JPH0734324A - Color-developing structure material having reflection and interference action - Google Patents

Color-developing structure material having reflection and interference action

Info

Publication number
JPH0734324A
JPH0734324A JP5176768A JP17676893A JPH0734324A JP H0734324 A JPH0734324 A JP H0734324A JP 5176768 A JP5176768 A JP 5176768A JP 17676893 A JP17676893 A JP 17676893A JP H0734324 A JPH0734324 A JP H0734324A
Authority
JP
Japan
Prior art keywords
refractive index
reflection
material layer
color
optical refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5176768A
Other languages
Japanese (ja)
Other versions
JP3036305B2 (en
Inventor
Kinya Kumazawa
金也 熊沢
Junichi Takimoto
淳一 滝本
Hiroshi Tabata
洋 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5176768A priority Critical patent/JP3036305B2/en
Priority to US08/272,487 priority patent/US5472798A/en
Publication of JPH0734324A publication Critical patent/JPH0734324A/en
Application granted granted Critical
Publication of JP3036305B2 publication Critical patent/JP3036305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an easily producible color-developing structure material having reflection and interference actions and capable of surely and stably exhibiting blight color tone having desired wavelength. CONSTITUTION:This color-developing structure material is composed of alternately laminated two kinds of polymeric substances having different optical refractive indices and develops a color having wavelength falling in visible light range by the reflection and interference of natural light. The material satisfies the formulas 1.3<= na and 1.1<=nb/na<=1.4 wherein na is optical refractive index of a polymeric substance layer 1 and nb is optical refractive index of the other polymeric substance layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自然光の反射、干渉に
よって発色する新規な発色構造体に関し、詳しくは織物
や塗装などに用いられる発色用の繊維やチップ(小片)
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel coloring structure which is colored by reflection and interference of natural light, and more specifically, coloring fibers and chips (pieces) used for textiles and painting.
It is about.

【0002】[0002]

【従来の技術】自動車用塗装は、最近の高級化に伴い、
アルミフレーク光輝材を用いた従来のメタリック塗装だ
けでなく、雲母片や加工雲母片あるいは炭素繊維チップ
などを光輝材として用い、アニソトロピックな特性を付
与し、顔料とあいまって塗装面の質感向上を表現しよう
としている。また、内装織物材などにおいても、その材
質、色調は質感向上において大変重要視されている。し
かし、前者においては、色調に対して光輝材の影響はあ
るものの、その主因子は顔料を含む塗料にあり、その塗
料が紫外線や赤外線等によって劣化退色することによっ
て色調を著しく損なってしまう。また、後者において
も、染料や顔料などの上記と同様の劣化、退色が避けら
れないのが現状である。上記のごとき問題を解決するた
め、染料や顔料などの色素を使わず、自然光の反射、干
渉作用で発色する、あるいはその作用と染料や顔料とを
組み合わせることによって、より深く鮮やかな発色をす
る構造体が鋭意研究されてきた。例えば、特公昭43−
14185号公報に記載の発明においては、屈折率の異
なる2種類以上の樹脂からなる被覆型の複合繊維を形成
することにより、真珠光沢を発する複合繊維が記載され
ている。また、「繊維機械学会誌Vol.42,No.
2,p.55、およびVol.42,No.10,p.16
0、1989年」に記載のように、偏光フィルムを分子
配向異方性フィルムでサンドイッチ構造とすることによ
って発色する材料も発表されている。また、特開昭59
−228042号、特公昭60−24847号、特公昭
63−64535号等に記載されているように、南米産
のモルフォ蝶の発色を基にして、通常の顔料や染料を使
わずに光の干渉で発色するものも提案されている。さら
に、特開昭62−170510号公報では、繊維表面に
一定幅の細隙を設けることによって干渉色を発する構造
体が記載されている。
2. Description of the Related Art With the recent advancement of high-grade painting for automobiles,
In addition to conventional metallic coating using aluminum flake luster pigments, mica flakes, processed mica flakes or carbon fiber chips are used as luster pigments to impart anisotropic properties and improve the texture of the coated surface together with pigments. I'm trying to express. In addition, the material and color tone of interior textile materials are also very important for improving the texture. However, in the former case, although the glittering material has an effect on the color tone, the main factor is the paint containing the pigment, and the color tone is remarkably impaired due to deterioration and fading of the paint due to ultraviolet rays or infrared rays. Also in the latter case, the same deterioration and discoloration of dyes and pigments as described above cannot be avoided. In order to solve the above problems, a structure that does not use dyes such as dyes and pigments but develops color by reflection of natural light, interference action, or by combining that action with dyes and pigments, a deeper and more vivid color The body has been earnestly studied. For example, Japanese Patent Publication 43-
The invention described in Japanese Patent No. 14185 discloses a pearlescent conjugate fiber by forming a coated conjugate fiber composed of two or more kinds of resins having different refractive indexes. In addition, “Journal of the Textile Machinery Society Vol. 42, No.
2, p.55, and Vol.42, No.10, p.16
No. 0,1989 ”, a material that develops color by making a polarizing film a sandwich structure with a molecular orientation anisotropic film has been published. In addition, JP-A-59
As described in JP-A-228042, JP-B-60-24847, JP-B-63-64535, etc., based on the color development of morpho butterflies from South America, light interference without using ordinary pigments or dyes. Some have developed colors. Further, Japanese Patent Application Laid-Open No. 62-170510 describes a structure that emits an interference color by providing a slit having a constant width on the fiber surface.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の偏光フ
ィルムを用いるものにおいては、細い繊維や微小なチッ
プを形成することが困難であり、また、反射する主波長
を制御することが困難である、という問題があり、実用
的でない。また、上記の特開昭59−228042号、
特公昭60−24847号、特公昭63−64535号
公報などや特開昭62−170510号公報において
は、その構造体の諸元(形状の厚さや長さ、構成材料の
屈折率など)が曖昧であり、そのままでは所望の発色構
造体を得ることが困難であった。
However, in the case of using the above-mentioned polarizing film, it is difficult to form a fine fiber or a minute chip, and it is difficult to control the dominant wavelength to be reflected. There is a problem of, and it is not practical. Further, the above-mentioned JP-A-59-228042,
In Japanese Patent Publication No. 60-24847, Japanese Patent Publication No. 63-64535, etc. and Japanese Patent Publication No. 62-170510, the specifications of the structure (thickness and length of shape, refractive index of constituent materials, etc.) are ambiguous. Therefore, it was difficult to obtain a desired color forming structure as it is.

