JPH0735550B2 - Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality - Google Patents

Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality

Info

Publication number
JPH0735550B2
JPH0735550B2 JP8479089A JP8479089A JPH0735550B2 JP H0735550 B2 JPH0735550 B2 JP H0735550B2 JP 8479089 A JP8479089 A JP 8479089A JP 8479089 A JP8479089 A JP 8479089A JP H0735550 B2 JPH0735550 B2 JP H0735550B2
Authority
JP
Japan
Prior art keywords
slab
stainless steel
sec
cooling rate
cal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8479089A
Other languages
Japanese (ja)
Other versions
JPH02263929A (en
Inventor
慎一 寺岡
全紀 上田
雅文 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8479089A priority Critical patent/JPH0735550B2/en
Publication of JPH02263929A publication Critical patent/JPH02263929A/en
Publication of JPH0735550B2 publication Critical patent/JPH0735550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳片と鋳型内壁面間に相対速度差の無い、所
謂同期式連続鋳造プロセスによって製品厚さに近いサイ
ズの鋳片を鋳造し、Cr−Ni系ステンレス鋼薄板を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention casts a slab of a size close to the product thickness by a so-called synchronous continuous casting process in which there is no relative speed difference between the slab and the inner wall surface of the mold. And a method for producing a Cr-Ni-based stainless steel thin plate.

(従来の技術) 従来、連続鋳造法を用いてステンレス鋼薄板を製造する
には、鋳型を鋳造方向に振動させながら厚さ100mm以上
の鋳片に鋳造し、得られた鋳片の表面手入れを行ない、
加熱炉において1000℃以上に加熱した後、粗圧延機およ
び仕上げ圧延機列からなるホットストリップミルによっ
て熱間圧延を施し、厚さ数mmのホットストリップとして
いた。
(Prior Art) Conventionally, in order to produce a stainless steel thin plate by using a continuous casting method, a casting having a thickness of 100 mm or more is cast while vibrating the mold in the casting direction, and the surface of the obtained casting is cleaned. Done,
After heating to 1000 ° C. or higher in a heating furnace, hot rolling was performed by a hot strip mill consisting of a row of rough rolling mills and finishing rolling mills to obtain hot strips with a thickness of several mm.

こうして得られたホットストリップを冷間圧延するに際
しては、最終製品に要求される形状(平坦さ)、材質、
表面性状を確保するために、強い熱間加工を受けたホッ
トストリップを軟化させるための熱延板焼鈍を行なうと
ともに、表面のスケール等を酸洗工程の後に研削によっ
て除去していた。
When cold-rolling the hot strip thus obtained, the shape (flatness), material,
In order to secure the surface quality, hot-rolled sheet annealing is performed to soften the hot strip that has been subjected to strong hot working, and the surface scale and the like are removed by grinding after the pickling step.

従来のプロセスにおいては、長大な熱間圧延設備で、材
料の加熱及び加工のために多大のエネルギーを必要と
し、生産性の面でも優れた製造プロセスとは言い難かっ
た。また、最終製品は、集合組織が発達し、ユーザーに
おいてプレス加工等を加えるときは、その異方性を考慮
することが必要となる等、使用上の制約も多かった。
In the conventional process, a large hot rolling facility requires a large amount of energy for heating and processing the material, and it cannot be said that the manufacturing process is excellent in terms of productivity. In addition, the final product has a lot of restrictions in use, such as a texture developed, and it is necessary for the user to take the anisotropy into consideration when applying pressing or the like.

そこで、100mm以上の厚さの鋳片をホットスリップに圧
延するために、長大な熱間圧延設備と多大なエネルギ
ー、圧延動力を必要とするという問題を解決すべく、最
近、連続鋳造の過程でホットストリップと同等か、或は
それに近い厚さの鋳片(薄帯)を得るプロセスの研究が
進められている。
Therefore, in order to solve the problem that a long hot rolling facility, enormous energy, and rolling power are required to roll a slab with a thickness of 100 mm or more into hot slip, recently in the process of continuous casting. Research on a process for obtaining a slab (thin band) having a thickness equal to or close to that of a hot strip is under way.

