバの一端から光を入射してその後方
散乱光分布から光ファイバの長手方向の温度分布を測定
し、その温度分布から電力ケーブルの故障点を検出する
電力ケーブル故障点検出方法において、温度の変化量が
所定量より大きい点を故障候補点として抽出し、その候
補点での温度の時間的変化及び候補点の前後での温度分
布を基に故障点を検知することを特徴とする電力ケーブ
ル故障点検出方法。
1. An optical fiber is laid along a power cable or a cavern, a duct or the like in which the power cable is laid, and light is made incident from one end of the optical fiber and distributed from its backscattered light distribution. In the power cable fault point detection method of measuring the temperature distribution in the longitudinal direction of the fiber and detecting the fault point of the power cable from the temperature distribution, a point where the amount of change in temperature is larger than a predetermined amount is extracted as a fault candidate point, and A method for detecting a fault point in a power cable, which detects a fault point based on a temporal change in temperature at the candidate point and a temperature distribution before and after the candidate point.
【請求項2】 上記故障候補点の抽出を行うために、ま
ず電力ケーブルのトリップ信号を受信し、このトリップ
信号の受信後直ちに温度分布を測定し、トリップ信号受
信前後での温度分布の変化量を求めるようにしたことを
特徴とする請求項1記載の電力ケーブル故障点検出方
法。
2. In order to extract the failure candidate point, first, a trip signal of the power cable is received, the temperature distribution is measured immediately after the trip signal is received, and the change amount of the temperature distribution before and after the trip signal is received. The power cable fault point detection method according to claim 1, wherein
【請求項3】 電力ケーブル或いはその電力ケーブルの
布設されている洞道、管路等に沿わせた光ファイバと、
この光ファイバの一端から入射した光の後方散乱光分布
から光ファイバの長手方向の温度分布を測定する温度分
布測定装置とを有する電力ケーブル故障点検出装置にお
いて、温度の変化量が大きい順に故障候補点を抽出する
抽出手段と、その抽出された候補点での温度の時間的変
化を予め設定した経時データと比較し、かつ当該候補点
の前後での温度分布を予め設定した分布データと比較し
て当該候補点が故障点であるか否かを検知する故障点検
知手段とを備えたことを特徴とする電力ケーブル故障点
検出装置。
3. An optical fiber along a power cable or a cavern, pipe or the like in which the power cable is laid,
In a power cable fault point detection device having a temperature distribution measuring device for measuring the temperature distribution in the longitudinal direction of the optical fiber from the backscattered light distribution of the light incident from one end of this optical fiber, a failure candidate in descending order of temperature variation The extraction means for extracting the points and the temporal change of the temperature at the extracted candidate points are compared with preset time data, and the temperature distribution before and after the candidate points is compared with preset distribution data. And a fault point detecting means for detecting whether or not the candidate point is a fault point.
JP17894893A 1993-07-20 1993-07-20 Power cable fault point detection method and device Expired - Fee Related JP3305815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17894893A JP3305815B2 (en) 1993-07-20 1993-07-20 Power cable fault point detection method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17894893A JP3305815B2 (en) 1993-07-20 1993-07-20 Power cable fault point detection method and device

Publications (2)

Publication Number Publication Date
JPH0735809A true JPH0735809A (en) 1995-02-07
JP3305815B2 JP3305815B2 (en) 2002-07-24

Family

ID=16057453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17894893A Expired - Fee Related JP3305815B2 (en) 1993-07-20 1993-07-20 Power cable fault point detection method and device

Country Status (1)

Country Link
JP (1) JP3305815B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176788A (en) * 2015-03-19 2016-10-06 住友電気工業株式会社 Power cable ground-fault position detection device and detection method, and program
JP2017220981A (en) * 2016-06-03 2017-12-14 東芝プラントシステム株式会社 Cable way temperature monitoring system, cable way temperature monitoring device, and cable way temperature monitoring method
CN114167344A (en) * 2021-12-03 2022-03-11 国网江苏省电力有限公司营销服务中心 Medium-high voltage and distribution room general table metering point error analysis system
CN115575755A (en) * 2022-11-23 2023-01-06 合肥优尔电子科技有限公司 Electric power facility inspection system based on artificial intelligence and Beidou technology
CN116047226A (en) * 2023-02-01 2023-05-02 华远高科电缆有限公司 Early warning cable detecting system
CN118074337A (en) * 2024-04-16 2024-05-24 广州南洋电缆集团有限公司 Medium voltage self-monitoring and fault positioning system based on smart cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176788A (en) * 2015-03-19 2016-10-06 住友電気工業株式会社 Power cable ground-fault position detection device and detection method, and program
JP2017220981A (en) * 2016-06-03 2017-12-14 東芝プラントシステム株式会社 Cable way temperature monitoring system, cable way temperature monitoring device, and cable way temperature monitoring method
CN114167344A (en) * 2021-12-03 2022-03-11 国网江苏省电力有限公司营销服务中心 Medium-high voltage and distribution room general table metering point error analysis system
CN115575755A (en) * 2022-11-23 2023-01-06 合肥优尔电子科技有限公司 Electric power facility inspection system based on artificial intelligence and Beidou technology
CN116047226A (en) * 2023-02-01 2023-05-02 华远高科电缆有限公司 Early warning cable detecting system
CN116047226B (en) * 2023-02-01 2023-08-08 华远高科电缆有限公司 Early warning cable detecting system
CN118074337A (en) * 2024-04-16 2024-05-24 广州南洋电缆集团有限公司 Medium voltage self-monitoring and fault positioning system based on smart cable

Also Published As

Publication number Publication date
JP3305815B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
EP2437075B1 (en) Locating partial discharge in a power cable
US20040189317A1 (en) Method of precisely determining the location of a fault on an electrical transmission system
CN101013149A (en) Method and apparatus for detecting a fault section in ungrounded distribution power systems
Steennis et al. Guarding MV cables on-line: With travelling wave based temperature monitoring, fault location, PD location and PD related remaining life aspects
CN103344809A (en) Measuring equipment and measuring method for leakage currents of high-voltage holding test of security equipment
CN106707087A (en) Grounding monitoring and controlling method and system for underground electric equipment
EP2725367B1 (en) Method and device for monitoring partial discharges
JP3305815B2 (en) Power cable fault point detection method and device
CN114859177A (en) Fault finding system and method based on split-phase switch
GB2558295A (en) A distributed lightning stroke detection system operating in a monitoring mode
JP4301353B2 (en) Method and apparatus for detecting and locating faults in communication cables for remote monitoring and control of wired distribution lines
Kuhn et al. Locating hidden hazards in electrical wiring
CN116520072A (en) Cable fault positioning method and equipment
CN109342889A (en) A kind of method for rapidly positioning of online high-tension cable breakdown fault
CN105988061B (en) A kind of method of high voltage single-core cable protective layer fault location
CN114545154A (en) Regional distribution lines insulation fault detection system
JPH02201274A (en) Method of foreseeing ground fault of power cable
JPH04351973A (en) Detection method for failure point in underground electric wire
CN213600814U (en) On-line accurate positioning device for detecting high-voltage cable fault
JP3226554B2 (en) Locating the accident section of the transmission line
CN205643604U (en) Novel high tension cable failure diagnosis device
Hokazono et al. Development of Predictive Fault Detection and Cause Estimation with Sensor-Equipped Sectionalizers in Advanced Distribution Automation System
Tang Design of device and method for non-intrusive anti-braking cable monitoring
JP7341070B2 (en) Ground fault location system and method
CN106443327A (en) Power transmission line fault detection apparatus

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130510

LAPS Cancellation because of no payment of annual fees