JPH0734225A - Production of conductive polymer/ion exchanger composite thin film - Google Patents

Production of conductive polymer/ion exchanger composite thin film

Info

Publication number
JPH0734225A
JPH0734225A JP17543793A JP17543793A JPH0734225A JP H0734225 A JPH0734225 A JP H0734225A JP 17543793 A JP17543793 A JP 17543793A JP 17543793 A JP17543793 A JP 17543793A JP H0734225 A JPH0734225 A JP H0734225A
Authority
JP
Japan
Prior art keywords
thin film
ion exchanger
conductive polymer
heating
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17543793A
Other languages
Japanese (ja)
Inventor
Shigeru Tsurumaki
茂 弦巻
Yoshiyuki Tasaka
佳之 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17543793A priority Critical patent/JPH0734225A/en
Publication of JPH0734225A publication Critical patent/JPH0734225A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form the subject composite thin film electrode having a high energy density by adding and uniformly dispersing an ion exchanger into a conductive polymer thin film through heating and vapor-depositing the conductive polymer and concurrently heating and vapor-depositing the ion exchanger under vacuum. CONSTITUTION:In a vacuum deposition device, the composite thin film consisting of a conductive polymer and an ion exchanger is formed by heating and vapor- depositing the conductive polymer such as polyaniline and concurrently heating and vapor-depositing the ion exchanger such as methanesulfonic acid on a substrate such as glass to add and uniformly disperse the ion exchanger into a conductive polymer thin film on the substrate. At the time of heating and vapor-depositing the conductive polymer and the ion exchanger, the respective vapor deposition rates and the ion exchanger content in the conductive polymer are controlled by adjusting the respective heating temp. Thus the composite thin film having a high energy density can be produced by this single-stage process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は導電性ポリマー薄膜中に
イオン交換体を均一に分散含有する導電性ポリマー/イ
オン交換体複合薄膜の製造法に関し、さらに詳しくは薄
膜型高エネルギ密度の高分子バッテリの電極として、ま
た電子素子,半導体素子等の電極として利用可能な同薄
膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive polymer / ion exchanger composite thin film in which an ion exchanger is uniformly dispersed and contained in a conductive polymer thin film, and more particularly to a thin film type high energy density polymer. The present invention relates to a method for manufacturing the thin film, which can be used as an electrode of a battery and as an electrode of an electronic element, a semiconductor element, or the like.

【0002】[0002]

【従来の技術】気相法により、真空中でポリマー薄膜を
製造する方法としてはスパッタリング法{R.Harrup et
al., Thin Solid Film, 3, 109-, (1969), T.Robertson
et al., Thion Solid Film, 27, 19-, (1975)}やプラ
ズマ重合法{M.Shen Ed.,Plasma Chemistry of Polymer
s, Marcel Dekker Inc., (1976), A.T.Bell et al.,ACS
Symposium Seriex 108, ACS Washington, (1979) }が
知られているが、薄膜形成過程で原料分子を分解、劣化
させるため、目的とする化学構造を有するポリマー薄膜
が得られないという欠点を有している。最近、ポリマー
を真空中で加熱蒸着させ、目的とする化学構造を有する
ポリマー薄膜の製造方法{T.Yamamoto et al., Synthet
ic Metals, 38, 399-402, (1990)}が提案されている
が、このポリマー薄膜のみでは高い導電率を得ることは
できず、薄膜形成後、ドーピングを行う必要がある。
2. Description of the Related Art As a method for producing a polymer thin film in a vacuum by a vapor phase method, a sputtering method {R. Harrup et
al., Thin Solid Film, 3, 109-, (1969), T. Robertson
et al., Thion Solid Film, 27, 19-, (1975)} and plasma polymerization method {M.Shen Ed., Plasma Chemistry of Polymer
s, Marcel Dekker Inc., (1976), ATBell et al., ACS
Symposium Seriex 108, ACS Washington, (1979)} is known, but it has the drawback that a polymer thin film having the desired chemical structure cannot be obtained because the raw material molecules are decomposed and degraded during the thin film formation process. There is. Recently, a method for producing a polymer thin film having a desired chemical structure by heating and evaporating a polymer in a vacuum {T. Yamamoto et al., Synthet
ic Metals, 38, 399-402, (1990)} has been proposed, but high conductivity cannot be obtained only with this polymer thin film, and it is necessary to perform doping after forming the thin film.

