JPH0735085A - Movable vane pump - Google Patents

Movable vane pump

Info

Publication number
JPH0735085A
JPH0735085A JP17961893A JP17961893A JPH0735085A JP H0735085 A JPH0735085 A JP H0735085A JP 17961893 A JP17961893 A JP 17961893A JP 17961893 A JP17961893 A JP 17961893A JP H0735085 A JPH0735085 A JP H0735085A
Authority
JP
Japan
Prior art keywords
impeller
pump
balance pipe
characteristic
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17961893A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Okamura
共由 岡村
Masahiro Takeura
正博 竹浦
Jinji Kimura
仁治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17961893A priority Critical patent/JPH0735085A/en
Publication of JPH0735085A publication Critical patent/JPH0735085A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the instability of Q-H characteristic (quantity of discharge/ net pump head) resulting from a sudden, substantial separation by installing the pump-suction-side outlet of a balance pipe on the inner surface of a suction casing immediately in front of an impeller. CONSTITUTION:Water that is guided to the outside from behind an impeller 1 via a balance pipe 7 provided inside the thick-blade portion of a diffuser 2 is allowed to flow through a balance pipe 8, a header 9 provided around the outer peripheral portion of a suction casing 3, and a nozzle 10, and is ejected immediately in front of the impeller 1. As a result, a uniform radial distribution of meridional flow rate can be made and a stable pump characteristic can be obtained without instability in Q-H characteristic. Also, since the angle at which a fluid flowing out of the balance pipe 7 collides with a main flow is made smaller, pump efficiency can be enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市の排水ポンプや火
力発電所の復水器の冷却水用の循環水ポンプに適用され
る可動翼ポンプに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a movable vane pump applied to a drainage pump of a city and a circulating water pump for cooling water of a condenser of a thermal power plant.

【0002】[0002]

【従来の技術】従来の可動翼斜流ポンプの構造を図4
(ターボ機械協会:ターボポンプ,平成3年1月,日本
工業出版株式会社,p.121)に示す。羽根車1は中
空軸のポンプ軸に取り付けられている。ポンプ軸にはロ
ッドが挿入されており、軸方向に移動して可動翼1の翼
角を変える翼操作機構5を構成している。翼操作機構部
に水が侵入しないように羽根車ハブは回りからシールさ
れている。従って、羽根車には軸方向推力を釣り合わせ
るためのバランスホールを設置できない。そのため次の
ような方法がとられている。すなわち、羽根車背面12
にはケーシングリングと羽根車外周との間に細隙部6が
設けられている。この細隙部から羽根車背面の部屋へ流
れ込んだ水は、ディフューザハブ内面に設けたバランス
管(記載せず)を通って外部の吸込槽13に放出され、羽
根車背面12の圧力をポンプ吸込口の圧力近くの圧力と
して、羽根車に働く軸方向推力が小さくなるように構成
されている。
2. Description of the Related Art The structure of a conventional movable vane mixed flow pump is shown in FIG.
(Turbo Machinery Association: Turbo Pump, January 1991, Nippon Kogyo Publishing Co., Ltd., p.121). The impeller 1 is attached to a hollow pump shaft. A rod is inserted in the pump shaft, and constitutes a blade operating mechanism 5 that moves in the axial direction to change the blade angle of the movable blade 1. The impeller hub is sealed from around to prevent water from entering the blade operating mechanism. Therefore, the impeller cannot have a balance hole for balancing the axial thrust. Therefore, the following method is adopted. That is, the impeller back surface 12
A slit portion 6 is provided between the casing ring and the outer circumference of the impeller. Water flowing into the room on the back side of the impeller from this slit part is discharged to the external suction tank 13 through a balance pipe (not shown) provided on the inner surface of the diffuser hub, and the pressure on the back side 12 of the impeller is pumped. As the pressure is close to the pressure at the mouth, the axial thrust acting on the impeller is reduced.

【0003】[0003]

【発明が解決しようとする課題】図4に示すような可動
翼斜流ポンプでは、羽根車背面に流入した水はバランス
管を経て外部に放出されるため完全な漏れ損失となり効
率が低下する。一方、ポンプの吸込口には通常吸込ベル
マウス3が設置される。このような流路形状では、羽根
車1の直前の子午面流速は、ベルマウスから羽根車の斜
流部への曲がりの影響により、図5に示すように、シュ
ラウド側が速くハブ側が遅くなる傾向を示す。従って、
シュラウドからハブまで一様に流入すると仮定して設計
した羽根車では、部分流量域での剥離が遅れるため、図
6に示すようにQ−H特性に不安定部が生じる場合があ
った。
In the movable vane mixed flow pump as shown in FIG. 4, the water flowing into the back surface of the impeller is discharged to the outside through the balance pipe, resulting in a complete leakage loss and reduced efficiency. On the other hand, a suction bell mouth 3 is usually installed at the suction port of the pump. With such a flow path shape, the meridional flow velocity immediately in front of the impeller 1 tends to be faster on the shroud side and slower on the hub side due to the influence of the bend from the bellmouth to the mixed flow portion of the impeller as shown in FIG. Indicates. Therefore,
In the impeller designed on the assumption that the shroud uniformly flows into the hub, the separation in the partial flow rate region is delayed, so that an unstable portion may occur in the Q-H characteristic as shown in FIG.

