JPH0735785A - Signal waveform measuring instrument - Google Patents

Signal waveform measuring instrument

Info

Publication number
JPH0735785A
JPH0735785A JP5177833A JP17783393A JPH0735785A JP H0735785 A JPH0735785 A JP H0735785A JP 5177833 A JP5177833 A JP 5177833A JP 17783393 A JP17783393 A JP 17783393A JP H0735785 A JPH0735785 A JP H0735785A
Authority
JP
Japan
Prior art keywords
signal waveform
crystal body
electro
phase shifter
waveform measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5177833A
Other languages
Japanese (ja)
Inventor
Yoko Sato
葉子 左藤
Kazuyuki Ozaki
一幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5177833A priority Critical patent/JPH0735785A/en
Publication of JPH0735785A publication Critical patent/JPH0735785A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a signal waveform measuring instrument which can improve measurement sensitivity for the signal waveform measuring instrument which can measure the electrical signal waveform of an electronic element especially utilizing electrooptical effect. CONSTITUTION:In a signal waveform measuring instrument which includes an electronic element 10, an electrooptical crystal body 14 whose refractive index changes when a voltage generated at the electronic element 10 is applied, and a sensor head part 20 which applies laser beams to the electrooptical crystal body 14 and then receives laser beams reflected from the electrooptical crystal body 14, and then detects the change in polarization state of reflection laser beams from the electrooptical crystal body 14 to measure the signal waveform of the electronic element 10, a phase shifter 48 is laid out on the optical path between the sensor head part 20 and the electrooptical crystal body 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信号波形測定装置に関
し、特に、電気光学効果を利用して電子素子の電気信号
波形を測定することができる信号波形測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal waveform measuring apparatus, and more particularly to a signal waveform measuring apparatus capable of measuring an electric signal waveform of an electronic element by utilizing an electro-optical effect.

【0002】LSI等の半導体素子を製造,利用する上
で、素子内外の信号波形を正確に測定しておくことが、
必要不可欠となっている。しかしながら、近年の素子の
高速化に伴い、従来のLSIテスタなどを用いた電気的
な測定方式では、正確な測定が難しくなってきている。
そのため、半導体素子基板結晶の電気光学効果を用いた
光学式の信号波形測定方式が提案されており、この方式
によれば、高速信号を測定できることが確認されてい
る。(例えば、J.A.Valdmanis and G.Mourou“Subpicos
econd electronics sampling:principles and applica
tion”IEEE JOURNAL OF QUANTUM ELECTRONICS,VOL.QB-2
2,pp.69-78等)。
In manufacturing and utilizing a semiconductor device such as an LSI, it is necessary to accurately measure signal waveforms inside and outside the device.
It is indispensable. However, with the recent increase in the speed of elements, it has become difficult to perform accurate measurement by an electric measurement method using a conventional LSI tester or the like.
Therefore, an optical signal waveform measuring method using the electro-optical effect of the semiconductor element substrate crystal has been proposed, and it has been confirmed that this method can measure a high-speed signal. (For example, JAValdmanis and G. Mourou “Subpicos
econd electronics sampling: principles and applica
tion ”IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.QB-2
2, pp.69-78 etc.).

【0003】[0003]

【従来の技術】図4に、従来の信号波形測定装置のブロ
ック回路を示す。図4において、電子素子としてのLS
I10の端子ではLSI駆動回路12により電圧が発生
させられる。このLSI10に隣接して電気光学結晶体
14が配置され、前記電気光学結晶体14のLSI10
側には、電極16が複数設けられており、各電極16
は、レーザ光を反射する機能を有するとともに、LSI
10の端子に発生した電圧を電気光学結晶体14に印加
する機能を有する。電気光学結晶体14においてLSI
10と反対側には、透明電極板18が設けられ、前記透
明電極板18は、グランド電位に接続されている。以上
の構成において、LSI10の端子に電圧が発生し、こ
の電圧が電極16を介して電気光学結晶体14に印加さ
れると、LSI10の端子電圧に応じて、電気光学結晶
体14内を透過するレーザ光の偏光状態が変化する。
2. Description of the Related Art FIG. 4 shows a block circuit of a conventional signal waveform measuring apparatus. In FIG. 4, the LS as an electronic element
A voltage is generated by the LSI drive circuit 12 at the terminal of I10. An electro-optical crystal body 14 is arranged adjacent to the LSI 10, and the LSI 10 of the electro-optical crystal body 14 is arranged.
A plurality of electrodes 16 are provided on the side, and each electrode 16
Has a function of reflecting laser light and
It has a function of applying the voltage generated at the terminal 10 to the electro-optic crystal body 14. LSI in the electro-optic crystal body 14
A transparent electrode plate 18 is provided on the side opposite to 10, and the transparent electrode plate 18 is connected to the ground potential. In the above configuration, when a voltage is generated at the terminal of the LSI 10 and this voltage is applied to the electro-optical crystal body 14 via the electrode 16, the voltage is transmitted through the electro-optical crystal body 14 according to the terminal voltage of the LSI 10. The polarization state of the laser light changes.

