JPH073505B2 - Optical disc lens - Google Patents

Optical disc lens

Info

Publication number
JPH073505B2
JPH073505B2 JP60167092A JP16709285A JPH073505B2 JP H073505 B2 JPH073505 B2 JP H073505B2 JP 60167092 A JP60167092 A JP 60167092A JP 16709285 A JP16709285 A JP 16709285A JP H073505 B2 JPH073505 B2 JP H073505B2
Authority
JP
Japan
Prior art keywords
lens
aspherical
aberration
aspherical surface
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60167092A
Other languages
Japanese (ja)
Other versions
JPS6227711A (en
Inventor
晃一 丸山
Original Assignee
旭光学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭光学工業株式会社 filed Critical 旭光学工業株式会社
Priority to JP60167092A priority Critical patent/JPH073505B2/en
Publication of JPS6227711A publication Critical patent/JPS6227711A/en
Publication of JPH073505B2 publication Critical patent/JPH073505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 a.技術分野 本発明は、小型で高性能の光ディスク用レンズに関する
もので、詳しくは回転二次曲面である非球面を用いた2
枚構成の光ディスク用レンズに関するものである。
Description: TECHNICAL FIELD The present invention relates to a compact and high-performance optical disk lens, and more specifically, it uses an aspherical surface that is a quadric surface of revolution.
The present invention relates to an optical disc lens having a single-piece structure.

b.従来技術及びその問題点 光ディスクに使用されるレンズは、開口数NAは0.4以上
と大口径比でなければならず、しかも残存収差も回折限
界内になるように補正がなされていなければならない。
また、レンズの実際の使用状況では、画角±1゜程度ま
で良好な性能を持つ必要がある。
b. Prior art and its problems Lenses used for optical disks must have a large numerical aperture NA of 0.4 or more and a large aperture ratio, and must be corrected so that residual aberration is also within the diffraction limit. .
Also, in the actual usage of the lens, it is necessary to have good performance up to a field angle of about ± 1 °.

従来、この用途のレンズは3枚以上の球面系のガラスレ
ンズで構成されていたが、レンズの低価格化,小型軽量
化の要求から、この種のレンズとして、単レンズよりな
り、その両面を非球面で構成したものや、2枚のレンズ
で構成し、そのうち1つの面のみを高次の非球面とした
ものなどが提案されている。(特開昭57−76512号,同5
8−219511号,同59−9619号) しかしながら、非球面単レンズによるものは、必ず2面
とも非球面化しなければ、実用上充分な収差量に収差補
正を行うことができない。そして2面との非球面のレン
ズの場合、球面レンズと異なり、面の平行移動や倒れに
対する公差が厳しくなり、設計性能がすぐれていても、
設計性能を保った製品を造ることはむずかしいと言う問
題があった。
Conventionally, the lens for this purpose has been composed of three or more spherical glass lenses, but due to the demand for cost reduction, size reduction and weight reduction, this type of lens consists of a single lens and both surfaces are It has been proposed that the lens has an aspherical surface, or that it has two lenses and only one surface has a high-order aspherical surface. (JP-A-57-76512, 5)
However, in the case of using an aspherical single lens, it is not possible to correct aberrations to a practically sufficient amount of aberration unless both surfaces are made aspherical. And in the case of an aspherical lens with two surfaces, unlike a spherical lens, the tolerance for parallel movement and tilt of the surface becomes strict, and even if the design performance is excellent,
There is a problem that it is difficult to make a product that maintains design performance.

加えて、両面非球面の単レンズの場合は、少なくとも片
側の面は高次の非球面係数を持った非球面としなけれ
ば、レンズ性能は満足できないものであった。そして、
そのような高次の非球面係数を持った面は一般に、干渉
法などの高精度な非接触測定によって面形状を測定する
ことが困難であった。
In addition, in the case of a double-sided aspherical single lens, lens performance cannot be satisfied unless at least one surface is an aspherical surface having a high-order aspherical coefficient. And
It has been generally difficult to measure the surface shape of a surface having such a high-order aspherical surface coefficient by highly accurate non-contact measurement such as interferometry.