【0004】上記の問題点に鑑み、本発明者らは、従来
技術では得られなかった鮮やかな色調を呈し、しかも経
時変化のない新規な発色構造体を既に出願(特願平4−
172926号)している。しかし、上記の発色構造体
は、μm以下〜数μm程度の微細な突起(凸型翼部)の
ある形状で、その突起間に空気層が入り込む構造を有し
ており、極めて微細かつ複雑なため、製造上の精度の問
題が残されていた。すなわち、このような断面の構造体
を実際に製造するには、最終的に得たい断面構造の数百
倍程度の大きさの芯(必要な断面形状)と鞘の形状を有
するノズルをダブル紡糸用ヘッドに設置し、芯部と鞘部
とに異なる溶融高分子材料を入れて射出、冷却し、かつ
延伸させて必要な大きさに縮小し、その後、鞘部材料に
対して溶解性の高い溶媒で処理して、芯部のみを残すこ
とにより、所望の大きさの断面形状を有する構造体を得
るものである。したがって、溶剤処理等によって鞘部の
ポリマーを除去する工程が必要であり、その際、微細な
凸型翼部や芯部が犯されたり、逆に鞘部のポリマーが残
存付着する可能性が大きい。このことは、自然光の反
射、干渉効果を誘起させるのに重要な2つの因子、すな
わち構成材料の屈折率と厚さの精度を必ずしも十分確保
できないということを意味する。特に、μm以下の厚さ
の空気層(光学屈折率:n=1.0)を安定に得ること
は至難の技である。
In view of the above-mentioned problems, the present inventors have already applied for a novel color-forming structure which exhibits a vivid color tone which has not been obtained by the prior art and which does not change with time (Japanese Patent Application No. 4-
172926). However, the above-mentioned color-developing structure has a structure having fine protrusions (convex wings) of μm or less to several μm and an air layer enters between the protrusions, which is extremely fine and complicated. Therefore, there remains a problem of manufacturing precision. That is, in order to actually manufacture a structure having such a cross section, double spinning a nozzle having a core (required cross section) and a sheath having a size of several hundred times the cross section desired to be finally obtained. Installed in the head for injection, put different molten polymer materials in the core and sheath, inject, cool, and stretch to reduce to the required size, and then highly soluble in the sheath material By treating with a solvent and leaving only the core, a structure having a desired cross-sectional shape is obtained. Therefore, a step of removing the polymer in the sheath by a solvent treatment or the like is required, and at that time, there is a high possibility that the fine convex blades and the core are violated, or conversely, the polymer in the sheath remains adhered. This means that two factors important for inducing reflection and interference effects of natural light, that is, the accuracy of the refractive index and the thickness of the constituent material cannot always be sufficiently secured. In particular, it is extremely difficult to stably obtain an air layer (optical refractive index: n = 1.0) having a thickness of μm or less.

【0005】本発明はこのような状況に鑑みてなされた
ものであり、本発明者らの先行出願(特願平4−172
926号)をさらに改良、発展させ、製造が容易で、所
望の波長で鮮やかな色調を確実、かつ安定的に得ること
の出来る反射、干渉作用を有する発色構造体を提供する
ことを目的とする。
The present invention has been made in view of such a situation, and the prior application of the present inventors (Japanese Patent Application No. 4-172).
No. 926) is further improved and developed, and it is an object of the present invention to provide a color forming structure having a reflection and interference action, which is easy to manufacture and can surely and stably obtain a vivid color tone at a desired wavelength. .

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明にお
いては、2種類の物質の交互積層からなる層状構造を有
し、自然光の反射、干渉作用によって可視光線領域の波
長の色を発色する発色構造体であって、一方の物質層の
光学屈折率をna、他方の物質層の光学屈折率をnbとし
た場合に、1.3≦na、1.1≦nb/na≦1.4の範囲
になるように構成している。また、請求項2において
は、一方の物質層の厚さをda、他方の物質層の厚さを
bとし、反射ピーク波長(反射スペクトルのピーク波
長)をλとした場合に、daおよびdbはλ=2(naa
+nbb)を満足し、かつdaおよびdbのばらつき、す
なわち両物質層の厚さにおける基準値からの製造誤差の
最大値を40%以下とするように構成している。また、
請求項3に記載の発明は、透明で、屈折率を上げる不純
物を含んでいない高分子物質からなり、光学屈折率の異
なる2種の高分子物質を交互に積層した構造を有し、自
然光の反射、干渉作用によって可視光線領域の波長の色
を発色する発色構造体である。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, the invention according to claim 1 is a coloring structure that has a layered structure formed by alternately laminating two kinds of substances, and develops a color of a wavelength in the visible light region by reflection and interference of natural light. the optical refractive index of one material layer when n a, the optical refractive index of the other material layer and n b, 1.3 ≦ n a, of 1.1 ≦ n b / n a ≦ 1.4 It is configured to be within the range. Further, when in claim 2, in which the thickness of one of the material layers is d a, a thickness of the other material layer and d b, a reflection peak wavelength (peak wavelength of the reflection spectrum) was lambda, d a And d b is λ = 2 (n a d a
+ N b d b) satisfy, and are configured so as to d variations in a and d b, i.e. below 40% the maximum value of the manufacturing error of the reference value in the thickness of both material layers. Also,
The invention according to claim 3 is made of a polymer material that is transparent and does not contain impurities that raise the refractive index, and has a structure in which two polymer materials having different optical refractive indices are alternately laminated, It is a coloring structure that develops a color of a wavelength in the visible light region by the action of reflection and interference.

【0007】[0007]

【作用】後記実施例の欄で詳述するように、2種類の物
質を交互に積層した層状構造において、1.3≦na
1.1≦nb/na≦1.4に設定すると、自然光の反射、
干渉作用によって鮮やかな色調に発色する。上記の条件
のうち、1.3≦naの条件は、詳細を後述するように、
積層する物質の材料特性によるものである。また、1.
1≦nb/na≦1.4なる関係は、二つの物質層の光学
屈折率比nb/naの条件を示すものである。そして1.
1≦nb/naの条件は、反射率特性および実用的な製造
条件に基づくものであり、nb/na≦1.4の条件は、
積層する物質の材料特性によるものである。また、第1
の物質層と第2の物質層の厚さda、dbの取りうる範囲
は、反射ピーク波長を与える関係式:λ=2(naa
bb)を満足する範囲内で任意に設定することができ
る。また、daおよびdbのばらつき、すなわち両物質層
の厚さにおける基準値からの製造誤差は、これが大きく
なると彩度および明度が低下して実用に供せられなくな
るので、彩度および明度が必要とされる所定の値以上を
示す範囲、すなわち変動度が40%以下にする必要があ
る。また、請求項3に記載の構成は、請求項1および請
求項2に記載の構成を実現できるものとして、透明で、
屈折率を上げる不純物を含んでいない高分子物質による
構成を示したものである。
In the layered structure in which two kinds of substances are alternately laminated, 1.3 ≦ n a ,
Setting 1.1 ≦ n b / n a ≦ 1.4 reflects natural light,
Vivid colors are produced by the interference effect. Among the above conditions, the condition of 1.3 ≦ n a, as will be described in detail later,
This is due to the material properties of the materials to be laminated. Also 1.
1 ≦ n b / n a ≦ 1.4 the relationship shows the conditions of the optical refractive index ratio n b / n a of the two material layers. And 1.
The condition of 1 ≦ n b / n a is based on the reflectance characteristics and practical manufacturing conditions, and the condition of n b / n a ≦ 1.4 is:
This is due to the material properties of the materials to be laminated. Also, the first
The range in which the thicknesses d a and d b of the first material layer and the second material layer can take the relational expression giving the reflection peak wavelength: λ = 2 (n a d a +
n b d b) can be set arbitrarily within a range that satisfies the. Further, the variation of d a and d b, i.e. manufacturing errors from the reference value in the thickness of both material layers, since this becomes large when the chroma and lightness not be subjected to practical use by reduction, color saturation and brightness It is necessary to set the range in which the required value is equal to or more than a predetermined value, that is, the degree of variation is 40% or less. Further, the structure described in claim 3 is transparent, as the structure described in claim 1 and claim 2 can be realized,
It shows a constitution of a polymer substance which does not contain impurities for increasing the refractive index.