例えば、「鉄と鋼」‘85,A197〜'A256や「CAMP ISIJ」v
ol.1,1988,1670〜1705において特集された論文に、ホッ
トストリップを連続鋳造によって直接的に得るプロセス
が開示されている。
For example, "Iron and Steel"'85, A197 ~ 'A256 and "CAMP ISIJ" v
No. 1,1988,1670 to 1705, a paper disclosing a process for directly obtaining hot strip by continuous casting is disclosed.

このような連続鋳造プロセスにあっては、得ようとする
鋳片(ストリップ)のゲージが1〜10mmの水準であると
きはツインドラム方式が、また鋳片のゲージが20〜50mm
の水準であるときはツインベルト方式が検討されてい
る。
In such a continuous casting process, when the gauge of the slab (strip) to be obtained is in the level of 1 to 10 mm, the twin drum system is used, and the gauge of the slab is 20 to 50 mm.
The twin-belt method is being considered when the level is.

(発明が解決しようとする課題) この種の方式の連続鋳造プロセスにおいては、最終形状
に近い鋳片を製造し、熱延工程、熱処理工程等の中間段
階を省略又は軽減している。そのため、鋳片の組織、表
面状態等が製品の材質や表面性状に大きな影響を与える
ことが知られている。
(Problems to be Solved by the Invention) In a continuous casting process of this type, a slab having a final shape is manufactured, and intermediate steps such as a hot rolling process and a heat treatment process are omitted or reduced. Therefore, it is known that the structure and surface condition of the slab have a great influence on the material and surface properties of the product.

すなわち、前述の「CAMP ISIJ」vol.1,1988,1670〜1705
において、Cr−Ni系ステンレス鋼薄板の材質問題や、Cr
系ステンレス鋼導板のリジング現象が述べられている。
しかしCr−Ni系ステンレス鋼薄板の表面品質については
特に問題にはされていない。
That is, the aforementioned "CAMP ISIJ" vol.1,1988,1670-1705
In the Cr-Ni system stainless steel sheet,
The ridging phenomenon of stainless steel guide plates is described.
However, the surface quality of Cr-Ni-based stainless steel sheets has not been particularly problematic.

本発明者らが、ストリップ連鋳によるCr−Ni系ステンレ
ス鋼薄板製造プロセスを詳細に研究した結果、以下に具
体的に示すように製品にローピングと称される表面欠陥
や光沢むらが発生することが判明した。
The present inventors, as a result of detailed study of the Cr-Ni-based stainless steel thin plate manufacturing process by strip continuous casting, surface defects and uneven luster called roping occur in the product as specifically shown below. There was found.

すなわち、SUS304鋼を基本成分とする溶鋼を、内部水冷
式の双ロール(ツインドラム)連続鋳造試験機によって
鋳造して、1〜4mm厚さの薄帯として巻き取った。こう
して得られた鋳片(薄帯)を、デスケーリングした後直
接冷間圧延し、最終焼鈍し、酸洗して厚さ1〜0.4mmの
製品Aとした。
That is, molten steel containing SUS304 steel as a basic component was cast by an internal water-cooled twin-roll (twin-drum) continuous casting tester and wound as a thin strip having a thickness of 1 to 4 mm. The slab (thin strip) thus obtained was descaled, then directly cold-rolled, finally annealed, and pickled to obtain a product A having a thickness of 1 to 0.4 mm.