【0003】[0003]

【発明が解決しようとする課題】上記のように真空中で
蒸着したポリマー薄膜に導電機能を与えるためには、薄
膜形成後、湿式法でドーピングを行う必要があり、ポリ
マー薄膜中をドーパントが拡散するのに時間がかかるた
め、完全にドーピングを行うにはかなりの時間を要する
という問題点があった。湿式法(キャスティング法)
で、イオン交換体を均一に分散させて薄膜化し、導電性
ポリマー/イオン交換体複合薄膜を得ることは困難であ
り、不溶解性物質の凝集や不均一化を生じるという問題
点があった。また、導電性ポリマーを合成する際に、イ
オン交換体をモノマーと混合して重合反応することによ
り、導電性ポリマー/イオン交換体複合物を得ることが
できるが、合成された複合物は有機溶媒に不溶解のた
め、薄膜を作製することは困難であった。
In order to impart a conductive function to the polymer thin film deposited in vacuum as described above, it is necessary to perform doping by a wet method after forming the thin film, and the dopant is diffused in the polymer thin film. Since it takes a long time to complete the doping, it takes a considerable time to complete the doping. Wet method (casting method)
Therefore, it is difficult to uniformly disperse the ion exchanger into a thin film to obtain a conductive polymer / ion exchanger composite thin film, and there is a problem that aggregation of the insoluble substance and nonuniformity occur. In addition, when synthesizing a conductive polymer, a conductive polymer / ion exchanger composite can be obtained by mixing an ion exchanger with a monomer and performing a polymerization reaction, but the synthesized composite is an organic solvent. Since it is insoluble, it was difficult to form a thin film.

【0004】本発明は上記技術水準に鑑み、イオン交換
体を均一に分散した導電性ポリマー/イオン交換体複合
薄膜の製造法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is to provide a method for producing a conductive polymer / ion exchanger composite thin film in which an ion exchanger is uniformly dispersed.

【0005】[0005]

【課題を解決するための手段】本発明は導電性ポリマー
を真空中で加熱蒸着し薄膜形成させる工程において、イ
オン交換体物質を同時加熱することにより、一工程で導
電性ポリマー薄膜中にイオン交換体を均一に分散含有す
る導電性ポリマー/イオン交換体複合薄膜を形成するこ
とを特徴とする方法である。
According to the present invention, in a step of forming a thin film by heating and depositing a conductive polymer in a vacuum, the ion-exchange material is simultaneously heated, so that the ion exchange is performed in the conductive polymer thin film in one step. The method is characterized by forming a conductive polymer / ion exchanger composite thin film containing a body uniformly dispersed therein.

【0006】本発明では、導電性ポリマーを1×10-4
〜1×10-6Torr程度の真空中で70〜400℃程
度に加熱することによって蒸着し、薄膜が形成される。
導電性ポリマーの加熱温度は使用するポリマーによっ
て、また蒸着時の真空度によって異なるが、不活性ガス
雰囲気中、1気圧での熱分解温度より10〜50℃程度
低い温度が適当である。例えば、ポリアニリンの熱分解
温度は350℃から420℃付近であるが、1×10-5
Torr程度の真空度では330℃から370℃付近で
加熱することが好ましい。
In the present invention, the conductive polymer is 1 × 10 -4.
A thin film is formed by vapor deposition by heating to about 70 to 400 ° C. in a vacuum of about 1 × 10 −6 Torr.
The heating temperature of the conductive polymer varies depending on the polymer used and the degree of vacuum at the time of vapor deposition, but a temperature lower by about 10 to 50 ° C. than the thermal decomposition temperature at 1 atm in an inert gas atmosphere is suitable. For example, the thermal decomposition temperature of polyaniline is around 350 ° C. to 420 ° C., but 1 × 10 −5
With a degree of vacuum of about Torr, it is preferable to heat at about 330 to 370 ° C.