【0008】[0008]

【実施例】以下、図面に基づいて本発明を詳細に説明す
る。図1および図2は、本発明の発色構造体の実施例の
断面図である。図1および図2において、1は第1の物
質層、2は第2の物質層である。これらの物質層は、例
えば高分子樹脂の薄膜からなり、両者の光学屈折率が異
なっているものである。また、図1および図2の構造
は、例えば糸の断面を示し、図1(a)は断面形状が矩
形のもの、(b)は断面形状が円形のもの、(c)は断
面形状が楕円形のもの、図2(a)は第2の物質層2が
横方向に不連続なもの、(b)は第2の物質層2が異形
断面構造体(芯部が本発明者の先行出願:特願平4−1
72926号に記載の構造体と同様のもの)であるもの
を示す。図1および図2に示すごとく、本実施例の構造
体は、光学屈折率の異なる2種類の物質の交互積層から
なる層状構造を有するものである。上記の物質とは、例
えば、高分子樹脂、特に熱可塑性樹脂であり、かつ、或
る程度の可視光線透過率を有するものである。例えば、
ポリエステル、ポリアクリロニトリル、ポリスチレン、
ナイロン、ポリプロピレン、ポリビニルアルコール、ポ
リカーボネート、ポリメタクリル酸メチル、ポリエーテ
ルエーテルケトン、ポリパラフェニレンテレフタルアミ
ド、ポリフェニレンサルファイド等が挙げられ、これら
の高分子群の中から目的、用途に応じて2種の樹脂が選
ばれる。なお、これらはあくまでも例示であり、これら
によって本発明の構成物質が限定されるものではない。
また、前記の「層状」とは、構造体断面の縦(y)方向
に2種類の物質層がある程度の厚さ(da、db)で交互
に規則的に積層されており、しかも、横(x)方向にあ
る程度の長さを有するものを言う。従って、構造体への
自然光の垂直入射とは、図1(a)に示すごとく、物質
層に対して縦方向から光が入射することを意味する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings. 1 and 2 are cross-sectional views of an embodiment of the coloring structure of the present invention. 1 and 2, 1 is a first material layer and 2 is a second material layer. These substance layers are made of, for example, a thin film of polymer resin, and have different optical refractive indexes. Further, the structures of FIGS. 1 and 2 show, for example, a cross section of a thread, FIG. 1 (a) has a rectangular cross section, (b) has a circular cross section, and (c) has an elliptical cross section. 2A, the second material layer 2 is laterally discontinuous, and FIG. 2B is the second material layer 2 having a modified cross-section structure (the core portion is a prior application of the present inventor). : Japanese Patent Application 4-1
(The same as the structure described in No. 72926). As shown in FIGS. 1 and 2, the structure of this example has a layered structure formed by alternately laminating two kinds of substances having different optical refractive indexes. The above-mentioned substance is, for example, a polymer resin, particularly a thermoplastic resin, and has a certain visible light transmittance. For example,
Polyester, polyacrylonitrile, polystyrene,
Nylon, polypropylene, polyvinyl alcohol, polycarbonate, polymethylmethacrylate, polyetheretherketone, polyparaphenylene terephthalamide, polyphenylene sulfide, etc. are mentioned, and two kinds of resins are selected from these polymer groups depending on the purpose and use. Is selected. Note that these are merely examples, and the constituent substances of the present invention are not limited thereto.
Further, the above-mentioned "layered" means that two types of material layers are alternately and regularly laminated in a certain thickness (d a , d b ) in the longitudinal (y) direction of the structure cross section, and It has a certain length in the lateral (x) direction. Therefore, vertical incidence of natural light on the structure means that light is incident on the material layer in the vertical direction, as shown in FIG.

【0009】ところで、自然光の垂直入射に対して、第
1の物質層1(光学屈折率na)および第2の物質層2
(光学屈折率nb)の交互積層の仕方は2通りある。す
なわち、第1は表層から、物質層1/物質層2/物質層
1/物質層2…と積層する場合、第2は物質層2/物質
層1/物質層2/物質層1…と積層する場合である。後
述するように、本発明の構造体においては基本的には色
味の指標として彩度および明度を用いており、その観点
からすると積層数が必然的に数層になる。そのため、上
記2通りの交互積層のどちらを用いても最終的に大きな
差異は生じてこないが、好ましくは表層での反射を少な
くするため、低屈折率物質(第1の物質層1:光学屈折
率na)を表層に持ってくるのが望ましい。なお、図1
の例では、第2の物質層2を表層にした場合、図2の例
では、第1の物質層1を表層とした場合を例示してい
る。また、断面の横(x)方向には、その物質層が規則
的であれば、連続状(例えば図1の形状)であっても不
連続状(例えば図2の形状)であっても構わないが、製
造上および効果の観点からは連続状であることが好まし
い。なお、断面の横(x)方向に不連続である場合に
は、当然のことながら、その1片の長さは反射光の波長
λ(μm)以上であることが望ましい。また、図2
(a)、(b)に示すように、断面内において層状構造
が海島構造的であっても構わない。また、断面の外形に
関しては、特に制限はないが、より鮮やかな色味の繊維
(例えば、織物や編み物類)とする場合には、繊維断面
の横(x)方向へ自然光が垂直入射となりやすい偏平断
面の形状〔例えば、図1(a)、(c)、図2(a)、
(b)〕にすることが好ましい。
By the way, the first material layer 1 (optical refractive index n a ) and the second material layer 2 with respect to vertical incidence of natural light.
There are two ways of alternately laminating (optical refractive index n b ). That is, when the first is laminated from the surface layer to the material layer 1 / material layer 2 / material layer 1 / material layer 2 ..., the second is laminated to the material layer 2 / material layer 1 / material layer 2 / material layer 1 ... This is the case. As will be described later, the structure of the present invention basically uses saturation and lightness as indices of tint, and from that viewpoint, the number of laminated layers is necessarily several layers. Therefore, a big difference does not finally occur regardless of which of the above two alternating layers is used. However, in order to reduce reflection at the surface layer, it is preferable to use a low refractive index material (first material layer 1: optical refraction). It is desirable to bring the rate n a ) to the surface. Note that FIG.
In the above example, the second material layer 2 is used as the surface layer, and in the example of FIG. 2, the first material layer 1 is used as the surface layer. Further, in the lateral (x) direction of the cross section, if the material layer is regular, it may be continuous (for example, the shape of FIG. 1) or discontinuous (for example, the shape of FIG. 2). However, it is preferably continuous from the viewpoint of production and effects. In the case of discontinuity in the lateral (x) direction of the cross section, naturally, it is desirable that the length of one piece is not less than the wavelength λ (μm) of the reflected light. Also, FIG.
As shown in (a) and (b), the layered structure in the cross section may be a sea-island structure. The outer shape of the cross section is not particularly limited, but in the case of a fiber having a more vivid color (for example, woven fabric or knitting), natural light is likely to be vertically incident in the lateral (x) direction of the fiber cross section. Shape of flat cross section [for example, FIG. 1 (a), (c), FIG. 2 (a),
(B)] is preferable.

【0010】次に、本発明者の考察によれば、本発明に
おいて所期の目的を達成するためには、第1の物質層1
の光学屈折率をna、その厚さをda、第2の物質層2の
光学屈折率をnb、その厚さをdbとした場合に、それら
の間に次のような関係が必要であることが判った。すな
わち、上記諸元で垂直入射とすると、反射ピーク波長λ
は λ=2(naa+nbb) で与えられるが、その際、 1.3≦na 1.1≦nb/na≦1.4 であり、かつ、物質層の厚さda、dbのばらつき、すな
わち両物質層の厚さにおける基準値からの製造誤差の最
大値が40%以下である、ことが必要である。
Next, according to the consideration of the present inventor, in order to achieve the intended purpose in the present invention, the first material layer 1
Where n a is the optical refractive index of n, the thickness is d a , the optical refractive index of the second material layer 2 is n b , and the thickness is d b , the following relationship exists between them. I found it necessary. That is, assuming that the above specifications are normal incidence, the reflection peak wavelength λ
Is given by λ = 2 (n a d a + n b d b ), where 1.3 ≦ n a 1.1 ≦ n b / n a ≦ 1.4 and the thickness of the material layer It is necessary that the dispersion of the heights d a and d b , that is, the maximum value of the manufacturing error from the reference value in the thickness of both material layers is 40% or less.