他方、従来の溶鋼を連続鋳造して100mm以上の厚さを有
する鋳片とし、これを再加熱後、ホットストリップミル
によって熱間圧延して3〜6mm厚さの薄帯とし、冷却し
て巻き取ったものをデスケーリング後冷間圧延し、最終
焼鈍し、酸洗して厚さ1〜0.4mmの製品Bとした。
On the other hand, a conventional molten steel is continuously cast into a slab having a thickness of 100 mm or more, which is reheated and then hot-rolled by a hot strip mill to form a thin strip having a thickness of 3 to 6 mm, which is cooled and wound. The obtained product was cold-rolled after descaling, finally annealed, and pickled to obtain a product B having a thickness of 1 to 0.4 mm.

この製品A及び製品Bの表面性状を比較すると、製品A
には、次のような表面欠陥が発生する可能性のあること
が判明した。
Comparing the surface properties of product A and product B, product A
Has been found to have the following surface defects.

(1)ローピング…冷延時に表面に微細な凹凸を生じ
る。
(1) Roping: Fine irregularities are generated on the surface during cold rolling.

(2)光沢むら…冷延・焼鈍・酸洗後に表面に光沢むら
が現われる。
(2) Uneven gloss: Uneven gloss appears on the surface after cold rolling, annealing, and pickling.

他方、製品Bには、このような欠陥が発生していない。
したがって、これらの製品の表面性状に関する問題は、
オーステナイト系ステンレス溶鋼から最終形状に近い薄
肉鋳片を製造し、冷延する場合に生じる特有の問題であ
り、N.N.S鋳造の本質的欠点である。
On the other hand, the product B has no such defects.
Therefore, the issues regarding the surface texture of these products are:
This is a peculiar problem that occurs when cold-rolling is performed by producing a thin-walled slab close to the final shape from molten austenitic stainless steel, which is an essential drawback of NNS casting.

本発明者らは、これらの表面性状に関する問題の原因を
詳細に検討した結果、冷間圧延前の材料のγ粒が50μm
以上に大きい場合や、Cr系炭化物の析出する温度域で薄
肉鋳片の冷却が不十分の場合、これらの表面欠陥が生じ
ることを解明した。
As a result of detailed investigation of the causes of these problems relating to the surface texture, the inventors have found that the γ grains of the material before cold rolling are 50 μm.
It has been clarified that these surface defects occur when the thickness is larger than the above or when the thin cast piece is insufficiently cooled in the temperature range where the Cr-based carbide is precipitated.

そして、これらの表面欠陥を防止するために、溶鋼を凝
固・冷却する過程において溶鋼成分と冷却条件に改良を
加え、冷間圧延前の平均γ粒径を50μm以下とし、かつ
Cr系炭化物を析出させず、製品の良好な表面性状を得る
Cr−Ni系ステンレス鋼薄板の製造方法を発明した。
In order to prevent these surface defects, the molten steel composition and cooling conditions are improved in the process of solidifying and cooling the molten steel so that the average γ grain size before cold rolling is 50 μm or less, and
Good surface quality of products is obtained without depositing Cr-based carbides
A method for producing a Cr-Ni-based stainless steel thin plate was invented.

例えば凝固後1200℃まで100℃/sec以上の冷速で冷却す
る方法及び成分調整により、δ−Fecalを−2〜10%と
する方法(特願昭63−221471号)、更には結晶粒微細化
元素を0.01〜1モル%添加する方法である。
For example, by the method and composition adjustment to cool at 100 ° C. / sec or more cooling rate until 1200 ° C. After coagulation, the method to -2~10% of δ-Fe cal (Japanese Patent Application Sho 63-221471), and further the crystal grain This is a method of adding 0.01 to 1 mol% of a refining element.

しかし、1400〜1200℃までの冷却条件を100℃/sec以上
として、γ粒の成長を抑制しているため、鋳片板厚が厚
い場合は十分な冷却を行なうことが困難であり、又板幅
が広い場合においては、全幅を十分に冷却することが出
来ず50μm以下のγ粒を安定的に得ることが出来なかっ
た。
However, the cooling conditions from 1400 to 1200 ° C are set to 100 ° C / sec or more to suppress the growth of γ grains, so it is difficult to perform sufficient cooling when the slab plate thickness is large, and When the width was wide, the entire width could not be sufficiently cooled and γ particles of 50 μm or less could not be stably obtained.