【0007】上記以外の導電性ポリマーでも、1気圧に
おける熱分解温度以下で加熱することにより、真空中で
任意の基板上にポリマー薄膜を形成することが可能であ
る。ただし、あまり熱分解温度に近い温度まで加熱を行
うと、原料ポリマーの化学構造とは異なった構造の薄膜
が形成されるか、又は薄膜形成不可能となることがある
ので、できるだけ熱分解温度より低い温度で加熱蒸着を
行うことが好ましい。
Even with a conductive polymer other than the above, it is possible to form a polymer thin film on an arbitrary substrate in a vacuum by heating at a thermal decomposition temperature of 1 atm or less. However, if heated to a temperature that is too close to the thermal decomposition temperature, a thin film with a structure different from the chemical structure of the raw material polymer may be formed or it may be impossible to form a thin film. It is preferable to perform heat vapor deposition at a low temperature.

【0008】本発明でいうイオン交換体とはスルホン酸
基を有する有機低分子物質を意味し、アルキルスルホン
酸又は低分子量スルホン酸などである。該イオン交換体
の加熱温度は蒸発原料となるイオン交換体の蒸気圧が薄
膜形成時の真空度と同程度の蒸気圧を示す温度であり、
通常200〜500℃の範囲である。例えば、メタンス
ルホン酸の場合、1×10-5Torrの真空度で100
℃から120℃に、エタンスルホン酸の場合、1×10
-5Torrの真空度で150℃から170℃に、エタン
ジスルホン酸の場合、1×10-5Torrの真空度で2
00℃から220℃に、また、ブタンジスルホン酸の場
合、1×10-5Torrの真空度で250℃から270
℃に加熱することが好ましい。上記以外のイオン交換体
でも、蒸発原料となるイオン交換体の蒸気圧が薄膜形成
時の真空度と同程度の蒸気圧を示す温度まで加熱すれば
蒸着可能である。
The ion exchanger referred to in the present invention means an organic low molecular weight substance having a sulfonic acid group, such as an alkyl sulfonic acid or a low molecular weight sulfonic acid. The heating temperature of the ion exchanger is a temperature at which the vapor pressure of the ion exchanger serving as a vaporization raw material shows a vapor pressure similar to the degree of vacuum during thin film formation,
It is usually in the range of 200 to 500 ° C. For example, in the case of methanesulfonic acid, 100 at a vacuum degree of 1 × 10 -5 Torr
℃ to 120 ℃, in the case of ethanesulfonic acid, 1 × 10
-5 Torr vacuum degree from 150 ° C to 170 ° C, and in the case of ethanedisulfonic acid, 2 × 10 -5 Torr vacuum degree.
From 00 ° C to 220 ° C, and in the case of butanedisulfonic acid, from 250 ° C to 270 at a vacuum degree of 1 × 10 -5 Torr.
It is preferred to heat to ° C. Ion exchangers other than the above can be vapor-deposited by heating to a temperature at which the vapor pressure of the ion exchanger serving as the evaporation source is similar to the vacuum level at the time of thin film formation.