また、2枚のレンズ構成としたものについても、特開58
−219511号などのように、入射高さの6乗以上に比例す
る項を有するために、面形状測定のための有利な形状は
意識されていなかった。
In addition, the one having a two-lens configuration is also disclosed in
Since there is a term proportional to the sixth power of the incident height or more, such as −219511, an advantageous shape for surface shape measurement was not considered.

c.目的 本発明は上記の点に鑑み、非球面の偏心による性能低下
が少なく、しかも非球面形状の超精密測定が容易に行え
る、量産性の良い、コンパクトな光ディスク用レンズを
提供することを目的としている。
c. Objective In view of the above points, the present invention provides a compact lens for optical discs, which is less likely to cause performance deterioration due to eccentricity of the aspherical surface, and is capable of easily performing ultra-precision measurement of the aspherical surface shape, and having good mass productivity. Has an aim.

d.問題点の解決手段 レンズ1枚の両面非球面レンズで構成している限り、前
記レンズの傾れの許容や面形状測定の容易性は根本的に
は解決されないため、本発明の光ディスク用レンズは共
に、入射側の面が凸面である正レンズの第1レンズと第
2レンズの2枚よりなり、その第1レンズの入射側面
(第1面)が次式によってその表面形状が表わされる回
転二次曲面であり、 且つ、次の(1)〜(4)の条件を満足することを特徴
とする光ディスク用レンズである。
d. Means for Solving Problems As long as the lens is composed of one double-sided aspherical lens, the tolerance of the tilt of the lens and the ease of measuring the surface shape are not fundamentally solved. Each of the lenses is composed of two lenses, a first lens and a second lens, which are positive lenses having a convex surface on the incident side. The surface of the incident side surface (first surface) of the first lens is expressed by the following equation. Is a quadratic surface of revolution, Moreover, the optical disk lens is characterized by satisfying the following conditions (1) to (4).

(3)0.0<d2/f<0.22 (4)−1≦K<−0.3 ただし X(h):光軸から高さhの非球面上の1点から非球面
頂点の接平面におろした垂線の長さ h:光軸からの高さ r:非球面頂点付近(近軸)の曲率半径 K:非球面係数 f:レンズ全系の焦点距離 f1:第1レンズの焦点距離 r1:第1面の近軸の曲率半径 n1:第1レンズの屈折率 d2:第1レンズと第2レンズの間の空気間隔 e.作用 光ディクス用レンズは、明るく(NA0.5)、しかも球
面収差が非常に小さいことが要求されるため、球面レン
ズのみで構成する場合には、3枚以上のレンズの組み合
せが必要となっている。これを小型化するために非球面
を導入するわけであるが、レンズ1枚では、非球面を用
いない場合、球面収差は必ずアンダーになってしまう。
従って、球面収差補正のためには大きな非球面量が必要
となる。そしてこの非球面量を1つの面に分担させた場
合、コマ収差の発生は避けられないので、結局、1枚構
成では両面非球面にならざるを得ない。また、パワーの
分散が2つの面だけで行れるため、おのずから各面の曲
率半径は小さくなり、面の偏心、倒れによる収差悪化が
大きくなりやすい。
(3) 0.0 <d 2 /f<0.22 (4) -1 ≦ K <-0.3 where X (h): dropped from one point on the aspherical surface of height h from the optical axis to the tangent plane of the aspherical apex Vertical length h: Height from the optical axis r: Radius of curvature near the aspherical vertex (paraxial) K: Aspherical coefficient f: Focal length of the entire lens system f 1 : Focal length of the first lens r 1 : Paraxial radius of curvature of the first surface n 1 : Refractive index of the first lens d 2 : Air gap between the first lens and the second lens e. Action The optical disk lens is bright (NA0.5), and Since spherical aberration is required to be extremely small, a combination of three or more lenses is required when only spherical lenses are used. An aspherical surface is introduced in order to reduce the size of the lens. However, with one lens, the spherical aberration will always be under when the aspherical surface is not used.
Therefore, a large amount of aspherical surface is required to correct spherical aberration. When the amount of aspherical surface is shared by one surface, the occurrence of coma aberration is unavoidable. Therefore, in the end, a single-sided structure has to be a double-sided aspherical surface. Further, since the power can be dispersed only by the two surfaces, the radius of curvature of each surface naturally becomes small, and the eccentricity of the surfaces and the deterioration of the aberration due to the tilting tend to become large.

これに対し本発明のようにレンズを2枚構成にした場
合、パワーを2つのレンズに分散させ、レンズの球面成
分のみによって収差をかなり低減させることができるの
で、付加的に用いる非球面量は小さいものですみ、レン
ズ面が4面ある中で、どこか1つの面を非球面化するの
みで良好な性能を得ることができる。
On the other hand, in the case of the two-lens configuration as in the present invention, the power can be dispersed to the two lenses and the aberration can be considerably reduced only by the spherical component of the lens. Although it is small, good performance can be obtained by making one of the four lens surfaces aspherical.