そこで、本発明は、鋳片の冷却の制御と成分調整によっ
て安定的に50μm以下のγ粒径をもつ板厚1〜10mmの鋳
片を製造し、優れた表面性状の製品とする方法を提起す
るものである。
Therefore, the present invention proposes a method of stably producing a slab having a γ particle size of 50 μm or less and a plate thickness of 1 to 10 mm by controlling the cooling of the slab and adjusting the composition thereof to obtain a product having excellent surface properties. To do.

(課題を解決するための手段) 本発明の要旨は、Cr−Ni系ステンレス鋼をδ−Fe
cal(%)=3(Cr+1.5Si+Mo+2Ti+Nb)−2.8(Ni+
0.5Mn+0.5Cu)−84(C+N)−19.8(各成分はwt%)
で定義されるδ−Fecalを−2〜10%とし、更に0.01%
以上のAl,Ti,Nb,Zr,La,Ce,Nd又は0.001%以上のY,Ca,Mg
を単独もしくは、その合計量で0.001〜1%とする成分
範囲の溶鋼を、鋳型壁面が鋳片と同期して移動する連続
鋳造機によって、凝固時の冷却速度を100℃/sec以上と
して厚さ10mm以下の薄帯状鋳片に連続鋳造し、得られた
鋳片を凝固温度以下の可及的高温から冷却を開始して、
該鋳片の復熱を抑えつつ50℃/sec以上の冷却速度で1200
℃まで冷却して、鋳片のγ粒径を平均50μm以下に微細
化し、次いで1200℃から600℃までの温度域を10℃/sec
以上の冷却速度で冷却して巻き取り、該鋳片を酸洗後、
温間圧延、冷間圧延の1種または2種を施こし焼鈍・酸
洗或いは光輝焼鈍し、調質圧延して製品とすることを特
徴とする表面品質が優れたCr−Ni系ステンレス鋼薄板の
製造方法である。
(Means for Solving the Problem) The gist of the present invention is to use Cr-Ni stainless steel as δ-Fe.
cal (%) = 3 (Cr + 1.5Si + Mo + 2Ti + Nb) -2.8 (Ni +
0.5Mn + 0.5Cu) -84 (C + N) -19.8 (each component is wt%)
Δ-Fe cal defined by is -2 to 10%, and 0.01%
Al, Ti, Nb, Zr, La, Ce, Nd above or Y, Ca, Mg above 0.001%
Or a total of 0.001 to 1% of molten steel in a composition range of 0.001 to 1% by a continuous casting machine in which the mold wall surface moves in synchronization with the slab, and the cooling rate at the time of solidification is 100 ° C / sec or more. Continuously cast into a strip-shaped slab of 10 mm or less, and start cooling the obtained slab from the highest possible temperature below the solidification temperature,
1,200 at a cooling rate of 50 ° C / sec or more while suppressing the reheat of the slab
After cooling to ℃, the γ grain size of the slab is refined to an average of 50μm or less, and then the temperature range from 1200 ℃ to 600 ℃ is 10 ℃ / sec.
Cooled at the above cooling rate and wound up, after pickling the slab,
A Cr-Ni-based stainless steel sheet with excellent surface quality characterized by being subjected to one or two types of warm rolling and cold rolling, annealing / pickling or bright annealing, and temper rolling to obtain a product. Is a manufacturing method.

(作用) 以下に本発明を詳細に説明する。(Operation) The present invention will be described in detail below.