【0009】上記導電性ポリマーとイオン交換体を同時
に加熱蒸着するとき、それぞれの加熱温度を調節するこ
とにより蒸着速度を制御し、導電性ポリマー薄膜中での
イオン交換体含有率を制御することができる。例えば、
導電性ポリマーの蒸着速度を遅くしてイオン交換体の蒸
着速度を速くした場合、イオン交換体含有率は高くな
る。逆に導電性ポリマーの蒸着速度を速くしてイオン交
換体の蒸着速度を遅くした場合、イオン交換体含有率は
低くなる。
When the conductive polymer and the ion exchanger are heated and vapor-deposited at the same time, it is possible to control the vapor deposition rate by controlling the respective heating temperatures and to control the ion-exchanger content in the electroconductive polymer thin film. it can. For example,
When the deposition rate of the conductive polymer is slowed down to increase the deposition rate of the ion exchanger, the ion exchanger content is high. Conversely, when the deposition rate of the conductive polymer is increased and the deposition rate of the ion exchanger is decreased, the ion exchanger content becomes low.

【0010】蒸着源の加熱方法については、抵抗線加
熱,ランプ加熱,電子ビーム加熱,レーザー加熱などが
使用可能であるが、精密な温度制御が必要であることか
ら抵抗線加熱又はランプ加熱が好ましい。この場合、ポ
リマーの蒸着源とイオン交換体の蒸着源との温度差があ
ることから、真空蒸着装置内での副射熱による影響を避
けるため、装置内の蒸発源を仕切り板等で分離し、両者
の加熱温度の影響をできるだけ少なくすることが好まし
い。蒸発源容器はパイレックスガラス,石英ガラス,セ
ラミックス容器等500℃程度まで加熱可能な容器なら
ば使用可能である。また、通常の真空蒸着で使用される
タングステンバスケット,タングステンボート,白金ボ
ート等も使用可能であり、蒸発原料と反応しない材質な
らば特に制限はない。
As a method of heating the vapor deposition source, resistance wire heating, lamp heating, electron beam heating, laser heating and the like can be used, but resistance wire heating or lamp heating is preferable because precise temperature control is required. . In this case, since there is a temperature difference between the vapor deposition source of the polymer and the vapor deposition source of the ion exchanger, in order to avoid the effect of secondary heat in the vacuum vapor deposition equipment, separate the vaporization source in the equipment with a partition plate, etc. It is preferable to minimize the influence of the heating temperature of both. As the evaporation source container, any container that can be heated up to about 500 ° C., such as Pyrex glass, quartz glass, or a ceramics container can be used. Further, a tungsten basket, a tungsten boat, a platinum boat, or the like used in ordinary vacuum vapor deposition can also be used, and there is no particular limitation as long as the material does not react with the evaporation raw material.

【0011】基板の素材については特に制限はなく、ガ
ラス,無機結晶,セラミック,金属,ポリマー等を使用
することができる。また、蒸着時の基板温度が導電性ポ
リマー又はイオン交換体の加熱温度より高いと蒸着した
薄膜が再蒸発する恐れがあることから、基板温度は導電
性ポリマー又はイオン交換体の加熱温度より50℃から
100℃程度低い温度以下とすることが好ましい。
There are no particular restrictions on the material of the substrate, and glass, inorganic crystals, ceramics, metals, polymers and the like can be used. If the substrate temperature during vapor deposition is higher than the heating temperature of the conductive polymer or ion exchanger, the vapor-deposited thin film may re-evaporate. Therefore, the substrate temperature is 50 ° C. higher than the heating temperature of the conductive polymer or ion exchanger. It is preferable that the temperature is lower than about 100 ° C. or lower.

【0012】[0012]

【作用】本発明によって導電性ポリマー薄膜中にイオン
交換体を均一に分散、複合化することが可能となった。
また、これまで導電性ポリマーを加熱蒸着するだけでは
導電率の低いポリマー薄膜しか得られていなかったが、
導電性ポリマーとドーパントであるイオン交換体を同時
に蒸着することにより、一工程で導電性ポリマー/イオ
ン交換体複合薄膜を形成することが可能となった。例え
ば、導電性高分子であるポリアニリンとイオン交換体で
あるメタンスルホン酸を同時加熱蒸着することにより、
導電率が2×10-3S・cm-1程度の導電性ポリマー/
イオン交換体複合薄膜が形成できた。
The present invention has made it possible to uniformly disperse and complex an ion exchanger in a conductive polymer thin film.
In addition, until now only a polymer thin film having a low conductivity has been obtained only by heating and depositing a conductive polymer,
By simultaneously depositing a conductive polymer and an ion exchanger that is a dopant, it is possible to form a conductive polymer / ion exchanger composite thin film in one step. For example, by simultaneously heating and vapor depositing polyaniline, which is a conductive polymer, and methanesulfonic acid, which is an ion exchanger,
Conductive polymer with conductivity of about 2 × 10 -3 S · cm -1 /
An ion exchanger composite thin film could be formed.