【0004】前記電気光学結晶体14にレーザ光を照射
し、前記電気光学結晶体14からの反射レーザ光を受光
するために、センサヘッド部20が設けられている。こ
のセンサヘッド部20において、光源22からのレーザ
光は、ビームスプリッタ24を透過し、鏡26及び光走
査機構28の走査鏡28aで反射され、レンズ30を透
過し、透明電極板18及び電気光学結晶体14を透過
し、電極16で反射させられる。
A sensor head portion 20 is provided for irradiating the electro-optical crystal body 14 with laser light and receiving reflected laser light from the electro-optical crystal body 14. In the sensor head portion 20, the laser light from the light source 22 passes through the beam splitter 24, is reflected by the mirror 26 and the scanning mirror 28a of the optical scanning mechanism 28, passes through the lens 30, and is transmitted through the transparent electrode plate 18 and the electro-optical device. It is transmitted through the crystal 14 and reflected by the electrode 16.

【0005】ここで、前述したように、電気光学結晶体
14はLSI10の端子電圧に応じて屈折率が変化して
いるので、前記電気光学結晶体14を透過するレーザ光
はその偏光状態が変化する。この偏光状態の変化した反
射レーザ光は、透明電極18及びレンズ30を透過し、
光走査鏡28a及び鏡26で反射され、センサヘッド部
20内のビームスプリッタ24の反射面24aで反射さ
れ、偏光ビームスプリッタ32に向かう。反射レーザ光
は偏光ビームプリッタ32でP,S偏光成分に分離され
て、それぞれ、受光器34,36で受光され、電気信号
に変換される。
As described above, since the refractive index of the electro-optic crystal body 14 changes according to the terminal voltage of the LSI 10, the polarization state of the laser light passing through the electro-optic crystal body 14 changes. To do. The reflected laser light whose polarization state has changed passes through the transparent electrode 18 and the lens 30,
The light is reflected by the optical scanning mirror 28 a and the mirror 26, reflected by the reflecting surface 24 a of the beam splitter 24 in the sensor head unit 20, and directed toward the polarization beam splitter 32. The reflected laser light is separated into P and S polarized components by the polarized beam splitter 32, received by the photodetectors 34 and 36, respectively, and converted into electric signals.

【0006】受光器34,36からの電気信号は、差動
増幅器38に供給されてその差動信号が得られ、この差
動信号はA/D変換器40でA/D変換された後、信号
処理部42に供給される。信号処理部42では、A/D
変換された差動信号に基づいて、LSI10の端子電圧
及び信号波形を測定する。なお、LSI10には多くの
入出力端子があるので、各端子の電圧を測定する際に
は、光走査鏡28aを矢印のように回転させ、レーザ光
が所望の端子に対応する電気光学結晶体14の電極16
に入射するようにする。
The electric signals from the photodetectors 34 and 36 are supplied to a differential amplifier 38 to obtain the differential signal, and the differential signal is A / D converted by an A / D converter 40, It is supplied to the signal processing unit 42. In the signal processing unit 42, the A / D
The terminal voltage and signal waveform of the LSI 10 are measured based on the converted differential signal. Since the LSI 10 has many input / output terminals, when measuring the voltage of each terminal, the optical scanning mirror 28a is rotated as shown by the arrow so that the laser beam corresponds to the desired terminal. 14 electrodes 16
To be incident on.