条件(1)は2枚のパワーレンズのパワー配分を示すも
のであり、条件式(2)は第1レンズ内のパワー成分を
示すものである。この条件(1),(2)を満足するこ
とによって各面毎に発生する球面収差量を小さくするこ
とが可能になり、非球面量を少なくでき、同時に偏心に
対する収差変化も小さくできる。
The condition (1) shows the power distribution of the two power lenses, and the conditional expression (2) shows the power component in the first lens. By satisfying these conditions (1) and (2), it is possible to reduce the amount of spherical aberration generated for each surface, reduce the amount of aspherical surface, and at the same time reduce the change in aberration with respect to decentering.

条件式(3)は第1レンズと第2レンズの空気間隔を定
める条件であり、この条件(3)を満足することによ
り、2枚レンズの横ずれに対する収差変化の感度とレン
ズ系のコンパクト性への要望が達成できる。
Conditional expression (3) is a condition that determines the air gap between the first lens and the second lens. By satisfying this condition (3), the sensitivity of the aberration change to the lateral deviation of the two lenses and the compactness of the lens system can be improved. Can be achieved.

高精度な非球面形状測定技術について考えた場合、主と
して接触式測定,干渉法測定がある。非接触で測定する
ためには干渉法が望ましいが、現状では、非球面量の多
い一般の非球面においては表面の反射が干渉計に戻らな
いため、接触式測定が採られることが多い。しかし、非
球面成形の型あるいはプラスチックによる非球面レンズ
等では、接触式によるとキズが付くことがあり、接触式
で測定できれば良いというものではない。従って、光デ
ィスク用対物レンズでは、高精度に面形状を成形する必
要があるため、非接触式の干渉法の使用可能な非球面形
状を採用し、高速な面精度測定,ヘテロダイン干渉法等
による超高精度測定を可能にする事は作製上有利であ
る。
When considering high-precision aspherical surface shape measurement technology, there are mainly contact type measurement and interferometry measurement. Interferometry is desirable for non-contact measurement, but at present, in general aspherical surfaces with a large amount of aspherical surface, the reflection on the surface does not return to the interferometer, and therefore contact measurement is often used. However, with an aspherical molding die, an aspherical lens made of plastic, or the like, the contact type may cause scratches, and it is not sufficient if the contact type can be used for measurement. Therefore, in the objective lens for the optical disk, it is necessary to shape the surface shape with high accuracy, so an aspherical surface shape that can be used in the non-contact type interferometry is adopted, and high-speed surface accuracy measurement, superdyne interferometry, etc. It is advantageous in manufacturing that high-precision measurement is possible.

一般に、回転双曲面,回転放物面,回転楕円面,球面,
平面の回転二次曲面といわれる曲面と、それらの面から
たかだか数λ(ラムダ:測定時に用いる光線の波長)以
内の非球面性を持った面については、干渉法により非球
面形状を測定することが可能である。
In general, hyperboloid of revolution, paraboloid of revolution, ellipsoid of revolution, sphere,
For curved surfaces called planes of quadratic rotation and surfaces with asphericity within a few λ (lambda: wavelength of light beam used during measurement) from those surfaces, measure the aspherical surface shape by the interferometry method. Is possible.

このため本発明にかかるレンズは、非球面を回転二次曲
面で構成したものである。
Therefore, in the lens according to the present invention, the aspherical surface is configured by a quadric surface of revolution.

回転二次曲面と前記非球面係数Kの関係は、 K<−1:回転双曲面 K=−1:回転放物面 1<K<0:回転楕円面(焦点が光軸上に並ぶ) K=0:球面 0<K:回転楕円面(焦点が光軸に垂直な方向に並ぶ楕円
を光軸を中心に回転したもと) となっており、K>0の回転楕円面は干渉法による面精
度測定について有利な特性を持っていない。
The relationship between the quadric surface of revolution and the aspheric coefficient K is as follows: K <−1: hyperboloid of revolution K = −1: paraboloid of revolution 1 <K <0: ellipsoid of revolution (focus is aligned on the optical axis) K = 0: spherical surface 0 <K: spheroidal surface (based on an ellipse whose focus is perpendicular to the optical axis rotated about the optical axis). It does not have advantageous characteristics for surface accuracy measurement.