【0013】[0013]

【実施例】【Example】

(実施例1)酸化重合法により合成したポリアニリンと
市販のメタンスルホン酸を原料として、真空蒸着装置内
で抵抗加熱法により真空度1×10-5Torrの条件下
で、ポリアニリンを350℃に、メタンスルホン酸を1
10℃に同時加熱蒸着し、ガラス基板上に厚み40nm
程度の薄膜を得た。得られた薄膜の導電率を4端子法で
測定した結果、2×10-3S・cm-1の導電率が得られ
た。
Example 1 Using polyaniline synthesized by an oxidative polymerization method and commercially available methanesulfonic acid as raw materials, polyaniline was heated to 350 ° C. under a vacuum degree of 1 × 10 −5 Torr by a resistance heating method in a vacuum deposition apparatus. 1 methanesulfonic acid
Simultaneous heating vapor deposition at 10 ° C, thickness 40 nm on glass substrate
A thin film of a degree was obtained. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 2 × 10 −3 S · cm −1 was obtained.

【0014】(実施例2)酸化重合法により合成したポ
リアニリンと市販のエタンスルホン酸を原料として、真
空蒸着装置内で抵抗加熱法により真空度1×10-5To
rrの条件下で、ポリアニリンを350℃に、エタンス
ルホン酸を170℃に同時加熱蒸着し、ガラス基板上に
厚み30nm程度の薄膜を得た。得られた薄膜の導電率
を4端子法で測定した結果、2×10-3S・cm-1の導
電率が得られた。
(Example 2) Polyaniline synthesized by an oxidative polymerization method and commercially available ethanesulfonic acid were used as raw materials in a vacuum vapor deposition apparatus by a resistance heating method to obtain a degree of vacuum of 1 × 10 -5 To.
Under the condition of rr, polyaniline was simultaneously heated and vapor-deposited at 350 ° C. and ethanesulfonic acid at 170 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 2 × 10 −3 S · cm −1 was obtained.

【0015】(実施例3)酸化重合法により合成したポ
リアニリンと市販のエタンジスルホン酸ナトリウムを陽
イオン交換樹脂でイオン交換したエタンジスルホン酸を
原料として、真空蒸着装置内で抵抗加熱法により真空度
1×10-5Torrの条件下で、ポリアニリンを350
℃に、エタンジスルホン酸を220℃に同時加熱蒸着
し、ガラス基板上に厚み30nm程度の薄膜を得た。得
られた薄膜の導電率を4端子法で測定した結果、1×1
-3S・cm-1の導電率が得られた。
Example 3 Polyaniline synthesized by an oxidative polymerization method and commercially available sodium ethanedisulfonate were ion-exchanged with a cation exchange resin as a raw material, and ethanedisulfonic acid was used as a raw material. Under the conditions of × 10 -5 Torr, polyaniline is added to 350
At the same time, ethanedisulfonic acid was simultaneously vapor-deposited at 220 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate. The conductivity of the obtained thin film was measured by the 4-terminal method, and was 1 × 1.
A conductivity of 0 −3 S · cm −1 was obtained.