【0007】なお、LSI駆動機構12,信号処理部4
2,及び光源22を制御してLSI駆動信号に同期した
レーザパルスを出射させるタイミング発生器44は、制
御部46により制御されている。
The LSI drive mechanism 12 and the signal processing unit 4
2, a timing generator 44 that controls the light source 22 and emits a laser pulse synchronized with the LSI drive signal is controlled by the control unit 46.

【0008】[0008]

【発明が解決しようとする課題】ところで信号波形測定
装置には複数の光学素子が用いられているため、これら
の光学素子を通過することによってレーザ光の偏光状態
が変化する。また、被測定LSI端子の選択を光走査機
構によって行う場合、光走査鏡への光の入射角度が垂直
でないため、P,S偏光成分に対して反射率が異なり、
偏光状態が変化する。
By the way, since a plurality of optical elements are used in the signal waveform measuring apparatus, the polarization state of the laser light changes by passing through these optical elements. Further, when the LSI terminal to be measured is selected by the optical scanning mechanism, since the incident angle of the light to the optical scanning mirror is not vertical, the reflectance differs for the P and S polarized components,
The polarization state changes.

【0009】このように、光学素子,光走査機構による
レーザ光の偏光状態変化があると、電気光学結晶体の電
気光学効果による電圧測定感度がで低下する。また従
来、測定感度が最大となるように、センサヘッド部を回
転させ、センサヘッド部と電気光学結晶体の誘起結晶軸
との角度を調整している。しかし、光学素子,光走査機
構によるレーザ光量の偏光状態の変化をなくすことがで
きないため、測定感度の向上は望めない。すなわち、図
5のグラフに示されるように、測定感度の実際値は理論
値(光学素子,光走査機構による偏光状態変化がない場
合)より低くなっていた。
As described above, when the polarization state of the laser light changes due to the optical element and the optical scanning mechanism, the voltage measurement sensitivity due to the electro-optical effect of the electro-optical crystal body is lowered. Further, conventionally, the sensor head is rotated to adjust the angle between the sensor head and the induced crystal axis of the electro-optic crystal so that the measurement sensitivity is maximized. However, since it is not possible to eliminate the change in the polarization state of the laser light quantity due to the optical element and the optical scanning mechanism, improvement in measurement sensitivity cannot be expected. That is, as shown in the graph of FIG. 5, the actual value of the measurement sensitivity was lower than the theoretical value (when there is no change in the polarization state due to the optical element or the optical scanning mechanism).

【0010】そこで、本発明の目的は、測定感度を向上
させることができる信号波形測定装置を提供することに
ある。
Therefore, an object of the present invention is to provide a signal waveform measuring device capable of improving the measurement sensitivity.

【0011】[0011]

【課題を解決するための手段】本発明において、電子素
子10と、前記電子素子10に発生した電圧が印加され
ると屈折率が変化する電気光学結晶体14と、前記電気
光学結晶体14にレーザ光を照射し、前記電気光学結晶
体14で反射されたレーザ光を受光するセンサヘッド部
20と、を有し、前記電気光学結晶体14からの反射レ
ーザ光の偏光状態の変化を検出することにより、電子素
子10の信号波形を測定する信号波形測定装置におい
て、前記センサヘッド部20と電気光学結晶体14との
間の光路上には、移相器48が配置されていることを特
徴とする。
In the present invention, an electronic element 10, an electro-optical crystal body 14 whose refractive index changes when a voltage generated in the electronic element 10 is applied, and an electro-optical crystal body 14 are provided. A sensor head section 20 for irradiating the laser beam and receiving the laser beam reflected by the electro-optical crystal body 14; and detecting a change in the polarization state of the reflected laser beam from the electro-optical crystal body 14. As a result, in the signal waveform measuring device for measuring the signal waveform of the electronic element 10, the phase shifter 48 is arranged on the optical path between the sensor head portion 20 and the electro-optic crystal body 14. And

【0012】[0012]

【作用】本発明においては、センサヘッド部20と電気
光学結晶体14との間の光路上に、移相器48が配置さ
れており、前記移相器48により光学素子,光走査機構
によるレーザ光の偏光状態の変化を防止する。
In the present invention, the phase shifter 48 is arranged on the optical path between the sensor head portion 20 and the electro-optic crystal body 14, and the phase shifter 48 causes an optical element and a laser by an optical scanning mechanism. Prevents changes in the polarization state of light.