【0011】以下、上記の条件について説明する。ま
ず、一方の光学屈折率を1.3≦naとしたのは、高分子
樹脂の光学屈折率は一般に1.30〜1.82、汎用的に
は1.35〜1.75のレベルであり、1.3は高分子樹
脂の光学屈折率の下限に相当するからである。なお、N
aFやMgF2等の低屈折率の結晶を微粒子化して高分
子樹脂中に含有させ、1.3以下とすることも可能では
あるが、白濁してしまったり、成型性を損ねたりして適
当ではない。現在のところ、低屈折率(1.4以下)の
高分子物質としては、4ふっ化エチレン(PTFE)や
4ふっ化エチレン・6ふっ化ポリピレン(FEP)など
のふっ素系樹脂が、また、高屈折率(1.65以上)の
高分子物質としては、ポリ塩化ビニリデン(PVD
C)、ポリふっ化ビニリデン(PVDF)、ポリエステ
ル系、ポリフェニレンサルファイド(PPS)などが挙
げられる。
The above conditions will be described below. First, the one of the optical refractive index was 1.3 ≦ n a is the optical refractive index of the polymer resin is generally 1.30 to 1.82, in general at a level of from 1.35 to 1.75 Yes, 1.3 is equivalent to the lower limit of the optical refractive index of the polymer resin. Note that N
It is possible to make crystals of low refractive index such as aF and MgF 2 into fine particles and to include them in the polymer resin, and to make them 1.3 or less, but they are suitable because they become cloudy or impair the moldability. is not. At present, fluoropolymers such as ethylene tetrafluoride (PTFE) and ethylene tetrafluoride-6-polyfluorene hexafluoride (FEP) are high polymer materials with low refractive index (1.4 or less). Polyvinylidene chloride (PVD) is used as a polymer substance with a refractive index (1.65 or more).
C), polyvinylidene fluoride (PVDF), polyester type, polyphenylene sulfide (PPS) and the like.

【0012】次に、1.1≦nb/na≦1.4なる関係
は、両者の光学屈折率比nb/naを示すものである。こ
の1.1≦nb/na≦1.4なる関係の重要性について、
以下に述べる。図3〜図5は、前記のごとき構造体にお
ける反射スペクトル図であり、反射ピーク波長λ=0.
53μmとし、光学屈折率比nb/naをパラメータとし
た場合における波長λと反射率との関係を示す。なお、
図3は、第1の物質層1と第2の物質層2の層数Nが5
層の場合、図4は7層の場合、図5は10層の場合を示
す。なお、層数Nは、第1の物質層一つと第2の物質層
一つとでN=1層と数える。したがって前記図1の実施
例は全てN=10層の例に相当する。反射率がどの程度
であれば色彩的に美しいかのは、明確には定義しにくい
が、一般に50%以下では不十分とされている。まず、
図3に示すように、層数N=5の場合には、(a)のn
b/na=1.1では反射率が20%程度と極めて低い
が、(b)のnb/na=1.2になると反射率50%を
越えて明るくなる。また、図5に示すように、層数N=
10の場合には、(a)のnb/na=1.1でも反射率
が50%を越えるようになる。すなわち、光学屈折率比
b/naを大きくするか、或いは層数Nを増すことによ
って、反射率を大きくすることが可能である。
Next, the relationship of 1.1 ≦ n b / n a ≦ 1.4 shows the optical refractive index ratio n b / n a of both. Regarding the importance of the relation of 1.1 ≦ n b / n a ≦ 1.4,
It will be described below. 3 to 5 are reflection spectrum diagrams of the structure as described above, and the reflection peak wavelength λ = 0.
The relationship between the wavelength λ and the reflectance when the optical refractive index ratio n b / na is used as a parameter is shown as 53 μm. In addition,
In FIG. 3, the number N of layers of the first material layer 1 and the second material layer 2 is 5
In the case of layers, FIG. 4 shows the case of 7 layers, and FIG. 5 shows the case of 10 layers. The number N of layers is counted as N = 1 layer for one first material layer and one second material layer. Therefore, all of the embodiments of FIG. 1 correspond to the example of N = 10 layers. It is difficult to clearly define how much the reflectance is beautiful in color, but it is generally considered to be insufficient at 50% or less. First,
As shown in FIG. 3, when the number of layers N = 5, n in (a)
b / n a = 1.1 in the reflectance is very low and about 20%, but brighter beyond the 50% reflectance becomes n b / n a = 1.2 in (b). Further, as shown in FIG. 5, the number of layers N =
In the case of 10, n b / n a = 1.1, even reflectivity is exceeding 50% of (a). I.e., to increase the optical refractive index ratio n b / n a, or by increasing the number of layers N, it is possible to increase the reflectivity.

【0013】一方、反射率ではなく、より人間の眼に近
い指標である彩度(Chroma:C)および明度(Value:
V)で表わした特性例を図6に示す。図6は、反射ピー
ク波長λ=0.53μmとした場合における光学屈折率
比nb/naと明度および彩度との関係を示しており、
(a)は層数N=5の場合、(b)は層数N=7の場
合、(c)は層数N=10の場合を示す。マンセル色票
を実際に見ると明らかなように、色相によって多少異な
るものの、彩度5以上、明度4以上で比較的鮮やかで明
るい色味を呈することがわかっている。したがって、こ
の指標に従えば、光学屈折率比nb/na=1.1〜1.4
とし、交互積層数を増すことにより、十分鮮やかな色味
を得ることが可能である。
On the other hand, not the reflectance but the chroma (Chroma: C) and the brightness (Value:
An example of the characteristics represented by V) is shown in FIG. Figure 6 shows the relationship between the optical refractive index ratio n b / n a and lightness and saturation in the case where the reflection peak wavelength lambda = 0.53 .mu.m,
(A) shows the case where the number of layers N = 5, (b) shows the case where the number of layers N = 7, and (c) shows the case where the number of layers N = 10. As is clear from the actual observation of the Munsell color chart, it is known that although the hue is slightly different depending on the hue, it has a relatively vivid and bright color tone with a saturation of 5 or more and a lightness of 4 or more. Therefore, according to this indicator, the optical refractive index ratio n b / n a = 1.1~1.4
By increasing the number of alternating layers, it is possible to obtain sufficiently vivid colors.