【0016】(実施例4)酸化重合法により合成したポ
リアニリンと市販のブタンジスルホン酸ナトリウムを陽
イオン交換樹脂でイオン交換したブタンジスルホン酸を
原料として、真空蒸着装置内で抵抗加熱法により真空度
1×10-5Torrの条件下で、ポリアニリンを350
℃に、ブタンジスルホン酸を270℃に同時加熱蒸着
し、ガラス基板上に厚み30nm程度の薄膜を得た。得
られた薄膜の導電率を4端子法で測定した結果、1×1
-3S・cm-1の導電率が得られた。
(Example 4) Polyaniline synthesized by an oxidative polymerization method and commercially available sodium butanedisulfonate ion-exchanged with a cation exchange resin were used as a raw material, butanedisulfonic acid was used as a raw material, and a vacuum degree of 1 was obtained by a resistance heating method in a vacuum deposition apparatus. Under the conditions of × 10 -5 Torr, polyaniline is added to 350
Butanedisulfonic acid was simultaneously heated and vapor-deposited at 270 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate. The conductivity of the obtained thin film was measured by the 4-terminal method, and was 1 × 1.
A conductivity of 0 −3 S · cm −1 was obtained.

【0017】(実施例5)酸化重合法により合成したポ
リピロールと市販のメタンスルホン酸を原料として、真
空蒸着装置内で抵抗加熱法により真空度1×10-5To
rrの条件下で、ポリピロールを450℃に、メタンス
ルホン酸を110℃に同時加熱蒸着し、ガラス基板上に
厚み40nm程度の薄膜を得た。得られた薄膜の導電率
を4端子法で測定した結果、1×10-3S・cm-1の導
電率が得られた。
Example 5 Using polypyrrole synthesized by the oxidative polymerization method and commercially available methanesulfonic acid as raw materials, the degree of vacuum was 1 × 10 −5 To by a resistance heating method in a vacuum deposition apparatus.
Under the condition of rr, polypyrrole was simultaneously heated and vapor-deposited at 450 ° C. and methanesulfonic acid at 110 ° C. to obtain a thin film having a thickness of about 40 nm on a glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 1 × 10 −3 S · cm −1 was obtained.

【0018】(実施例6)酸化重合法により合成したポ
リピロールと市販のエタンスルホン酸を原料として、真
空蒸着装置内で抵抗加熱法により真空度1×10-5To
rrの条件下で、ポリピロールを450℃に、エタンス
ルホン酸を170℃に同時加熱蒸着し、ガラス基板上に
厚み30nm程度の薄膜を得た。得られた薄膜の導電率
を4端子法で測定した結果、8×10-4S・cm-1の導
電率が得られた。
Example 6 Using polypyrrole synthesized by the oxidative polymerization method and commercially available ethanesulfonic acid as raw materials, the degree of vacuum was 1 × 10 −5 To by a resistance heating method in a vacuum vapor deposition apparatus.
Under the conditions of rr, polypyrrole was simultaneously heated and vapor-deposited at 450 ° C. and ethanesulfonic acid at 170 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 8 × 10 −4 S · cm −1 was obtained.

【0019】(実施例7)酸化重合法により合成したポ
リチオフェンと市販のエタンスルホン酸を原料として、
真空蒸着装置内で抵抗加熱法により真空度1×10-5
orrの条件下で、ポリチオフェンを550℃に、エタ
ンスルホン酸を170℃に同時加熱蒸着し、ガラス基板
上に厚み30nm程度の薄膜を得た。得られた薄膜の導
電率を4端子法で測定した結果、8×10-4S・cm-1
の導電率が得られた。
Example 7 Using polythiophene synthesized by an oxidative polymerization method and commercially available ethanesulfonic acid as raw materials,
Vacuum degree of 1 × 10 -5 T by resistance heating method in a vacuum evaporation system
Under the conditions of orr, polythiophene and ethanesulfonic acid were simultaneously heated and vapor-deposited at 550 ° C. and 170 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate. The conductivity of the obtained thin film was measured by the 4-terminal method, and was found to be 8 × 10 −4 S · cm −1.
A conductivity of 10 was obtained.