【0013】[0013]

【実施例】以下、図面に基づいて本発明の好適な実施例
を説明する。図1には、本発明の実施例よる信号波形測
定装置のブロック回路が示されている。なお、図1にお
いて、前記図4の従来装置と同一符号を付して説明して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a block circuit of a signal waveform measuring apparatus according to an embodiment of the present invention. Note that, in FIG. 1, the same reference numerals as those of the conventional device of FIG.

【0014】図1において、センサヘッド部20と鏡2
6との間の光路上には、移相器48が設けられており、
以下、移相器48の作用を説明する。レーザ光は、光源
22から出射される際に1/4波長板によって円偏光と
され、ビームスプリッタ24,鏡26,光走査機構2
8,レンズ30を介して電気光学結晶体14に照射され
る。光学素子や光走査機構を通過する際に、レーザ光の
偏光状態が変化しなければ、レーザ光の偏光状態は円偏
光に保たれる。そのため、電気光学結晶体14の電気光
学効果による偏光状態の変化のみを検出することがで
き、最大の測定感度が得られる。しかし、実際には電気
光学結晶体14に入射するレーザ光は楕円偏光に変化し
ているため、前記図5に示したように、センサーヘッド
部20と電気光学結晶体14の誘起結晶軸との角度を調
整しても測定感度を向上できない。
In FIG. 1, the sensor head portion 20 and the mirror 2 are shown.
A phase shifter 48 is provided on the optical path between the
Hereinafter, the operation of the phase shifter 48 will be described. When the laser light is emitted from the light source 22, it is circularly polarized by the quarter-wave plate, and the beam splitter 24, the mirror 26, and the optical scanning mechanism 2
8. The electro-optic crystal body 14 is irradiated through the lens 30. If the polarization state of the laser light does not change when passing through the optical element or the optical scanning mechanism, the polarization state of the laser light is kept circularly polarized. Therefore, only the change of the polarization state due to the electro-optic effect of the electro-optic crystal body 14 can be detected, and the maximum measurement sensitivity can be obtained. However, in practice, the laser light incident on the electro-optical crystal body 14 is changed to elliptically polarized light, so that as shown in FIG. Even if the angle is adjusted, the measurement sensitivity cannot be improved.

【0015】そこで、適当な移相量を持った移相器48
をセンサヘッド部20と電気光学結晶体14との間の光
路上に挿入する。移相器48を挿入することによって、
電気光学結晶体14に入射するレーザ光の偏光状態が円
偏光に近づき、測定感度が向上する。すなわち、図2の
グラフに示されるように、移相器のない場合と比較し
て、移相器を設けることにより測定感度が向上する。
Therefore, the phase shifter 48 having an appropriate amount of phase shift
Is inserted in the optical path between the sensor head portion 20 and the electro-optic crystal body 14. By inserting the phase shifter 48,
The polarization state of the laser light incident on the electro-optic crystal body 14 approaches circular polarization, and the measurement sensitivity is improved. That is, as shown in the graph of FIG. 2, the measurement sensitivity is improved by providing the phase shifter as compared with the case without the phase shifter.

【0016】前記移相器48は、移相量固定のもの(例
えば1/4波長板)であり、移相器48は回転機構(図
示せず)により矢印のように回転可能である。そして、
図3のグラフに示されるように、移相器48を回転させ
ると測定感度が変化するので、移相器48を回転させて
測定感度が最大になるように移相器48を最適方位角に
設定する。
The phase shifter 48 is a fixed phase shift amount (for example, a quarter wavelength plate), and the phase shifter 48 can be rotated by a rotating mechanism (not shown) as shown by an arrow. And
As shown in the graph of FIG. 3, when the phase shifter 48 is rotated, the measurement sensitivity changes. Therefore, the phase shifter 48 is rotated to the optimum azimuth angle so that the measurement sensitivity is maximized. Set.

【0017】次に、移相器48を最適方位角に設定する
ための構成について説明する。信号処理部42で得られ
た測定結果は、測定感度検出回路50に供給され、前記
検出回路50では測定感度が求められ、この測定感度は
制御部46を介して方位角設定回路52に供給される。
方位角設定回路52では測定結果が最大になるような移
相器48の最適方位各を求め、移相器48を回転させて
最適方位角に設定し、これにより、最大の測定感度が得
られる。
Next, the structure for setting the phase shifter 48 to the optimum azimuth will be described. The measurement result obtained by the signal processing unit 42 is supplied to the measurement sensitivity detection circuit 50, the measurement sensitivity is obtained in the detection circuit 50, and the measurement sensitivity is supplied to the azimuth angle setting circuit 52 via the control unit 46. It
The azimuth angle setting circuit 52 finds each optimum azimuth of the phase shifter 48 that maximizes the measurement result, and rotates the phase shifter 48 to set the optimum azimuth angle, whereby the maximum measurement sensitivity is obtained. .