薄肉連鋳において、鋳片の凝固から1200℃までの冷却速
度を100℃/sec以上にしてγ粒を微細化させる方法は、
鋳片板厚が厚く抜熱が十分に行なえない場合や、幅が広
い鋳片で全幅の均一冷却が困難な場合においては実行困
難である。
In thin-wall continuous casting, the method of refining γ grains by cooling the solidification of the slab to 1200 ° C at a cooling rate of 100 ° C / sec or more,
It is difficult to carry out when the thickness of the slab is too thick to remove heat sufficiently, or when it is difficult to uniformly cool the entire width of the slab with a wide width.

そこで本発明においては、凝固冷速が100℃/sec以上と
なる薄肉連鋳において、凝固後1200℃までの冷却速度が
50℃/sec以上であればγ粒が50μm以下になるように、
溶鋼成分を調整してδ−Fecalを−2〜10%とし、さら
に結晶粒微細化元素0.001〜1%を添加している点に特
徴がある。
Therefore, in the present invention, in the thin wall continuous casting in which the solidification cooling rate is 100 ° C./sec or more, the cooling rate up to 1200 ° C. after solidification is
If the temperature is 50 ° C / sec or more, the γ grain should be 50 μm or less.
It is characterized in that the molten steel composition is adjusted so that δ-Fe cal is −2 to 10% and that the grain refining element 0.001 to 1% is added.

薄肉連鋳によって、100℃/sec以上の冷却速度で凝固し
たCr−Ni系ステンレス鋼鋳片の結晶粒径は、鋳片厚みの
増加によって増大するが、10mm以下の板厚であれば凝固
時の粒径は50μm以下である。そして凝固後、粒成長が
進行するが粒成長は高温ほど速く、また単相であるほど
速い。
The crystal grain size of Cr-Ni stainless steel slabs solidified at a cooling rate of 100 ° C / sec or more by thin wall continuous casting increases as the slab thickness increases. Has a particle size of 50 μm or less. After solidification, the grain growth proceeds, but the grain growth is faster at higher temperatures and faster in a single phase.

本発明においては、δ−Fecalを−2〜10%としてδフ
ェライト相を初晶としてγ粒を分断し、かつγ粒界に微
細なフェライトを分散させ(写真1)、さらにAl,Ti,N
b,Zr,La,Ce,Nd,Y,Ca,Mg等の結晶粒微細化元素の添加に
よって、溶鋼中もしくは凝固時や凝固後に析出した微細
な酸化物、窒化物、硫化物、炭化物をγ粒内、γ粒界に
均一に分散させることを特徴とするもので(写真2)、
このδフェライトと析出物によってγ粒の成長が著しく
抑制される。
In the present invention, δ-Fe cal is set to −2 to 10% to divide γ grains with the δ ferrite phase as a primary crystal, and fine ferrite is dispersed in the γ grain boundary (Photo 1). N
By adding crystal grain refining elements such as b, Zr, La, Ce, Nd, Y, Ca, and Mg, fine oxides, nitrides, sulfides, and carbides precipitated in molten steel or during solidification or after solidification It is characterized by being uniformly dispersed within the grain and at the γ grain boundary (Photo 2).
The growth of γ grains is significantly suppressed by the δ ferrite and the precipitate.

第1図はこれらのγ粒微細化効果を示す。FIG. 1 shows these γ grain refinement effects.

凝固温度から1200℃迄を50℃/sec以上で冷却する場合、
δフェライトの微細化効果でγ粒の成長は大きく抑制さ
れる。しかしδ量が多いとγ粒が判別しにくくなる。こ
うしてδフェライトを含有させ結晶粒微細化元素を添加
すると、凝固温度から1200℃迄を50℃/sec以上で冷却す
ることで、平均γ粒径を50μm以下にすることが出来る
と共に、第2図に示すようにローピングが大幅に低減さ
れる。
When cooling from solidification temperature to 1200 ℃ at 50 ℃ / sec or more,
Due to the effect of refining δ ferrite, the growth of γ grains is greatly suppressed. However, if the amount of δ is large, it becomes difficult to identify γ grains. By adding δ-ferrite and adding grain refining elements in this way, the average γ grain size can be reduced to 50 μm or less by cooling from the solidification temperature up to 1200 ° C. at 50 ° C./sec or more. As shown in, roping is greatly reduced.