【0014】また、光学屈折率比nb/naを1.1以下
とした場合には、次のような問題が生じる。まず第1
に、図3〜図5の特性から明らかなように、光学屈折率
比が小さい場合に高反射率を得るためには、層数Nを多
くする必要があるが、層数Nを多くするためには、製造
上、特殊な口金(例えば、公知の多層並列複合紡糸にお
いて)等を要し、実用上は10層程度までが限度にな
る。したがって実用的に必要な反射率(例えば50%)
を得るためには、光学屈折率比をあまり小さくすること
は出来ない。第2に、第1の物質層と第2の物質層との
光学屈折率が近いと、物質層同志を溶融接着した場合
に、層境界の屈折率分布が曖昧となってしまう点であ
る。そのため、両者の光学屈折率比nb/naは1.1以
上、好ましくは1.2以上であることが望ましい。一
方、無機物のフィラーや顔料、例えば、酸化チタン(n
=2.8)や酸化クロム(n=2.5)等の酸化物、硫化
カドミウム(n=2.4)等の硫化物を含有させること
により、高分子樹脂を高屈折率化(1.80以上)させ
ることも可能であるが、透明性を損ねたり、含有物の吸
収が生じたりする。また、製造上、成型性を損ねるとい
った問題も発生するので不適である。したがって、高分
子樹脂の光学屈折率の上限が1.82程度であるから、
前記のごとく、1.3≦naとすれば、光学屈折率比nb
/naの上限はnb/na≦1.4となる。
If the optical refractive index ratio n b / n a is set to 1.1 or less, the following problems will occur. First of all
As is clear from the characteristics of FIGS. 3 to 5, in order to obtain high reflectance when the optical refractive index ratio is small, it is necessary to increase the number N of layers, but to increase the number N of layers. Requires a special spinneret (for example, in a well-known multi-layer parallel composite spinning) and the like for practical use, and the practical limit is about 10 layers. Therefore, practically necessary reflectance (for example, 50%)
In order to obtain the above, the optical refractive index ratio cannot be made too small. Secondly, if the optical refractive indices of the first material layer and the second material layer are close to each other, when the material layers are melt-bonded to each other, the refractive index distribution at the layer boundary becomes ambiguous. Therefore, both the optical refractive index ratio n b / n a is 1.1 or more, it is desirable that preferably 1.2 or more. On the other hand, inorganic fillers and pigments such as titanium oxide (n
= 2.8), chromium oxide (n = 2.5), and other oxides, and cadmium sulfide (n = 2.4), and other sulfides, the polymer resin has a high refractive index (1. 80 or more), but transparency may be impaired or inclusions may be absorbed. Further, it is not suitable because it causes a problem of impairing moldability in manufacturing. Therefore, since the upper limit of the optical refractive index of the polymer resin is about 1.82,
As described above, if 1.3 ≦ n a , the optical refractive index ratio n b
The upper limit of / n a is n b / n a ≦ 1.4.

【0015】次に、第1の物質層1および第2の物質層
2の厚さの変動(ばらつき)は当然のことながら色味に
も大きな影響を及ぼす。図7は第1および第2の物質層
の厚さda、dbの変動δ(それぞれの設定基準値からの
ばらつき)と、彩度(Chroma:C)および明度(Valu
e:V)との関係を示す特性図である。この特性は、反
射ピーク波長λ=0.53μm、光学屈折率比nb/na
=1.3、層数N=5層であって、両層の光学的厚さ
(光学屈折率×幾何学的厚さ、すなわちnaaとn
bb)が等しい場合(naa=nbb)の特性である。
図7から明らかなように、変動度が40%までは指標で
ある彩度5以上、明度4以上を示すが、変動度が40%
を越えると彩度の値は小さくなり、実用に供せられなく
なることがわかる。
Next, the variation (variation) in the thickness of the first material layer 1 and the second material layer 2 naturally has a great influence on the tint. FIG. 7 shows variations δ (deviations from respective set reference values) in the thicknesses d a and d b of the first and second material layers, and saturation (Chroma: C) and lightness (Valu).
It is a characteristic view which shows the relationship with e: V). This characteristic reflection peak wavelength lambda = 0.53 .mu.m, the optical refractive index ratio n b / n a
= 1.3, the number of layers N = 5, and the optical thickness of both layers (optical refractive index × geometric thickness, that is, n a d a and n
This is a characteristic when b b d) is equal (n a d a = n b d b ).
As is apparent from FIG. 7, when the degree of variation is up to 40%, the saturation of 5 or more and the brightness of 4 or more are indicators, but the degree of variation is 40%.
It can be seen that when the value exceeds, the value of saturation becomes small and it cannot be put to practical use.

【0016】次に、第1の物質層1および第2の物質層
2の厚さの取りうる範囲について説明する。第1の物質
層1および第2の物質層2の厚さda、dbは、反射ピー
ク波長を与える関係式:λ=2(naa+nbb)を満
足する範囲内で任意に設定することができる。上記の式
を変形すれば、 λ=2(naa+nbb)=2na〔da+db(nb/n
a)〕 となる。したがって所望の反射ピーク波長λと第1の物
質層1の光学屈折率naと光学屈折率比nb/naとを決
定すれば、上記の式を満足する範囲で、第1の物質層1
および第2の物質層2の厚さda、dbを任意に設定する
ことが出来る。例えば、所望の波長をλ=0.53μm
の場合に、光学屈折率比nb/na=1.3、na=1.3
とし、一方の物質層2の厚さdbを0.02μmに設定す
れば、他方の物質層1の厚さdaは、 da=(λ/2na)−db(nb/na) =0.53/(2×1.3)−0.02×1.3 =0.178μm となる。同様に、daを先に設定すれば、その値からdb
を求めることが出来る。上記の例として、第2の物質層
2の厚さdbと彩度Cおよび明度Vとの関係の一例を図
8に示す。この特性は、反射ピーク波長λ=0.53μ
m、光学屈折率比nb/na=1.3、na=1.3、層数
N=5の場合における第2の物質層2の厚さdbと明度
および彩度との関係を示している。図8から判るよう
に、厚さdbを0.02μmから0.14μm程度まで変
えても指標である彩度Cおよび明度Vを十分満足するこ
とが判る。なお、第1の物質層1および第2の物質層2
の厚さda、dbは、上記のように所定の式を満たす範囲
で任意に設定することが出来るが、具体的には、好まし
くは 0.016μm≦da≦0.44μm 0.016μm≦db が望ましい。なお、当然のことながら、両者の光学的厚
さが等しくなるとき、すなわち、λ/4=naa=nb
b(4分の1波長時)のときに最良となる。
Next, the range of possible thicknesses of the first material layer 1 and the second material layer 2 will be described. The thicknesses d a and d b of the first material layer 1 and the second material layer 2 are within a range satisfying a relational expression giving a reflection peak wavelength: λ = 2 (n a d a + n b d b ). It can be set arbitrarily. If the above equation is modified, λ = 2 (n a d a + n b d b ) = 2n a [d a + d b (n b / n
a )] Therefore, if the desired reflection peak wavelength λ and the optical refractive index n a and the optical refractive index ratio n b / n a of the first substance layer 1 are determined, the first substance layer is within the range that satisfies the above formula. 1
And the thicknesses d a and d b of the second material layer 2 can be arbitrarily set. For example, if the desired wavelength is λ = 0.53 μm
In the case of, the optical refractive index ratios n b / n a = 1.3 and n a = 1.3
And then, by setting one of the material layers 2 a thickness d b on 0.02 [mu] m, the thickness d a of the other material layer 1, d a = (λ / 2n a) -d b (n b / n a ) = 0.53 / (2 × 1.3) −0.02 × 1.3 = 0.178 μm. Similarly, if d a is set first, from that value d b
Can be asked. As an example of the above, FIG. 8 shows an example of the relationship between the thickness d b of the second material layer 2 and the saturation C and the brightness V. This characteristic has a reflection peak wavelength λ = 0.53μ
m, optical refractive index ratio n b / n a = 1.3, n a = 1.3, and the number of layers N = 5, the relationship between the thickness d b of the second material layer 2 and the lightness and saturation. Is shown. As can be seen from FIG. 8, even if the thickness d b is changed from 0.02 μm to 0.14 μm, the saturation C and the brightness V, which are the indexes, are sufficiently satisfied. The first material layer 1 and the second material layer 2
The thicknesses d a and d b can be set arbitrarily within the range satisfying the predetermined expression as described above, but specifically, it is preferably 0.016 μm ≦ d a ≦ 0.44 μm 0.016 μm ≦ d b is desirable. As a matter of course, when both optical thicknesses are equal, that is, λ / 4 = n a d a = n b
Best at d b (1/4 wavelength).