【0018】上記本発明の実施例によれば、移相器を設
けているので、光学素子,光走査機構によりレーザ光の
偏光状態が変化して測定感度が低下するのを防止するこ
とができ、これにより、信号波形測定装置の測定感度を
向上させることができる。
According to the above-described embodiment of the present invention, since the phase shifter is provided, it is possible to prevent the polarization state of the laser beam from changing due to the optical element and the optical scanning mechanism and to prevent the measurement sensitivity from lowering. As a result, the measurement sensitivity of the signal waveform measuring device can be improved.

【0019】なお、上記実施例においては、移相器とし
て1/4波長板を用いたが、他の移相量をもつ移相器で
あっても実施可能である。また、実施例では移相量固定
の移相器を用いたが、移相量可変の移相器であっても実
施可能である。また、実施例では移相器を回転させて最
大感度を求めているが、移相器を傾けて最大感度を求め
るようにしてもよい。
In the above embodiment, the quarter wave plate is used as the phase shifter, but the phase shifter having another phase shift amount can also be used. Further, in the embodiment, the phase shifter with the fixed amount of phase shift is used, but the phase shifter with the variable amount of phase shift can also be implemented. Further, in the embodiment, the phase shifter is rotated to obtain the maximum sensitivity, but the phase shifter may be tilted to obtain the maximum sensitivity.

【0020】[0020]

【発明の効果】以上説明したように、本発明によればセ
ンサヘッド部と電気光学結晶体との間の光路上に移相器
を配置しているので、光学素子,光走査機構によるレー
ザ光の偏光状態の変化を防止して、測定感度を向上させ
ることができる。
As described above, according to the present invention, since the phase shifter is arranged on the optical path between the sensor head portion and the electro-optic crystal body, the laser beam by the optical element and the optical scanning mechanism is arranged. It is possible to improve the measurement sensitivity by preventing the change of the polarization state of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による信号波形測定装置のブロ
ック回路図である。
FIG. 1 is a block circuit diagram of a signal waveform measuring apparatus according to an embodiment of the present invention.

【図2】本発明の実施例による測定装置においてセンサ
ヘッド部と電気光学結晶体の誘起結晶軸との角度の変化
による測定感度の変化を示すグラフである。
FIG. 2 is a graph showing a change in measurement sensitivity due to a change in an angle between a sensor head portion and an induced crystal axis of an electro-optic crystal body in a measuring apparatus according to an embodiment of the present invention.

【図3】移相器の方位角の変化による測定感度の変化を
示すグラフ図である。
FIG. 3 is a graph showing a change in measurement sensitivity due to a change in azimuth angle of the phase shifter.

【図4】従来の信号波形測定装置のブロック回路図であ
る。
FIG. 4 is a block circuit diagram of a conventional signal waveform measuring device.

【図5】従来の測定装置においてセンサヘッド部と電気
光学結晶体の誘起結晶軸との角度の変化による測定感度
の変化を示すグラフである。
FIG. 5 is a graph showing a change in measurement sensitivity due to a change in an angle between a sensor head portion and an induced crystal axis of an electro-optic crystal body in a conventional measuring device.

【符号の説明】[Explanation of symbols]