【0004】[0004]

【課題を解決するための手段】軸方向推力のバランスの
ため羽根車背面に流れ込む圧力水を、バランス管を通し
て羽根車直前の吸込ケーシングに吹き出す。
[Means for Solving the Problems] Pressure water flowing into the rear surface of an impeller for balancing thrust in the axial direction is blown out to a suction casing immediately before the impeller through a balance pipe.

【0005】[0005]

【作用】バランス管を通して羽根車直前の吸込ケーシン
グに吹き出された水は、羽根車入口において流路に垂直
方向の成分を持って流入するため、流路を狭める作用が
働き、シュラウド側の子午面流速の増大が抑制される。
そのため、子午面流速の半径方向の分布が一様化され
る。また、若干の逆方向の予旋回が与えられようにバラ
ンス管出口の向きが設定されているため、部分流量域に
おける流れの剥離が比較的大きな流量から剥離が始ま
り、Q−H特性の不安定性能の発生の可能性が低減す
る。
[Action] Water blown out into the suction casing immediately before the impeller through the balance pipe flows into the flow passage at the impeller inlet with a vertical component, so that the flow passage is narrowed and the meridian surface on the shroud side acts. The increase in flow velocity is suppressed.
Therefore, the radial distribution of the meridional velocity is made uniform. In addition, since the balance tube outlet is oriented so that a slight reverse pre-swirl is given, separation of the flow in the partial flow rate region starts from a relatively large flow rate and the Q-H characteristic becomes unstable. The likelihood of performance occurring is reduced.

【0006】[0006]

【実施例】本発明の可動翼ポンプの実施例を図1及び図
2に示す。図2は図1のA−A断面を示す図である。羽
根車1の出口ハブにはケーシングリングと間に半径方向
の細隙部6が設けられ、羽根車出口部11と羽根車背面
12との間に圧力差が保持されるようになっている。羽
根車背面12へ流れ込んだ水は、ディフューザの羽根厚
部に設けたバランス管7及びポンプ外部に設けたパイプ
状のバランス管8を経て、吸込ケーシング3の外周部に
設けたヘッダ管9に導かれる。吸込ケーシング3には円
周上にノズル10a,10b,10c,10d等が等間
隔に設置されヘッダ管9に通じている。ノズル10の方
向は、図2に示すように羽根車の回転方向と若干逆方向
となるように設定されている。
EXAMPLE An example of the movable vane pump of the present invention is shown in FIGS. FIG. 2 is a view showing the AA cross section of FIG. The outlet hub of the impeller 1 is provided with a radial slit portion 6 between the impeller 1 and the casing ring so that a pressure difference is maintained between the impeller outlet portion 11 and the impeller rear surface 12. The water flowing into the impeller back surface 12 is guided to the header pipe 9 provided on the outer peripheral portion of the suction casing 3 through the balance pipe 7 provided on the thick blade portion of the diffuser and the pipe-shaped balance pipe 8 provided on the outside of the pump. Get burned. Nozzles 10a, 10b, 10c, 10d, etc. are provided on the circumference of the suction casing 3 at equal intervals and communicate with the header pipe 9. The direction of the nozzle 10 is set to be slightly opposite to the rotating direction of the impeller as shown in FIG.

【0007】ノズル出口の総断面積はバランス管入口の
断面積より若干小さく設定され、ポンプ吸込口の圧力よ
りヘッダ管9の圧力は若干高くなるように設定されてい
る。ただし、この圧力差を大きくとり過ぎると羽根車に
働く残留軸推力が大きくなり、バランス管の機能が失わ
れるので、残留軸推力を勘案してノズル径は設定され
る。
The total cross-sectional area of the nozzle outlet is set to be slightly smaller than the cross-sectional area of the balance pipe inlet, and the pressure of the header pipe 9 is set to be slightly higher than the pressure of the pump suction port. However, if this pressure difference is set too large, the residual axial thrust acting on the impeller becomes large and the function of the balance tube is lost, so the nozzle diameter is set in consideration of the residual axial thrust.