次にレンズの収差上から要求される非球面性について考
えた場合、2枚の正レンズのうち1つの面のみを非球面
とするときは、球面収差はオーバーにするような非球面
とする必要がある。これは、球面レンズと比較してレン
ズのコバが厚くなる方向の非球面性を持つことを意味し
ており、非球面を回転二次曲面とすると、レンズの入射
側面(第1面または第3面)に非球面を持つ場合はK<
0、第4面に非球面を持つ場合はk>0とならなければ
ならない。また曲率半径の大きい面となる第2面を非球
面化する場合は、回転二次曲面の非球面では非球面量を
充分にとることができない。
Next, considering the asphericity required from the viewpoint of aberration of the lens, when only one surface of the two positive lenses is an aspherical surface, it is necessary to make the aspherical surface so that the spherical aberration is over. There is. This means that the lens has asphericity in the direction in which the edge of the lens becomes thicker than that of a spherical lens. When the aspherical surface is a quadratic surface of rotation, the incident side surface (first surface or third surface) of the lens is used. If the surface has an aspherical surface, K <
0, and if the fourth surface has an aspherical surface, k> 0. When the second surface, which has a large radius of curvature, is made aspherical, the aspherical surface of the quadratic surface of rotation cannot have a sufficient amount of aspherical surface.

従って本発明の目的から非球面となる面は第1面または
第3面に限られる。さらに、非球面測定系の作り易さ
は、非測定面へ入射あるいは反射する光束の拡がり角に
依存するため、レンズの有効径と比べて面の曲りのゆる
い第1面の方が有利である。
Therefore, the surface which becomes an aspherical surface for the purpose of the present invention is limited to the first surface or the third surface. Furthermore, since the ease of making the aspherical measurement system depends on the divergence angle of the light beam incident on or reflected on the non-measurement surface, the first surface having a gentler curvature than the effective diameter of the lens is more advantageous. .

このように非球面を第1面の回転2次曲面とした場合、
レンズの偏心、特に非球面となる第1面,第2面間の偏
心による収差発生を小さくするようにレンズを構成する
とき、非球面係数Kの範囲として −0.9<K<−0.3 程度が望ましく、これ以上でも以下でも偏心による性能
低下が大きくなる。
In this way, when the aspherical surface is the rotational quadric surface of the first surface,
When the lens is constructed so as to reduce the occurrence of aberrations due to decentering of the lens, particularly decentering between the first and second surfaces which are aspherical surfaces, it is desirable that the range of the aspherical surface coefficient K is approximately -0.9 <K <-0.3. However, performance deterioration due to eccentricity becomes greater at more or less than this.

しかし干渉法による測定を考えた場合、 K=−1 として非球面を回転放物面とすることは非常に有利であ
る。
However, considering the measurement by the interferometry, it is very advantageous to set the aspherical surface as a paraboloid of revolution with K = -1.

それは、例えば実施例1の非球面(K=−0.56)と実施
例3の非球面(K=−1.00)を測定する場合の干渉計を
組む場合、それぞれ第7図,第8図のような型が考えら
れるが、放物面に対する第8図の干渉計は、入射光が平
行光であるため、入射光と被測定面の位置合せが面のか
たむきのみで使用できる、中間に入るミラーによる光の
ケラレが無い等の利点がある。
For example, when assembling an interferometer for measuring the aspherical surface (K = -0.56) of the first embodiment and the aspherical surface (K = -1.00) of the third embodiment, as shown in FIGS. 7 and 8, respectively. Although the type may be considered, the interferometer of FIG. 8 for a parabolic surface can be used because the incident light is parallel light, so the position of the incident light and the surface to be measured can be used only by bending the surface. There are advantages such as no vignetting of light.

従って、本発明のレンズでは第1面の被球面係数を条件
(4)すなわち −1≦K<−0.3 とすることが望ましい。
Therefore, in the lens of the present invention, it is desirable that the aspherical surface coefficient of the first surface should satisfy the condition (4), that is, -1≤K <-0.3.

f.実施例 以下、本発明の実施例(カバーガラスを含む)を記載す
る。ここで、NAは開口数,fは焦点距離,rは各面の曲率半
径,dは面の間隔,nは屈折率,WDはワーキングディスタン
ス,kは第1面の被球面係数である。
f. Examples Hereinafter, examples of the present invention (including a cover glass) will be described. Here, NA is the numerical aperture, f is the focal length, r is the radius of curvature of each surface, d is the distance between the surfaces, n is the refractive index, WD is the working distance, and k is the aspherical coefficient of the first surface.