【0020】(実施例8)酸化重合法により合成したポ
リチオフェンと市販のエタンジスルホン酸ナトリウムを
陽イオン交換樹脂でイオン交換したエタンジスルホン酸
を原料として、真空蒸着装置内で抵抗加熱法により真空
度1×10-5Torrの条件下で、ポリチオフェンを5
50℃に、エタンジスルホン酸を220℃に同時加熱蒸
着し、ガラス基板上に厚み30nm程度の薄膜を得た。
得られた薄膜の導電率を4端子法で測定した結果、5×
10-4S・cm-1の導電率が得られた。
(Example 8) Polythiophene synthesized by an oxidative polymerization method and commercially available sodium ethanedisulfonate were ion-exchanged with a cation exchange resin as a raw material, and ethanedisulfonic acid was used as a raw material. Under conditions of × 10 -5 Torr, polythiophene was mixed with 5
Simultaneous vapor deposition of ethanedisulfonic acid at 220 ° C. was performed at 50 ° C. to obtain a thin film having a thickness of about 30 nm on a glass substrate.
The conductivity of the obtained thin film was measured by the 4-terminal method, and was 5 ×.
A conductivity of 10 −4 S · cm −1 was obtained.

【0021】(実施例9)酸化重合法により合成したポ
リパラフェニレンと市販のエタンジスルホン酸ナトリウ
ムを陽イオン交換樹脂でイオン交換したエタンジスルホ
ン酸を原料として、真空蒸着装置内で抵抗加熱法により
真空度1×10-5Torrの条件下で、ポリパラフェニ
レンを600℃に、エタンジスルホン酸を220℃に同
時加熱蒸着し、ガラス基板上に厚み30nm程度の薄膜
を得た。得られた薄膜の導電率を4端子法で測定した結
果、7×10-4S・cm-1の導電率が得られた。
Example 9 Polyparaphenylene synthesized by an oxidative polymerization method and commercially available sodium ethanedisulfonate were ion-exchanged with a cation exchange resin, and ethanedisulfonic acid was used as a raw material to produce a vacuum by a resistance heating method in a vacuum deposition apparatus. Polyparaphenylene was simultaneously heated and vapor-deposited at 600 ° C. and ethanedisulfonic acid at 220 ° C. under the condition of 1 × 10 −5 Torr to obtain a thin film having a thickness of about 30 nm on a glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 7 × 10 −4 S · cm −1 was obtained.

【0022】(実施例10)酸化重合法により合成した
ポリパラフェニレンと市販のブタンジスルホン酸ナトリ
ウムを陽イオン交換樹脂でイオン交換したブタンジスル
ホン酸を原料として、真空蒸着装置内で抵抗加熱法によ
り真空度1×10-5Torrの条件下で、ポリパラフェ
ニレンを600℃に、ブタンジスルホン酸を270℃に
同時加熱蒸着し、ガラス基板上に厚み30nm程度の薄
膜を得た。得られた薄膜の導電率を4端子法で測定した
結果、5×10-4S・cm-1の導電率が得られた。
Example 10 Butadisulfonic acid obtained by ion-exchange of polyparaphenylene synthesized by an oxidative polymerization method and commercially available sodium butanedisulfonate with a cation exchange resin was used as a raw material, and a vacuum was applied by a resistance heating method in a vacuum deposition apparatus. Polyparaphenylene was co-evaporated at 600 ° C. and butanedisulfonic acid at 270 ° C. at a temperature of 1 × 10 −5 Torr to obtain a thin film having a thickness of about 30 nm on a glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, a conductivity of 5 × 10 −4 S · cm −1 was obtained.