10…LSI 14…電気光学結晶体 20…センサヘッド部 48…移相器 10 ... LSI 14 ... Electro-optic crystal 20 ... Sensor head 48 ... Phase shifter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電子素子(10)と、前記電子素子(1
0)に発生した電圧が印加されると屈折率が変化する電
気光学結晶体(14)と、前記電気光学結晶体(14)
にレーザ光を照射し、前記電気光学結晶体(14)で反
射されたレーザ光を受光するセンサヘッド部(20)
と、を有し、 前記電気光学結晶体(14)からの反射レーザ光の偏光
状態の変化を検出することにより、電子素子(10)の
信号波形を測定する信号波形測定装置において、 前記センサヘッド部(20)と電気光学結晶体(14)
との間の光路上には、移相器(48)が配置されている
ことを特徴とする信号波形測定装置。
1. An electronic device (10) and the electronic device (1)
0), the refractive index of which changes when an applied voltage is applied to the electro-optical crystal body (14), and the electro-optical crystal body (14).
A sensor head part (20) for irradiating a laser beam onto the laser beam and receiving the laser beam reflected by the electro-optic crystal body (14).
And a signal waveform measuring device for measuring a signal waveform of an electronic element (10) by detecting a change in a polarization state of reflected laser light from the electro-optic crystal body (14). Section (20) and electro-optic crystal (14)
A signal waveform measuring device characterized in that a phase shifter (48) is arranged on the optical path between and.
【請求項2】 請求項1記載の信号波形測定装置におい
て、 前記移相器(48)は、固定移相量を有することを特徴
とする信号波形測定装置。
2. The signal waveform measuring apparatus according to claim 1, wherein the phase shifter (48) has a fixed amount of phase shift.
【請求項3】 請求項2記載の信号波形測定装置におい
て、 前記移相器(48)は、1/4波長板あるいは1/2波
長板であることを特徴とする信号波形測定装置。
3. The signal waveform measuring device according to claim 2, wherein the phase shifter (48) is a quarter wavelength plate or a half wavelength plate.
【請求項4】 請求項1,2,又は3のいずれかに記載
の信号波形測定装置において、 前記移相器(48)を回転させる回転機構を有し、 前記回転機構は、測定感度が最大になるように移相器
(48)を回転させて最適方位角に設定することを特徴
とする信号波形測定装置。
4. The signal waveform measuring device according to claim 1, further comprising a rotating mechanism that rotates the phase shifter (48), wherein the rotating mechanism has a maximum measurement sensitivity. The signal waveform measuring device characterized in that the phase shifter (48) is rotated so as to set the optimum azimuth angle.
JP5177833A 1993-07-19 1993-07-19 Signal waveform measuring instrument Withdrawn JPH0735785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177833A JPH0735785A (en) 1993-07-19 1993-07-19 Signal waveform measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5177833A JPH0735785A (en) 1993-07-19 1993-07-19 Signal waveform measuring instrument

Publications (1)

Publication Number Publication Date
JPH0735785A true JPH0735785A (en) 1995-02-07

Family

ID=16037916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177833A Withdrawn JPH0735785A (en) 1993-07-19 1993-07-19 Signal waveform measuring instrument

Country Status (1)

Country Link
JP (1) JPH0735785A (en)

Similar Documents

Publication Publication Date Title
US5808473A (en) Electric signal measurement apparatus using electro-optic sampling by one point contact
US5459394A (en) Electro-optic measurement device for the measurement of an electric signal in an electronic component
JPH0573178B2 (en)
JPH01286431A (en) Method and apparatus for optoelectric measurement of voltage waveform on electric conductor
JP2001159665A (en) 2-pulse utilized optical interferometer for precision inspection with waveform of integrated circuit device
US4982151A (en) Voltage measuring apparatus
JPH05264609A (en) Method and system for measuring high frequency electric signal through electrooptic effect
JPH08304430A (en) Frequency shifter and optical displacement measuring apparatus using it
US5737082A (en) Method of electro-optical measurement for vector components of electric fields and an apparatus thereof
JPH0735785A (en) Signal waveform measuring instrument
US6469528B2 (en) Electro-optic sampling probe and measuring method using the same
JP3154531B2 (en) Signal measurement device
US6297651B1 (en) Electro-optic sampling probe having unit for adjusting quantity of light incident on electro-optic sampling optical system module
JP3130187B2 (en) Electric field detector
JPS63133068A (en) Apparatus for detecting voltage of circuit
JP3063369B2 (en) Magnetic field detector
JP2000171488A (en) Electrooptical probe
JPH05267408A (en) Electric field detector
JPH07134147A (en) Signal waveform measuring device
JP3160346B2 (en) Light beam tester
JP2893921B2 (en) Optical sampling device
JP2561655Y2 (en) Optical sampling device
JPS6231281B2 (en)
JPH04235367A (en) Adjusting device of optical axis of detecting apparatus of signal waveform
JPH0634675A (en) Signal waveform measuring device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003