〔実施例 1〕 NA=0.47 f=4.5 画角±1.0゜ r d n(波長780nm) 6.800 1.10 1.78565 23.205 0.10 3.177 1.10 1.78565 6.367 2.48(WD) ∞ 1.20 1.50000 ∞ 非球面係数 K=0.560 〔実施例 2〕 NA=0.47 f=4.5 画角±1.0゜ r d n(波長780nm) 4.445 1.60 1.48479 −174.866 .10 2.798 1.10 1.48479 8.154 2.25(WD) ∞ 1.20 1.50000 ∞ 非球面係数 K=−0.70 〔実施例 3〕 NA=0.47 f=4.5 画角±1.0゜ r d n(波長780nm) 6.442 1.80 1.48479 −57.638 0.10 3.021 1.10 1.78565 5.838 2.37(WD) ∞ 1.20 1.50000 ∞ 非球面係数 K=−1.000 g.効果 以上説明したように、本発明による非球面形状を持った
光ディスク用レンズは、その非球面形状を第7図,第8
図に示すような光路を持った干渉計により、一般の非球
面レンズよりはるかに容易に測定することが可能なう
え、非球面の偏心に対する収差変動が第9図に示すよう
に非常に小さいため、これまでにある非球面使用の光デ
ィスク用レンズと比較し量産性の高いものとなってい
る。
[Example 1] NA = 0.47 f = 4.5 Angle of view ± 1.0 ° rd n (wavelength 780 nm) 6.800 1.10 1.78565 23.205 0.10 3.177 1.10 1.78565 6.367 2.48 (WD) ∞ 1.20 1.50000 ∞ aspherical coefficient K = 0.560 [Example 2] NA = 0.47 f = 4.5 Angle of view ± 1.0 ° r dn (wavelength 780 nm) 4.445 1.60 1.48479 −174.866 .10 2.798 1.10 1.48479 8.154 2.25 (WD) ∞ 1.20 1.50000 ∞ Aspheric coefficient K = −0.70 [Example 3] NA = 0.47 f = 4.5 Angle of view ± 1.0 ° rd n (wavelength 780 nm) 6.442 1.80 1.48479 −57.638 0.10 3.021 1.10 1.78565 5.838 2.37 (WD) ∞ 1.20 1.50000 ∞ Aspheric coefficient K = −1.000 g. Effect As explained above, The optical disk lens having an aspherical shape according to the present invention has an aspherical shape as shown in FIGS.
With an interferometer having an optical path as shown in the figure, it is possible to measure much more easily than with an ordinary aspherical lens, and the aberration variation due to decentering of the aspherical surface is extremely small as shown in FIG. , Is highly mass-producible as compared with conventional lenses for optical disks that use aspherical surfaces.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例1のレンズ構成図、第2図は実
施例1の収差図、第3図は本発明の実施例2のレンズ構
成図、第4図は実施例2の収差図、第5図は本発明の実
施例3のレンズ構成図、第6図は実施例3の収差図、第
7図は実施例1のK=−0.560の非球面を測定するため
の干渉計概形図、第8図は実施例3のK=−1.000の非
球面を測定するための干渉計概形図、第9図は実施例1
の第1面の偏心に対する収差量変化を示すグラフであ
る。 M1:ハーフミラー M2:球面反射ミラー M3:薄膜ハーフミラーまたはミラー M4:球面反射ミラー O1:被検非球面 K=−0.560 O2:被検非球面 K=−1.000 R1:参照平面 R2:参照平面 L1:レンズ
FIG. 1 is a lens configuration diagram of Example 1 of the present invention, FIG. 2 is an aberration diagram of Example 1, FIG. 3 is a lens configuration diagram of Example 2 of the present invention, and FIG. 4 is an aberration of Example 2. 5 and 5 are lens configuration diagrams of Example 3 of the present invention, FIG. 6 is an aberration diagram of Example 3, and FIG. 7 is an interferometer for measuring an aspherical surface of Example 1 at K = −0.560. Schematic diagram, FIG. 8 is a schematic diagram of an interferometer for measuring the aspherical surface of K = −1.000 in Example 3, and FIG. 9 is Example 1.
5 is a graph showing a change in the amount of aberration with respect to decentering of the first surface of FIG. M1: Half mirror M2: Spherical reflection mirror M3: Thin film half mirror or mirror M4: Spherical reflection mirror O 1 : Test aspheric surface K = −0.560 O 2 : Test aspheric surface K = −1.000 R 1 : Reference plane R 2 : Reference plane L 1 : Lens