【0017】以下、本発明の具体的な実施例を示すが、
これによって本発明が限定されるものではない。 (実施例1)波長λ=0.53μmで反射、干渉する鮮
やかな発色構造体を作製するため、光学屈折率比nb
a≒1.3となるような高分子樹脂を以下のように選定
した。まず、第1の物質層1として低屈折率(na=1.
41)の高分子樹脂であるポリふっ化ビニリデン(PV
DF)を、また、第2の物質層2として高屈折率(nb
=1.82)の高分子樹脂であるポリフェニレンサルフ
ァイド(PPS)を用いた。したがって、この場合の光
学屈折率比nb/naは約1.29となる。上記両樹脂の
チップを準備し、公知の多層並列紡糸法によって層数N
=7、偏平率3.5の交互積層型偏平繊維を作製した。
ただし、第1の物質層1および第2の物質層2の厚さ
は、λ/4となるように、それぞれ0.1μm、0.08
μmとし、紡糸条件はノズル部温度:330℃、フィラ
メント数:1、巻取速度:250m/minとし、紡糸
後の冷却固化は自然空冷とした。得られた交互積層型偏
平繊維の反射スペクトルを顕微分光光度計(モデルU−
6000:日立製作所)を用い、入射0°/受光0°に
て評価した。なお、反射率は標準白色板を基準としてい
る。その結果は、前記図4(c)に示すように、波長λ
=0.53μm付近で反射率約90%に達する高反射率
のスペクトルが得られた。また、図6(c)に示すよう
に、彩度Cおよび明度Vの値も、それぞれ14、9程度
を示し、色味の指標値を大きく上回った。さらに、見る
方向によって色味が変わるという特徴があった。なお、
上記の製造工程では、例えば直径が10μm程度の糸が
得られる。そしてその糸を複数本撚り合わせて繊維状に
し、紡績することによって織物とすることが出来る。ま
た、上記のごとき工程で得られた糸をフリージング処理
し、それを粉砕することにより、例えば10μm立方程
度の寸法のチップとすることが出来る。このチップを車
体塗装用の塗料の発色光輝材として用い、透明な塗料を
用いて車体塗装時のクリア層(最上層の保護艶出し層)
として塗布すれば、美麗な色を実現することが出来る。
Specific examples of the present invention will be shown below.
The present invention is not limited to this. (Example 1) In order to produce a vivid color structure that reflects and interferes at a wavelength λ = 0.53 μm, the optical refractive index ratio n b /
A polymer resin having n a ≈1.3 was selected as follows. First, as the first material layer 1, a low refractive index (n a = 1.
41) polyvinylidene fluoride (PV) which is a polymer resin
DF) as the second material layer 2 and having a high refractive index (n b
Polyphenylene sulfide (PPS), which is a polymer resin of 1.82) was used. Accordingly, the optical refractive index ratio n b / n a in this case is about 1.29. The chips of both of the above resins are prepared, and the number of layers N is obtained by a known multilayer parallel spinning method.
= 7, flattened ratio 3.5, the alternate lamination type flat fiber was produced.
However, the thicknesses of the first material layer 1 and the second material layer 2 are 0.1 μm and 0.08, respectively, so as to be λ / 4.
μm, spinning conditions were nozzle temperature: 330 ° C., number of filaments: 1, winding speed: 250 m / min, and cooling and solidification after spinning was natural air cooling. The reflection spectrum of the obtained alternate laminated flat fiber was measured by a microspectrophotometer (model U-
6000: Hitachi Ltd.) and evaluated at 0 ° incident / 0 ° received light. The reflectance is based on a standard white plate. As a result, as shown in FIG. 4 (c), the wavelength λ
A spectrum having a high reflectance reaching a reflectance of about 90% was obtained in the vicinity of 0.53 μm. Further, as shown in FIG. 6C, the values of the saturation C and the lightness V were about 14 and 9, respectively, which greatly exceeded the index value of the tint. Furthermore, there was the feature that the color changed depending on the viewing direction. In addition,
In the above manufacturing process, for example, a yarn having a diameter of about 10 μm is obtained. Then, a plurality of the yarns are twisted into a fibrous form and spun to form a woven fabric. By subjecting the yarn obtained in the above process to a freezing treatment and crushing it, a chip having a size of, for example, about 10 μm cubic can be obtained. This chip is used as a coloring and glittering material for paint for car body painting, and a clear layer is used with a transparent paint (the top protective gloss layer) during car body painting.
When applied as, a beautiful color can be realized.

【0018】(実施例2)波長λ=0.64μmで反
射、干渉する鮮やかな発色構造体を作製するため、光学
屈折率比nb/na=1.1となるような高分子樹脂を以
下のように選定した。まず、第1の物質層1として低屈
折率(na=1.48)の高分子であるポリプロピレン
(PP)を、第2の物質層2として高屈折率(nb=1.
68)の高分子であるポリエチレンテレフタレート(P
ET)を用いた。したがって、この場合の光学屈折率比
b/naは約1.13となる。上記両樹脂のチップを準
備し、公知の複合紡糸法(芯部と鞘部とに異なる溶融高
分子材料を用いて射出、冷却し、かつ延伸させて必要な
大きさに縮小する方法)により、前記図2(b)に示す
異形断面構造体(芯部が本発明者の先行出願:特願平4
−172926号に記載の構造体と同様のもの)を有す
る複合偏平繊維を作製した。紡糸条件は、ノズル部温
度:290℃、フィラメント数:1、巻取速度は延伸処
理による極細化も合わせて行なうため、4000m/m
inの高速紡糸とし、紡糸後の冷却固化は自然空冷とし
た。最終的に得られた偏平繊維の諸元は、第1の物質層
1に相当する層状(鞘)部の厚さが0.11μm、第2
の物質層2に相当する層状(芯の翼部)部の厚さが0.
09μmとなり、層数Nは10層である。得られた複合
偏平繊維の反射スペクトルを顕微分光光度計(モデルU
−6000:日立製作所)を用い、入射0°/受光0°
にて評価した。その結果は、図8に示すように、波長λ
=0.64μm付近で反射率約50%のスペクトルが得
られた。また、彩度Cおよび明度Vの値もそれぞれ1
5、5程度を示し、色味の指標値を大きく上回り、しか
も見る方向によって色味が変わった。なお、この実施例
の場合にも、前記第1の実施例と同様に、繊維およびチ
ップに加工することが出来る。
(Example 2) In order to produce a vivid color-forming structure which reflects and interferes at a wavelength λ = 0.64 μm, a polymer resin having an optical refractive index ratio n b / n a = 1.1 is used. It was selected as follows. First, the high refractive index and low refractive index first as material layer 1 of polypropylene (PP) is a polymer of (n a = 1.48), as a second material layer 2 (n b = 1.
68), which is a polymer of polyethylene terephthalate (P
ET) was used. Accordingly, the optical refractive index ratio n b / n a in this case is about 1.13. By preparing the chips of both resins and by a known composite spinning method (a method of injecting by using different molten polymer materials for the core and the sheath, cooling, and stretching to reduce the size to a required size), The modified cross-section structure shown in FIG. 2 (b) (the core part is the prior application of the present inventors: Japanese Patent Application No. 4)
A composite flat fiber having a structure similar to that described in No. 172926) was prepared. The spinning conditions are: nozzle temperature: 290 ° C., number of filaments: 1, and the winding speed is 4000 m / m because it is also made ultrafine by drawing.
In high-speed spinning, cooling and solidification after spinning were carried out by natural air cooling. The specifications of the finally obtained flat fiber are as follows: the thickness of the layered (sheath) portion corresponding to the first substance layer 1 is 0.11 μm,
The thickness of the layered portion (wing portion of the core) corresponding to the material layer 2 is 0.
The number N of layers is 10, and the number N of layers is 10. The reflection spectrum of the obtained composite flat fiber was analyzed by a microspectrophotometer (model U
-6000: Hitachi, Ltd., 0 ° incident / 0 ° received
Was evaluated. As a result, as shown in FIG.
A spectrum having a reflectance of about 50% was obtained near = 0.64 μm. Also, the values of saturation C and brightness V are each 1
It was about 5, 5 and greatly exceeded the index value of the tint, and the tint changed depending on the viewing direction. Also in the case of this embodiment, fibers and chips can be processed as in the case of the first embodiment.