δフェライトや析出物の粒成長抑制効果はその量に依存
し、δ−Fecal(%)が−2%未満ではδ凝固の効果が
不十分で、δ−Fecal(%)が多いほど有効であるが、1
0%を超えるとその効果は飽和する。
The grain growth suppression effect of δ ferrite and precipitates depends on its amount. If δ-Fe cal (%) is less than -2%, the effect of δ solidification is insufficient, and the more δ-Fe cal (%) is, the more effective it is. But 1
If it exceeds 0%, the effect is saturated.

結晶粒微細化元素としてはAl,Ti,Nb,Zr,La,Ce,Nd,Y,Mg,
Ca等が有効で、鋳片内に微細に析出した上記元素の酸化
物、窒化物、硫化物、炭化物によって粒成長が著しく抑
制される。結晶粒微細化元素は添加量が多いほど効果が
大きくなるが1%を超えると微細化効果は飽和する。更
に、多量添加は介在物を増やすため製品板の材質を劣化
させると共に、コストアップにもつながるため、添加量
は1%以下にする必要がある。
As grain refinement elements, Al, Ti, Nb, Zr, La, Ce, Nd, Y, Mg,
Ca or the like is effective, and the grain growth is remarkably suppressed by the oxides, nitrides, sulfides, and carbides of the above elements finely precipitated in the cast piece. The effect of the grain refinement element increases as the amount of addition increases, but if it exceeds 1%, the effect of refinement becomes saturated. Furthermore, since a large amount of addition increases the inclusions, which deteriorates the material of the product plate and also leads to an increase in cost, the addition amount must be 1% or less.

(実施例) 第1表に示す18Cr−8Ni鋼を基本とする種々の成分のオ
ーステナイト系ステンレス鋼を溶製した。
(Example) Austenitic stainless steel with various components based on 18Cr-8Ni steel shown in Table 1 was melted.

δ−Fecal(%)は−2〜10%の範囲で変化させ、結晶
粒微細化元素としては、Al,Ti,Nb,Zr,La,Ce,Nd,Y,Mg,Ca
を1種又は2種以上の合計量で0.001〜0.9%の範囲で添
加した。
δ−Fe cal (%) is changed in the range of −2 to 10%, and Al, Ti, Nb, Zr, La, Ce, Nd, Y, Mg, Ca are used as grain refinement elements.
Was added in the range of 0.001 to 0.9% in the total amount of one kind or two kinds or more.

これらの溶鋼を内部水冷方式の双ロール連続鋳造機によ
って、1〜6mm厚みで幅1000mmの鋳片に連続鋳造し、双
ロール出口から凝固した鋳片を水冷ドラムに押付ける方
式で急冷した。この場合には1200℃までの平均冷却速度
としては、最小でも50℃/sec以上であった。
These molten steels were continuously cast into slabs having a thickness of 1 to 6 mm and a width of 1000 mm by an internal water-cooled twin roll continuous casting machine, and the slabs solidified from the twin roll outlet were rapidly cooled by a method of pressing them on a water cooling drum. In this case, the average cooling rate up to 1200 ° C was at least 50 ° C / sec or more.

その後、1200〜600℃間はいわゆる2次冷却帯で冷却
し、10℃/sec以上で冷却し600℃以下で巻き取った。そ
の後は常法通りデスケーリングし、50〜85%の冷間圧延
を行ない、1050〜1200℃で30秒の焼鈍後酸洗するか光輝
焼鈍を行なって0.1〜2.0mmの薄板とし、調質圧延を行な
って製品とした。
After that, it was cooled in a so-called secondary cooling zone between 1200 and 600 ° C, cooled at 10 ° C / sec or more, and wound at 600 ° C or less. After that, descaling is performed in the usual way, cold rolling of 50 to 85% is performed, annealing at 1050 to 1200 ° C for 30 seconds and then pickling or bright annealing to a thin sheet of 0.1 to 2.0 mm and temper rolling. Was carried out to obtain a product.