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光束入射側の面が凸面である正レンズの第
1レンズと、同じく光束入射側の面が凸面である正レン
ズの第2レンズとの2群2枚からなり、 上記第1レンズの上記光束入射面が次式によってその表
面形状が表わされる回転二次曲面であり、 X(h)=(h2/r)/{1+[1 −(1+K)(h2/r2)]1/2} かつ、次の(1)、(2)、(3)及び(4)の条件式
を満足することを特徴とする光ディスク用レンズ。 (1)0.33<f/f1<0.55 (2)0.25<(n1−1)・f/r1<0.66 (3)0.0<d2/f<0.22 (4)−1≦K<−0.3 ただし、 X(h):光軸から高さhの非球面上の1点から非球面
頂点の接平面におろした垂線の長さ、 h:光軸からの高さ、 r:非球面頂点付近(近軸)の曲率半径、 K:非球面係数、 f:レンズ全系の焦点距離、 f1:第1レンズの焦点距離、 r1:第1レンズの光束入射面の近軸の曲率半径、 n1:第1レンズの屈折率、 d2:第1レンズと第2レンズの間の空気間隔。
1. A first lens element of a positive lens having a convex surface on the light beam incident side and a second lens element of a positive lens having a convex surface on the light beam incident side. The light flux incident surface of the lens is a quadratic surface of revolution whose surface shape is represented by the following equation: X (h) = (h 2 / r) / {1+ [1− (1 + K) (h 2 / r 2 ) ] 1/2 } And the lens for optical discs characterized by satisfying the following conditional expressions (1), (2), (3) and (4). (1) 0.33 <f / f 1 <0.55 (2) 0.25 <(n 1 −1) ・ f / r 1 <0.66 (3) 0.0 <d 2 /f<0.22 (4) −1 ≦ K <−0.3 However, X (h): length of a perpendicular line drawn from a point on the aspherical surface at a height h from the optical axis to the tangent plane of the aspherical apex, h: height from the optical axis, r: near the aspherical apex (Paraxial) radius of curvature, K: aspherical coefficient, f: focal length of the entire lens system, f 1 : focal length of the first lens, r 1 : paraxial radius of curvature of the light-incident surface of the first lens, n 1 is the refractive index of the first lens, d 2 is the air gap between the first lens and the second lens.
JP60167092A 1985-07-27 1985-07-27 Optical disc lens Expired - Lifetime JPH073505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167092A JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167092A JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Publications (2)

Publication Number Publication Date
JPS6227711A JPS6227711A (en) 1987-02-05
JPH073505B2 true JPH073505B2 (en) 1995-01-18

Family

ID=15843271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167092A Expired - Lifetime JPH073505B2 (en) 1985-07-27 1985-07-27 Optical disc lens

Country Status (1)

Country Link
JP (1) JPH073505B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219511A (en) * 1982-06-16 1983-12-21 Olympus Optical Co Ltd Lens for optical disc

Also Published As

Publication number Publication date
JPS6227711A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
JPH0442650B2 (en)
JP4374868B2 (en) Oblique projection optical system
JPH04215610A (en) Element of single-hybrid reflecting and refracting optical system
JPH0314324B2 (en)
JP3704833B2 (en) Objective lens and recording / reproducing apparatus
JPS61215512A (en) Objective for optical information reader
JPS5923313A (en) Large aperture condenser lens
JP2006252770A (en) Objective lens for optical disk
KR20100111497A (en) Objective lens
JPH073505B2 (en) Optical disc lens
JP2000162503A (en) Reflection micro-optical system
JP4364328B2 (en) Objective lens for high-density optical recording media
US5004330A (en) Aspherical glass lens element formed by a low dispersion glass material
JPH0823626B2 (en) Objective lens for optical disc
JPH0359407B2 (en)
JP4127883B2 (en) Diffraction lens design method
JP2003167189A (en) Objective lens for optical disk
JP2727373B2 (en) Finite system large aperture imaging lens
JP3079497B2 (en) Heterogeneous lens
JPS61179409A (en) Objective of optical information reader
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH0576606B2 (en)
JPS60218614A (en) Image forming lens
JPS6170519A (en) Large aperture condenser lens system
JPS61177409A (en) Objective lens for recording and reproducing of optical information recording medium