【0008】図3にこのような構成におけるポンプの羽
根車羽根の展開図(a)及び設計点流量における羽根車シ
ュラウドの入口の速度三角形を(b)(c)を示す。図3
(b)は従来技術の場合で、図3(c)は本実施例の場
合である。同じ流量において、従来ポンプでは図5に示
したように子午面流速は他の断面より速い。一方、本実
施例ではノズル10からの噴出流れにより流れが拘束さ
れるため、子午面流速は低下する。従って、Cm1<C
m1′である。また、ノズル10からは羽根車の回転と逆
方向に水が噴出するため、羽根車に流入する流れには、
図3(c)に示すように、羽根車の回転と逆方向の周方
向成分速度Cu1が与えられる。従って、羽根車への相対
流入速度ベクトルW1 は、従来技術の場合(図3
(b))の相対流入速度ベクトルW1′に比べ流入角β1
が小さくなる。羽根角βbと流入角β1との差が羽根に対
する迎え角である。流量に比例して子午面流速は小さく
なるから、部分流量域において羽根に対する迎え角が大
きくなる。すなわち、本実施例の場合は、部分流量域の
比較的大きな流量で剥離が始まる迎え角に達し、剥離が
開始することになる。
FIG. 3 shows a development view (a) of the impeller blades of the pump and a velocity triangle (b) (c) at the inlet of the impeller shroud at the design point flow rate. Figure 3
FIG. 3B shows the case of the conventional technique, and FIG. 3C shows the case of the present embodiment. At the same flow rate, in the conventional pump, the meridional flow velocity is faster than the other cross sections, as shown in FIG. On the other hand, in the present embodiment, since the flow is restrained by the jet flow from the nozzle 10, the meridional flow velocity decreases. Therefore, Cm 1 <C
m 1 ′. Further, since water is ejected from the nozzle 10 in the direction opposite to the rotation of the impeller, the flow flowing into the impeller is
As shown in FIG. 3C, a circumferential component velocity Cu 1 in the direction opposite to the rotation of the impeller is given. Therefore, the relative inflow velocity vector W 1 to the impeller is the same as in the case of the conventional technique (see FIG.
Compared to the relative inflow velocity vector W 1 ′ in (b)), the inflow angle β 1
Becomes smaller. The difference between the blade angle β b and the inflow angle β 1 is the angle of attack with respect to the blade. Since the meridional flow velocity decreases in proportion to the flow rate, the angle of attack with respect to the blade increases in the partial flow rate region. That is, in the case of the present embodiment, the angle of attack at which peeling starts is reached at a relatively large flow rate in the partial flow rate region, and peeling starts.

【0009】一方、ポンプのQ−H特性の不安定性は、
部分流量域において、羽根の剥離が遅れ、小流量におい
ても剥離せず、やがて更に小流量になって大きな剥離が
発生しポンプ全揚程が急激に低下するため発生すると考
えられている。しかるに、本実施例のポンプでは、上述
のように設計点においても適度の迎え角を有し、部分流
量域では早くから剥離が発達するから、一気に大きな剥
離が進行することはない。従って、本ポンプでは全揚程
の急激な低下はないため、Q−H特性に不安定性は現れ
ず、安定な右下がりのポンプ特性が得られることにな
る。
On the other hand, the instability of the Q-H characteristic of the pump is
It is considered that the blade separation is delayed in the partial flow rate range, does not occur even at a small flow rate, and eventually becomes a further smaller flow rate, causing large separation and abrupt decrease in the total pump head. However, in the pump of the present embodiment, as described above, the design angle also has an appropriate angle of attack, and since the peeling develops early in the partial flow rate region, the large peeling does not proceed at once. Therefore, in this pump, since the total head is not drastically lowered, instability does not appear in the Q-H characteristic, and a stable pump characteristic with a right downward slope is obtained.

【0010】本発明の他の実施例を図7に示す。バラン
ス管の出口の子午面内の方向を流路に直角ではなく若干
軸方向となるように設定したものである。このようにす
れば、バランス管から流出する流れと主流との衝突角度
が小さくなるため、衝突による損失が低下してポンプの
効率向上を図ることができる。
Another embodiment of the present invention is shown in FIG. The direction in the meridian plane at the outlet of the balance tube is set to be slightly axial rather than perpendicular to the flow path. With this configuration, the collision angle between the flow flowing out from the balance pipe and the main flow becomes small, so that the loss due to collision is reduced and the efficiency of the pump can be improved.