【0019】[0019]

【発明の効果】以上、説明したごとく、本発明によれ
ば、従来にない鮮やかな色調を発することが出来、かつ
本発明者らの先行出願におけるような空気層を用いてい
ないので、製造時に鞘部を除去する必要がなくなり、製
造が非常に容易になると共に、所望の形状、寸法を容易
に実現することが出来る。そのため所望の波長で鮮やか
な色調を確実、かつ安定的に得ることが出来、かつ容易
に細い繊維状や微小なチップ状に加工できるので、実用
に適している、という優れた効果が得られる。
As described above, according to the present invention, it is possible to produce a vivid color tone which has never been obtained, and since the air layer as in the prior application of the present inventors is not used, it is possible to manufacture Since it is not necessary to remove the sheath portion, the manufacturing is very easy and the desired shape and size can be easily realized. Therefore, a bright color tone at a desired wavelength can be obtained reliably and stably, and it can be easily processed into a thin fiber shape or a minute chip shape, so that an excellent effect that it is suitable for practical use can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】本発明の他の実施例の断面図。FIG. 2 is a sectional view of another embodiment of the present invention.

【図3】層数N=5における波長と反射率の関係を示す
反射スペクトル特性図。
FIG. 3 is a reflection spectrum characteristic diagram showing the relationship between wavelength and reflectance when the number of layers N = 5.

【図4】層数N=7における波長と反射率の関係を示す
反射スペクトル特性図。
FIG. 4 is a reflection spectrum characteristic diagram showing the relationship between wavelength and reflectance when the number of layers N = 7.

【図5】層数N=10における波長と反射率の関係を示
す反射スペクトル特性図。
FIG. 5 is a reflection spectrum characteristic diagram showing the relationship between wavelength and reflectance when the number of layers N = 10.

【図6】反射ピーク波長λ=0.53μmとした場合の
光学屈折率比nb/naと明度および彩度との関係を示す
特性図。
FIG. 6 is a characteristic diagram showing the relationship between the optical refractive index ratio n b / n a and the brightness and saturation when the reflection peak wavelength λ = 0.53 μm.

【図7】第1および第2の物質層の厚さda、dbの変動
δ(それぞれの設定基準値からのばらつき)と、彩度お
よび明度との関係を示す特性図。
FIG. 7 is a characteristic diagram showing a relationship between a variation δ (variation from respective set reference values) of the thicknesses d a and d b of the first and second material layers, and saturation and lightness.

【図8】第2の物質層2の厚さdbと彩度Cおよび明度
Vとの関係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the thickness d b of the second material layer 2 and the saturation C and the brightness V.

【図9】第2の実施例における波長と反射率の関係を示
す反射スペクトル特性図。
FIG. 9 is a reflection spectrum characteristic diagram showing the relationship between wavelength and reflectance in the second embodiment.

【符号の説明】[Explanation of symbols]

1…第1の物質層(光学屈折率na、厚さda) 2…第2の物質層(光学屈折率nb、厚さdb1 ... 1st substance layer (optical refractive index n a , thickness d a ) 2 ... 2nd substance layer (optical refractive index n b , thickness d b )

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D01F 6/12 Z 7199−3B 6/76 D 7199−3B Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // D01F 6/12 Z 7199-3B 6/76 D 7199-3B

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2種類の物質の交互積層からなる層状構造
を有し、自然光の反射、干渉作用によって可視光線領域
の波長の色を発色する発色構造体であって、 一方の物質層の光学屈折率をna、他方の物質層の光学
屈折率をnbとした場合に、 1.3≦na 1.1≦nb/na≦1.4 であることを特徴とする反射、干渉作用を有する発色構
造体。
1. A color-forming structure having a layered structure composed of alternating layers of two kinds of substances, which emits a color of a wavelength in the visible light region by reflection and interference of natural light. the refractive index n a, when the optical refractive index of the other material layer was n b, reflection, which is a 1.3 ≦ n a 1.1 ≦ n b / n a ≦ 1.4, A coloring structure having an interference effect.
【請求項2】上記一方の物質層の厚さをda、他方の物
質層の厚さをdbとし、反射ピーク波長をλとした場合
に、daおよびdbは λ=2(naa+nbb) を満足し、かつdaおよびdbのばらつき、すなわち両物
質層の厚さにおける基準値からの製造誤差の最大値が4
0%以下である、ことを特徴とする請求項1に記載の反
射、干渉作用を有する発色構造体。
2. When the thickness of one of the material layers is d a , the thickness of the other material layer is d b , and the reflection peak wavelength is λ, d a and d b are λ = 2 (n a d a + n b d b ), and the variation of d a and d b , that is, the maximum value of the manufacturing error from the reference value in the thickness of both material layers is 4
It is 0% or less, The coloring structure which has the reflection and interference effect of Claim 1 characterized by the above-mentioned.
【請求項3】透明で、屈折率を上げる不純物を含んでい
ない高分子物質からなり、光学屈折率の異なる2種の高
分子物質を交互に積層した構造を有し、自然光の反射、
干渉作用によって可視光線領域の波長の色を発色する、
ことを特徴とする反射、干渉作用を有する発色構造体。
3. A structure comprising a polymer material which is transparent and does not contain impurities for increasing the refractive index, and which has a structure in which two polymer materials having different optical refractive indexes are alternately laminated, and which reflects natural light,
Develops wavelengths in the visible light range due to interference,
A coloring structure having a reflection and interference action, which is characterized by the following.
JP5176768A 1993-07-16 1993-07-16 Coloring structure having reflection and interference effects Expired - Lifetime JP3036305B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5176768A JP3036305B2 (en) 1993-07-16 1993-07-16 Coloring structure having reflection and interference effects
US08/272,487 US5472798A (en) 1993-07-16 1994-07-11 Coloring structure having reflecting and interfering functions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5176768A JP3036305B2 (en) 1993-07-16 1993-07-16 Coloring structure having reflection and interference effects

Publications (2)

Publication Number Publication Date
JPH0734324A true JPH0734324A (en) 1995-02-03
JP3036305B2 JP3036305B2 (en) 2000-04-24

Family

ID=16019489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5176768A Expired - Lifetime JP3036305B2 (en) 1993-07-16 1993-07-16 Coloring structure having reflection and interference effects

Country Status (1)