【0023】[0023]

【発明の効果】本発明によって導電性ポリマー薄膜中に
イオン交換体を均一に分散複合化することが可能とな
る。また、導電性ポリマーとイオン交換体を同時に蒸着
することにより、一工程で高エネルギ密度を有する導電
性ポリマー/イオン交換体複合薄膜の電極を形成するこ
とが可能となる。
According to the present invention, it is possible to uniformly disperse and complex an ion exchanger in a conductive polymer thin film. Further, by simultaneously depositing the conductive polymer and the ion exchanger, it is possible to form the electrode of the conductive polymer / ion exchanger composite thin film having a high energy density in one step.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性ポリマーを真空中で加熱蒸着する
と同時にイオン交換体を加熱蒸着することにより、導電
性ポリマー薄膜中にイオン交換体を均一に分散含有させ
ることを特徴とする導電性ポリマー/イオン交換体複合
薄膜の製造方法。
1. A conductive polymer characterized by uniformly depositing an ion exchanger in a conductive polymer thin film by heating and vapor depositing a conductive polymer at the same time as heating and vapor depositing an ion exchanger. Ion exchanger composite thin film manufacturing method.
JP17543793A 1993-07-15 1993-07-15 Production of conductive polymer/ion exchanger composite thin film Withdrawn JPH0734225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17543793A JPH0734225A (en) 1993-07-15 1993-07-15 Production of conductive polymer/ion exchanger composite thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17543793A JPH0734225A (en) 1993-07-15 1993-07-15 Production of conductive polymer/ion exchanger composite thin film

Publications (1)

Publication Number Publication Date
JPH0734225A true JPH0734225A (en) 1995-02-03

Family

ID=15996082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17543793A Withdrawn JPH0734225A (en) 1993-07-15 1993-07-15 Production of conductive polymer/ion exchanger composite thin film

Country Status (1)

Country Link
JP (1) JPH0734225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803617A (en) * 1996-02-23 1998-09-08 Nsk Ltd. Rolling bearing unit with seal device
US9534635B2 (en) 2005-10-04 2017-01-03 Ntn Corporation Wheel bearing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803617A (en) * 1996-02-23 1998-09-08 Nsk Ltd. Rolling bearing unit with seal device
US9534635B2 (en) 2005-10-04 2017-01-03 Ntn Corporation Wheel bearing apparatus
US9797453B2 (en) 2005-10-04 2017-10-24 Ntn Corporation Wheel bearing apparatus

Similar Documents

Publication Publication Date Title
US4749514A (en) Graphite intercalation compound film and method of preparing the same
US3540926A (en) Nitride insulating films deposited by reactive evaporation
CN107964653A (en) The heating control apparatus and method for heating and controlling of a kind of chemical vapor deposition
US4587037A (en) Pyrrole polymers as electrical heating elements
Uvdal et al. Vapor deposited polyaniline
JPH046791B2 (en)
US4975340A (en) Process for making a thin molybdenum sulfide film and article
RU2142021C1 (en) Evaporating boat of flash evaporation plant
JPH0734225A (en) Production of conductive polymer/ion exchanger composite thin film
US4649024A (en) Method for forming evaporated pnictide and alkali metal polypnictide films
RU2136778C1 (en) Device for performance of flash evaporation
US4588609A (en) Process for the photochemical vapor deposition of aromatic polymers
JPH05112658A (en) Production of composite thin film of polymer
DE3541721C2 (en)
JP3015221B2 (en) Organic thin film manufacturing method
JPH06507672A (en) Method for manufacturing thin, micropore-free conductive polymer membrane
Kessler On Some Thermally Stimulated Depolarization Maxima in NH 4Cl Due to Spontaneous Polarization
HU194288B (en) Process for preparing macromolecular material which is conductive on its surface
JPH03173832A (en) Preparation of charge transfer complex
JPH0845338A (en) Manufacture of thin film of high polymer solid electrolyte
JPS63125513A (en) Electrically active polymer and its production
RU2017547C1 (en) Method for manufacture of metal clusters-containing film materials
JPH03110718A (en) Manufacture of conductive macromolecular film
JPH04353531A (en) Material for coating plastics and coated plastic film
JPH09279332A (en) Refining method of organic compound monomer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003