【0011】[0011]

【発明の効果】本発明によれば、羽根車背後のバランス
室からの流出水をバランス管、及びそれに連結された吸
込ケーシングに設けたノズルを経て、羽根車直前に噴出
し、その結果子午面流速の半径方向の分布を一様化でき
る。従って、羽根車のシュラウド側での流れの剥離は過
度の小流量で起こるのではなく、比較的設計点に近い流
量から小さな剥離が始まり、急激な大きな剥離の発生に
起因するQ−H特性の不安定性は抑制でき、安定な特性
を得ることができる。
According to the present invention, the outflow water from the balance chamber behind the impeller is jetted immediately before the impeller through the balance pipe and the nozzle provided in the suction casing connected to the balance pipe, resulting in the meridian plane. The radial velocity distribution can be made uniform. Therefore, the separation of the flow on the shroud side of the impeller does not occur at an excessively small flow rate, but a small separation starts at a flow rate relatively close to the design point and the Q-H characteristic of QH characteristics caused by the occurrence of a sudden large separation occurs. Instability can be suppressed and stable characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の可動翼ポンプの実施例を示す縦断面
図。
FIG. 1 is a vertical sectional view showing an embodiment of a movable vane pump of the present invention.

【図2】図1のポンプのA−A線の横断面図。2 is a cross-sectional view taken along the line AA of the pump shown in FIG.

【図3】本発明のポンプの羽根車羽根の説明図。FIG. 3 is an explanatory view of impeller blades of the pump of the present invention.

【図4】従来の可動翼ポンプの縦断面図。FIG. 4 is a vertical sectional view of a conventional movable vane pump.

【図5】従来の可動翼ポンプの羽根車入口の子午面流速
分布図。
FIG. 5 is a meridional flow velocity distribution map at the impeller inlet of a conventional movable vane pump.

【図6】可動翼ポンプのQ−H特性図。FIG. 6 is a QH characteristic diagram of a movable vane pump.

【図7】本発明の他の実施例を示す縦断面図。FIG. 7 is a vertical sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…可動翼羽根車、2…ディフューザ、3…吸込ケーシ
ング、4…ポンプ軸、5…翼操作機構、6…ケーシング
リング、7…バランス管、8…外部バランス管、9…ヘ
ッダ管、10…ノズル、11…羽根車下流部、12…羽
根車背部、13…吸込槽。
DESCRIPTION OF SYMBOLS 1 ... Movable vane impeller, 2 ... Diffuser, 3 ... Suction casing, 4 ... Pump shaft, 5 ... Blade operating mechanism, 6 ... Casing ring, 7 ... Balance pipe, 8 ... External balance pipe, 9 ... Header pipe, 10 ... Nozzle, 11 ... impeller downstream part, 12 ... impeller back part, 13 ... suction tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可動翼ポンプの軸方向推力を釣り合わせる
ため、羽根車背面の圧力水をバランス管によりポンプ吸
込側に連通させるようにした可動翼ポンプにおいて、前
記バランス管のポンプ吸込側出口を羽根車直前の吸込ケ
ーシングの内面に設置したことを特徴とする可動翼ポン
プ。
1. A movable vane pump in which pressure water on the back face of an impeller is made to communicate with a pump suction side by a balance pipe in order to balance axial thrust of the movable vane pump. A movable blade pump, which is installed on the inner surface of the suction casing immediately before the impeller.
JP17961893A 1993-07-21 1993-07-21 Movable vane pump Pending JPH0735085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17961893A JPH0735085A (en) 1993-07-21 1993-07-21 Movable vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17961893A JPH0735085A (en) 1993-07-21 1993-07-21 Movable vane pump

Publications (1)

Publication Number Publication Date
JPH0735085A true JPH0735085A (en) 1995-02-03

Family

ID=16068909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17961893A Pending JPH0735085A (en) 1993-07-21 1993-07-21 Movable vane pump

Country Status (1)

Country Link
JP (1) JPH0735085A (en)

Similar Documents

Publication Publication Date Title
US5286162A (en) Method of reducing hydraulic instability
JP4295611B2 (en) Flow stabilizer
JP3872966B2 (en) Axial fluid machine
JPH0814194A (en) Axial fan
JPS5848796A (en) Centrifugal impeller
US5549451A (en) Impelling apparatus
JPS58594B2 (en) centrifugal compressor
JPH08284892A (en) Diffuser of centrifugal compressor
JP2739874B2 (en) Inducer pump with shroud
GB1599908A (en) Centrifugal pumps
JP3899829B2 (en) pump
JPH0735085A (en) Movable vane pump
JP4079740B2 (en) Axial fluid machine
JP6839040B2 (en) Centrifugal fluid machine
JP5582802B2 (en) Fluid flow structure
JPS6344960B2 (en)
KR100539345B1 (en) Turbomachine for suppressing a recycling flow of vane inlet and a vane rotating stall
JPH11257290A (en) Diffuser of centrifugal compressor
JP2005240680A (en) Centrifugal compressor
JPH11257291A (en) Diffuser of centrifugal compressor
JPH06272697A (en) Impeller with movable blade
JP2534142B2 (en) Volute pump and automatic water supply device
JPH0533793A (en) Mixed flow pump
JP3794543B2 (en) Centrifugal compressor
JP2000204908A (en) Axial turbine