Country Link
JP (1) JP3036305B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046815A1 (en) * 1997-04-11 1998-10-22 Teijin Limited Fiber having optical interference function and its utilization
US5849383A (en) * 1994-06-07 1998-12-15 Nissan Motor Co., Ltd. Minute structure for showing colors by reflection and interference of natural light
EP0877103A3 (en) * 1997-04-28 1999-02-10 Nissan Motor Company, Limited Fiber structure, cloths using same, and textile goods
EP1006221A1 (en) * 1998-12-04 2000-06-07 Nissan Motor Company, Limited Optically functional minute structure and woven fabric with such structure
US6248436B1 (en) 1995-02-08 2001-06-19 Nissan Motor Co., Ltd. Color exhibition structure
US6350509B1 (en) 1998-12-10 2002-02-26 Nissan Motor Co., Ltd. Coating structure
US6490090B1 (en) 1999-02-26 2002-12-03 Nissan Motor Co., Ltd. Coloring structure for producing color
US6706651B2 (en) 2000-04-27 2004-03-16 Teijin Limited Float textile having improved optical interference function and use thereof
JP2005264123A (en) * 2004-03-22 2005-09-29 Toyota Motor Corp Diffraction grating pigment and method for producing the same, coating and resin composition
JP2007332496A (en) * 2006-06-15 2007-12-27 Teijin Fibers Ltd Melt spinning process for optical interference fiber and the resultant optical interference fiber
KR100816846B1 (en) * 2006-09-26 2008-03-27 신풍섬유(주) Weaving method used by optical interference function thread for color expression and textile weaved by the method thereof
JP2008231643A (en) * 2007-03-23 2008-10-02 Teijin Fibers Ltd Method and apparatus for producing light interfering fiber
JP2009042763A (en) * 2007-08-12 2009-02-26 Toyota Motor Engineering & Manufacturing North America Inc Omnidirectional reflector of narrow band, and use of it as structure color
US9063291B2 (en) 2007-08-12 2015-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional reflector
US9229140B2 (en) 2007-08-12 2016-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional UV-IR reflector
US9612369B2 (en) 2007-08-12 2017-04-04 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US9658375B2 (en) 2012-08-10 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers
US9664832B2 (en) 2012-08-10 2017-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination semiconductor absorber and dielectric absorber layers
US9678260B2 (en) 2012-08-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with semiconductor absorber layer
US9739917B2 (en) 2007-08-12 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US9810824B2 (en) 2015-01-28 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural colors
WO2018092746A1 (en) 2016-11-15 2018-05-24 東レ株式会社 Glossy fiber
US10048415B2 (en) 2007-08-12 2018-08-14 Toyota Motor Engineering & Manufacturing North America, Inc. Non-dichroic omnidirectional structural color
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
US11726239B2 (en) 2014-04-01 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Non-color shifting multilayer structures

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849383A (en) * 1994-06-07 1998-12-15 Nissan Motor Co., Ltd. Minute structure for showing colors by reflection and interference of natural light
US6051513A (en) * 1994-06-07 2000-04-18 Nissan Motor Co., Ltd. Minute structure for showing colors by reflection and interference of natural light
US6248436B1 (en) 1995-02-08 2001-06-19 Nissan Motor Co., Ltd. Color exhibition structure
US6430348B1 (en) 1997-04-11 2002-08-06 Teijin Limited Fiber having optical interference function and use thereof
WO1998046815A1 (en) * 1997-04-11 1998-10-22 Teijin Limited Fiber having optical interference function and its utilization
US6335094B1 (en) 1997-04-28 2002-01-01 Nissan Motor Co., Ltd. Fiber structure, cloths using same, and textile goods
EP0877103A3 (en) * 1997-04-28 1999-02-10 Nissan Motor Company, Limited Fiber structure, cloths using same, and textile goods
EP1006221A1 (en) * 1998-12-04 2000-06-07 Nissan Motor Company, Limited Optically functional minute structure and woven fabric with such structure
US6350509B1 (en) 1998-12-10 2002-02-26 Nissan Motor Co., Ltd. Coating structure
US6490090B1 (en) 1999-02-26 2002-12-03 Nissan Motor Co., Ltd. Coloring structure for producing color
US6706651B2 (en) 2000-04-27 2004-03-16 Teijin Limited Float textile having improved optical interference function and use thereof
JP2005264123A (en) * 2004-03-22 2005-09-29 Toyota Motor Corp Diffraction grating pigment and method for producing the same, coating and resin composition
JP2007332496A (en) * 2006-06-15 2007-12-27 Teijin Fibers Ltd Melt spinning process for optical interference fiber and the resultant optical interference fiber
KR100816846B1 (en) * 2006-09-26 2008-03-27 신풍섬유(주) Weaving method used by optical interference function thread for color expression and textile weaved by the method thereof
JP2008231643A (en) * 2007-03-23 2008-10-02 Teijin Fibers Ltd Method and apparatus for producing light interfering fiber
US9063291B2 (en) 2007-08-12 2015-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional reflector
US10048415B2 (en) 2007-08-12 2018-08-14 Toyota Motor Engineering & Manufacturing North America, Inc. Non-dichroic omnidirectional structural color
US9229140B2 (en) 2007-08-12 2016-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional UV-IR reflector
US9612369B2 (en) 2007-08-12 2017-04-04 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US11796724B2 (en) 2007-08-12 2023-10-24 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
JP2009042763A (en) * 2007-08-12 2009-02-26 Toyota Motor Engineering & Manufacturing North America Inc Omnidirectional reflector of narrow band, and use of it as structure color
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
US9739917B2 (en) 2007-08-12 2017-08-22 Toyota Motor Engineering & Manufacturing North America, Inc. Red omnidirectional structural color made from metal and dielectric layers
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US9664832B2 (en) 2012-08-10 2017-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination semiconductor absorber and dielectric absorber layers
US9678260B2 (en) 2012-08-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with semiconductor absorber layer
US9658375B2 (en) 2012-08-10 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with combination metal absorber and dielectric absorber layers
US11726239B2 (en) 2014-04-01 2023-08-15 Toyota Motor Engineering & Manufacturing North America, Inc. Non-color shifting multilayer structures
US9810824B2 (en) 2015-01-28 2017-11-07 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural colors
KR20190080886A (en) 2016-11-15 2019-07-08 도레이 카부시키가이샤 Polished fiber
WO2018092746A1 (en) 2016-11-15 2018-05-24 東レ株式会社 Glossy fiber
US11255027B2 (en) 2016-11-15 2022-02-22 Toray Industries, Inc. Glossy fiber

Also Published As

Publication number Publication date
JP3036305B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
JPH0734324A (en) Color-developing structure material having reflection and interference action
US6051513A (en) Minute structure for showing colors by reflection and interference of natural light
US5472798A (en) Coloring structure having reflecting and interfering functions
DE69820206T2 (en) Optical interference fiber and its use
US5407738A (en) Minute structure for showing colors by reflection and interference of natural light
US6326094B1 (en) Fiber structure and textile using same
JP2003119623A (en) Structure with light reflective function
US6243521B1 (en) Fibers with optical function
JP3550775B2 (en) Coloring structure
JP3036304B2 (en) Coloring structure due to reflection and interference
JP2005248369A (en) Conjugated fiber having light interference color-developing function excellent in esthetic property
EP1006221A1 (en) Optically functional minute structure and woven fabric with such structure
JP2004151271A (en) Structure having light reflection function
JPH07195603A (en) Structure reflecting one or both of near ultraviolet rays and near infrared rays
JPH08218218A (en) Production of fiber having optical function
JP3264279B2 (en) Fibrous or thread-like coloring structure having reflective interference action
JPH11181630A (en) Conjugated fiber
JPH11124734A (en) Fibrous structure
JP4325147B2 (en) Object with light reflection function
JP2005015962A (en) Fine-size optically interfering fiber and method for producing the same
JPH11124747A (en) Composite yarn having optical interfering function
JPWO2005021849A1 (en) Composite fiber with optical interference coloring function
Hirose Application of Structural Color
KR100756983B1 (en) Monofilament with structural color effect and multifilament composed thereby
JP2003301319A (en) Light reflection functional structure and method of producing same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 14

EXPY Cancellation because of completion of term