比較例は、1200℃までの平均冷却速度を50℃/sec以上と
し、微細化成分又は、δ−Fecalを、本発明の範囲外と
したものである。
In the comparative example, the average cooling rate up to 1200 ° C. was 50 ° C./sec or more, and the refined component or δ-Fe cal was outside the range of the present invention.

こうして得られた鋳片を50%冷間圧延して製品とし、表
面品質としてローピング高さを評価した。
The slab thus obtained was cold-rolled by 50% to obtain a product, and the roping height was evaluated as the surface quality.

結果を第2表に示す。The results are shown in Table 2.

ローピング高さは、本発明の製品では0.2μm以下にな
り良好であったが、比較材のように、δ−Fecalが−2
%以下の場合や、微細化成分が規定量未満の場合、ロー
ピング高さは、0.2μm以上になり不良であった。
The roping height of the product of the present invention was 0.2 μm or less, which was good, but as with the comparative material, δ−Fe cal was −2.
% Or less than the specified amount of the refined component, the roping height was 0.2 μm or more, which was unsatisfactory.

(発明の効果) 本発明により、製品厚さに近い厚さの薄帯状鋳片を連続
鋳造−直接冷延で製品化する簡素なプロセスによって、
表面性状が優れたオーステナイト系ステンレス鋼薄板を
得ることが出来る。
(Effect of the invention) According to the present invention, a simple process for producing a thin strip-shaped slab having a thickness close to the product thickness by continuous casting-direct cold rolling is used.
It is possible to obtain an austenitic stainless steel thin plate having excellent surface properties.

【図面の簡単な説明】[Brief description of drawings]

第1図はγ粒径とδ−Fecalとの関係を示す図表、第2
図は50%冷延時のローピング高さとδ−Fecalとの関係
を示す図表である。
Fig. 1 is a chart showing the relationship between γ grain size and δ-Fe cal .
The figure is a table showing the relationship between roping height and δ-Fe cal during 50% cold rolling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Cr−Ni系ステンレス鋼をδ−Fecal(%)
=3(Cr+1.5Si+Mo+2Ti+Nb)−2.8(Ni+0.5Mn+0.
5Cu)−84(C+N)−19.8(各成分はwt%)で定義さ
れるδ−Fecalを−2〜10%とし、更に0.01%以上のAl,
Ti,Nb,Zr,La,Ce,Nd又は0.001%以上のY,Ca,Mgを単独も
しくは、その合計量で0.001〜1%とする成分範囲の溶
鋼を、鋳型壁面が鋳片と同期して移動する連続鋳造機に
よって、凝固時の冷却速度を100℃/sec以上として厚さ1
0mm以下の薄帯状鋳片に連続鋳造し、得られた鋳片を凝
固温度以下の可及的高温から冷却を開始して、該鋳片の
復熱を抑えつつ50℃/sec以上の冷却速度で1200℃まで冷
却して、鋳片のγ粒径を平均50μm以下に微細化し、次
いで1200℃から600℃までの温度域を10℃/sec以上の冷
却速度で冷却して巻き取り、該鋳片を酸洗後、温間圧
延、冷間圧延の1種または2種を施こし焼鈍・酸洗或い
は光輝焼鈍し、調質圧延して製品とすることを特徴とす
る表面品質が優れたCr−Ni系ステンレス鋼薄板の製造方
法。
1. Cr-Ni system stainless steel δ-Fe cal (%)
= 3 (Cr + 1.5Si + Mo + 2Ti + Nb) -2.8 (Ni + 0.5Mn + 0.
5Cu) -84 (C + N) -19.8 ( each component and -2~10% of [delta]-Fe cal defined in wt%), more preferably 0.01% or more Al,
Ti, Nb, Zr, La, Ce, Nd or 0.001% or more of Y, Ca, Mg alone, or molten steel with a composition range of 0.001 to 1% in the total amount, the mold wall surface is synchronized with the slab. With a moving continuous casting machine, the cooling rate during solidification is 100 ° C / sec or more and the thickness is 1
Continuously cast into a strip-shaped slab of 0 mm or less, cooling the obtained slab starting from the highest possible temperature below the solidification temperature, while suppressing recuperation of the slab, cooling rate of 50 ° C / sec or more At 1200 ° C to reduce the γ grain size of the slab to an average of 50 μm or less, then cool the temperature range from 1200 ° C to 600 ° C at a cooling rate of 10 ° C / sec or more and wind it up. After pickling the piece, it is subjected to one or two kinds of warm rolling and cold rolling and annealed / pickled or bright annealed and temper-rolled to obtain a product with excellent surface quality. -A method for manufacturing a Ni-based stainless steel thin plate.
JP8479089A 1989-04-05 1989-04-05 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality Expired - Fee Related JPH0735550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8479089A JPH0735550B2 (en) 1989-04-05 1989-04-05 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8479089A JPH0735550B2 (en) 1989-04-05 1989-04-05 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality

Publications (2)

Publication Number Publication Date
JPH02263929A JPH02263929A (en) 1990-10-26
JPH0735550B2 true JPH0735550B2 (en) 1995-04-19

Family

ID=13840496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8479089A Expired - Fee Related JPH0735550B2 (en) 1989-04-05 1989-04-05 Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality

Country Status (1)

Country Link
JP (1) JPH0735550B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397295B1 (en) * 1998-12-29 2003-11-20 주식회사 포스코 Reduction of surface sliver defects in 304 series stainless steel castings
KR100969806B1 (en) * 2002-12-27 2010-07-13 주식회사 포스코 A method for controling ?-ferrite distribution in slab of stainless 304

Also Published As

Publication number Publication date
JPH02263929A (en) 1990-10-26

Similar Documents

Publication Publication Date Title
JPH0742513B2 (en) Method for producing austenitic stainless steel sheet
JPH03100124A (en) Production of cr-ni stainless steel sheet excellent in surface quality
KR950005320B1 (en) Process for producing thin sheet of cr-ni based stainless steel having excellent surface quality and workability
JP3423818B2 (en) Method for producing austenitic stainless steel sheet slab
JPH0730406B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality and material
US5030296A (en) Process for production of Cr-Ni type stainless steel sheet having excellent surface properties and material quality
JPH0735550B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0327843A (en) Method for uniformly and rapidly cooling continuous cast strip in width direction
EP0378705B2 (en) PROCESS FOR PRODUCING THIN Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN BOTH SURFACE QUALITY AND QUALITY OF MATERIAL
EP0463182B2 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JPH0559447A (en) Production of cr-ni stainless steel sheet excellent in surface quality and workability
JPH0788534B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0735551B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JP2532314B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0730405B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0342150A (en) Production of cr-ni stainless steel sheet having excellent surface quality
JP2607187B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent surface quality and workability
JP2768527B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH0796684B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0826405B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in surface quality and workability
JPH0747778B2 (en) Method for producing Cr-Ni type stainless steel thin plate with excellent surface quality
JPH0796685B2 (en) Method for producing Cr-Ni series stainless steel thin plate with excellent surface quality and material
JP2730802B2 (en) Method for producing thin Cr-Ni stainless steel sheet with excellent workability
JPH02133529A (en) Production of cr-ni stainless steel sheet having excellent surface quality and material quality
JP2784026B2 (en) Method for producing Cr-Ni stainless steel sheet with excellent surface quality

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees