JPH05112658A - Production of composite thin film of polymer - Google Patents

Production of composite thin film of polymer

Info

Publication number
JPH05112658A
JPH05112658A JP27266591A JP27266591A JPH05112658A JP H05112658 A JPH05112658 A JP H05112658A JP 27266591 A JP27266591 A JP 27266591A JP 27266591 A JP27266591 A JP 27266591A JP H05112658 A JPH05112658 A JP H05112658A
Authority
JP
Japan
Prior art keywords
thin film
metal
polymer
substance
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27266591A
Other languages
Japanese (ja)
Inventor
Katsuo Orihara
勝男 折原
Masahito Shimomura
雅人 下村
Shigeru Tsurumaki
茂 弦巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27266591A priority Critical patent/JPH05112658A/en
Publication of JPH05112658A publication Critical patent/JPH05112658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a composite thin film of a polymer containing ultra-fine particles of a metal or an inorganic substance in a state uniformly dispersed in the thin film and useful for electrical and electronic material, etc., by depositing a polymeric substance on a substrate under heating in vacuum and, at the same time, heating and depositing a metal or an inorganic substance on the substrate. CONSTITUTION:A polymeric substance (e.g. polyethylene) and a metal or an inorganic substance (e.g. aluminum powder) are used as raw materials and simultaneously heated and evaporated in a vacuum deposition apparatus by resistance heating at a vacuum degree of 1X10<-5>Torr at 320 deg.C for the polymeric substance and 1170 deg.C for the metal or the inorganic substance to deposit a thin film having a thickness of 30nm on a substrate such as glass. The objective composite thin film of polymer obtained by the above method contains the metal or the inorganic substance in the polymer thin film in the form of ultra-fine particles or in an atomic state and has an electrical conductivity comparable to metal in contrast to the starting polymeric substance free from electrical condctivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子薄膜中に金属また
は無機物質を超微粒子状態又は原子状態で均一に分散含
有する高分子複合薄膜の製造方法に関し、特に導電性有
機高分子薄膜のドーピング方法として有効であり、また
得られる高分子複合薄膜は電気・電子材料,磁性材料及
び光学材料として電子素子、半導体素子,電磁波シール
ド材,反射防止膜,光学フィルター素子,偏光光学素子
等に利用可能であり、薄膜型高エネルギー密度の高分子
バッテリーや太陽電池等への応用も可能であるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer composite thin film in which a metal or an inorganic substance is uniformly dispersed and contained in a polymer thin film in an ultrafine particle state or an atomic state. It is effective as a method, and the obtained polymer composite thin film can be used as electric / electronic materials, magnetic materials and optical materials for electronic devices, semiconductor devices, electromagnetic wave shielding materials, antireflection films, optical filter devices, polarizing optical devices, etc. Therefore, it can be applied to a thin film type high energy density polymer battery, a solar cell, and the like.

【0002】[0002]

【従来の技術】従来、気相法により有機低分子物質と金
属または無機物質を複合薄膜化する方法{折原勝男,星
秀貴,Polymer Preprints, Japan Vol. 38, No.8 (19
89) }は知られていたが、高分子を気相法で金属または
無機物質と複合薄膜化する方法は知られていない。
2. Description of the Related Art Conventionally, a method of forming a composite thin film of an organic low molecular weight substance and a metal or an inorganic substance by a vapor phase method {Katsuo Orihara, Hideki Hoshi, Polymer Preprints, Japan Vol. 38, No.8 (19
89)} has been known, but a method for forming a composite thin film with a metal or an inorganic substance by a gas phase method has not been known.

【0003】気相法により、真空中で高分子薄膜を製造
する方法としてはスパッタリング法{ R.Harrup et a
l., Thin Solid Film, 3, 109-, (1969), T.Robertson
et al., Thion Solid Film, 27, 19-, (1975) }やプラ
ズマ重合法{ M.Shen Ed., Plasma Chemistry of Polym
ers, Marcel Dekker Inc., (1976), A.T.Bell et al.,A
CS Symposium Seriex 108, ACS Washington, (1979)}
が知られているが、薄膜形成過程で原料分子を分解,劣
化させるため、目的とする化学構造を有する高分子薄膜
が得られないという欠点を有している。
As a method for producing a polymer thin film in a vacuum by a vapor phase method, a sputtering method {R. Harrup et a
l., Thin Solid Film, 3, 109-, (1969), T. Robertson
et al., Thion Solid Film, 27, 19-, (1975)} and plasma polymerization method {M.Shen Ed., Plasma Chemistry of Polym
ers, Marcel Dekker Inc., (1976), ATBell et al., A
CS Symposium Seriex 108, ACS Washington, (1979)}
However, it has a drawback that a polymer thin film having a desired chemical structure cannot be obtained because the raw material molecules are decomposed and deteriorated in the thin film formation process.

【0004】また、化学的(湿式)方法として、高分子
物質に配位した金属イオンを還元して、金属クラスター
を形成させる方法{ N.Toshima, J.Macromol.Sci., A2
7, 9-11, p.1225-1238, (1990) }が提案されている
が、高分子薄膜中に均一に分散させることは困難であ
る。
Further, as a chemical (wet) method, a method of reducing a metal ion coordinated with a polymer to form a metal cluster {N.Toshima, J.Macromol.Sci., A2
7, 9-11, p.1225-1238, (1990)} have been proposed, but it is difficult to disperse them uniformly in a polymer thin film.

【0005】最近、高分子物質を真空中で加熱蒸着さ
せ、目的とする化学構造を有する高分子薄膜の製造方法
{ T.Yamamoto et al., Synthetic Metals, 38, 399-40
2, (1990) }が提案されているが、この高分子薄膜のみ
では高い導電率を得ることはできず、薄膜形成後ドーピ
ングを行う必要がある。
Recently, a method for producing a polymer thin film having a desired chemical structure by heat-depositing a polymer substance in vacuum {T. Yamamoto et al., Synthetic Metals, 38, 399-40
2, (1990)} have been proposed, but high conductivity cannot be obtained only with this polymer thin film, and it is necessary to perform doping after forming the thin film.

【0006】また、磁気的及び光学的機能を発現させる
ためにも、高分子薄膜中に金属または無機物質を均一に
分散させることが必要である。
Further, in order to develop the magnetic and optical functions, it is necessary to uniformly disperse the metal or the inorganic substance in the polymer thin film.

【0007】[0007]

【発明が解決しようとする課題】上記のように真空中で
蒸着した高分子薄膜に導電機能を与えるためには、薄膜
形成後湿式法でドーピングを行う必要があり、高分子薄
膜中をドーパントが拡散するのに時間がかかるため、完
全にドーピングを行うにはかなりの時間を要するという
問題点があった。
In order to impart a conductive function to the polymer thin film deposited in vacuum as described above, it is necessary to perform doping by a wet method after forming the thin film. Since it takes a long time to diffuse, there is a problem that it takes a considerable time to perform complete doping.

【0008】また、湿式法(キャスティング法)で、金
属または無機物質微粒子を均一に分散させて薄膜化し、
高分子複合薄膜を得ることは困難であり、微粒子の凝集
や不均一化を生じるという問題点があった。実質的に5
nm以下の微粒子を均一に分散させた高分子複合薄膜を
得ることは湿式法では不可能であった。
Further, by a wet method (casting method), fine particles of metal or inorganic substance are uniformly dispersed to form a thin film,
It is difficult to obtain a polymer composite thin film, and there is a problem that agglomeration and non-uniformity of fine particles occur. Practically 5
It was impossible by the wet method to obtain a polymer composite thin film in which fine particles of nm or less are uniformly dispersed.

【0009】[0009]

【課題を解決するための手段】本発明は高分子物質を真
空中で基板に加熱蒸着すると同時に、金属または無機物
質を加熱蒸着させることを特徴とする高分子薄膜中に金
属または無機物質の超微粒子を均一に分散含有する高分
子複合薄膜の製造方法である。
The present invention is characterized in that a polymer material is heated and vapor-deposited on a substrate in vacuum, and at the same time, a metal or inorganic material is vapor-deposited by heating. This is a method for producing a polymer composite thin film containing fine particles uniformly dispersed therein.

【0010】本発明では高分子物質を一般的には1×1
-4〜1×10-6Torr程度の真空中で70〜400
℃程度に加熱することによって基板に蒸着し、薄膜を形
成するものであるが、さらに超高真空領域で行ってもよ
く、その場合には加熱温度を上記温度より低くすること
ができる。
In the present invention, the polymer substance is generally 1 × 1.
70 to 400 in a vacuum of about 0 −4 to 1 × 10 −6 Torr
Although a thin film is formed by vapor deposition on a substrate by heating to about ° C, it may be performed in an ultrahigh vacuum region, and in that case, the heating temperature can be lower than the above temperature.

【0011】高分子物質の加熱温度は使用する高分子物
質によって、また蒸着時の真空度によって異なるが、高
分子物質の不活性ガス雰囲気中、1気圧での熱分解温度
より10〜50℃程度低い温度が適当である。
The heating temperature of the polymer substance varies depending on the polymer substance used and the degree of vacuum at the time of vapor deposition, but is about 10 to 50 ° C. from the thermal decomposition temperature of the polymer substance at 1 atm in an inert gas atmosphere. Lower temperatures are suitable.

【0012】例えば、ポリエチレンの熱分解温度は35
0〜400℃付近であるが、1×10-5Torr程度の
真空度では300〜350℃付近で加熱するのが適当で
あり、ポリスチレンの熱分解温度は250〜300℃付
近であるが、上記程度の真空度では200〜250℃付
近で加熱することが好ましい。また、ポリプロピレンの
熱分解温度は300〜350℃付近であるが、上記程度
の真空度では250〜300℃付近で加熱することが、
ポリメタクリル酸メチルの熱分解温度は230〜300
℃付近であるが、上記程度の真空度では200〜250
℃付近で加熱することが、ポリカーボネートの熱分解温
度は400〜450℃付近であるが、上記程度の真空度
では350〜400℃付近で加熱することが、ポリアニ
リンの熱分解温度は350〜420℃付近であるが、上
記程度の真空度では330〜370℃付近で加熱するこ
とが、ポリエチレンテレフタレートの熱分解温度は33
6〜356℃付近であるが、上記程度の真空度では28
0〜320℃付近で加熱することが好ましい。上記以外
の高分子物質でも、1気圧における熱分解温度以下で加
熱することにより、真空中で任意の基板上に高分子薄膜
を形成することが可能である。
For example, the thermal decomposition temperature of polyethylene is 35
Although it is about 0 to 400 ° C., it is suitable to heat at about 300 to 350 ° C. at a vacuum degree of about 1 × 10 −5 Torr, and the thermal decomposition temperature of polystyrene is about 250 to 300 ° C. It is preferable to heat at around 200 to 250 ° C. at a degree of vacuum. Further, the thermal decomposition temperature of polypropylene is about 300 to 350 ° C., but heating at about 250 to 300 ° C. at the vacuum degree of the above degree,
The thermal decomposition temperature of poly (methyl methacrylate) is 230-300.
Approximately ℃, but 200-250 at the above vacuum degree
Polycarbonate has a thermal decomposition temperature of about 400 to 450 ° C., but heating at about 350 to 400 ° C. has a polyaniline thermal decomposition temperature of 350 to 420 ° C. Although it is in the vicinity, heating at about 330 to 370 [deg.] C. at a vacuum degree of the above degree results in a thermal decomposition temperature of polyethylene terephthalate of 33.
Although it is around 6 to 356 ° C, it is 28 at the above-mentioned degree of vacuum.
It is preferable to heat at about 0 to 320 ° C. It is possible to form a polymer thin film on an arbitrary substrate in vacuum by heating a polymer substance other than the above at a thermal decomposition temperature of 1 atm or less.

【0013】ただし、あまり熱分解温度に近い音まで加
熱を行うと、原料高分子物質の化学構造とは異なった構
造の薄膜が形成されるか、又は薄膜形成不可能となるこ
とがあるので、できるだけ熱分解温度より低い温度で加
熱蒸着を行うことが好ましい。
However, if heating is performed to a sound that is too close to the thermal decomposition temperature, a thin film having a structure different from the chemical structure of the starting polymer may be formed, or it may be impossible to form a thin film. It is preferable to carry out heating vapor deposition at a temperature lower than the thermal decomposition temperature as much as possible.

【0014】金属または無機物質の加熱温度は蒸発原料
となる金属または無機物質の蒸気圧が薄膜形成時の真空
度と同程度の蒸気圧を示す温度であり、通常500〜1
500℃の範囲である。
The heating temperature of the metal or the inorganic substance is a temperature at which the vapor pressure of the metal or the inorganic substance as the evaporation raw material shows a vapor pressure similar to the degree of vacuum when the thin film is formed, and usually 500 to 1
It is in the range of 500 ° C.

【0015】例えば、アルミニウム(Al)の場合、1
×10-5Torr程度の真空度で1150℃から120
0℃に、銀(Ag)の場合、上記真空度で1000〜1
050℃に、鉄(Fe)の場合、上記真空度で1350
〜1400℃に加熱することが好ましい。
For example, in the case of aluminum (Al), 1
1150 ° C to 120 at a vacuum degree of about 10 -5 Torr
In the case of silver (Ag) at 0 ° C., the degree of vacuum is 1000 to 1
At 050 ° C, in the case of iron (Fe), the above vacuum degree is 1350
It is preferable to heat to ˜1400 ° C.

【0016】また、塩化リチウム(LiCl)の場合、
1×10-5Torrの真空度で650℃〜700℃に、
フッ化リチウム(LiF)の場合、上記真空度で850
〜900℃に、リン化ガリウム(GaP)の場合、上記
真空度で1050〜1100℃に加熱することが好まし
い。
In the case of lithium chloride (LiCl),
At a vacuum degree of 1 × 10 −5 Torr to 650 ° C. to 700 ° C.,
In the case of lithium fluoride (LiF), the vacuum degree is 850
To 900 ° C., and in the case of gallium phosphide (GaP), it is preferable to heat to 1050 to 1100 ° C. at the above vacuum degree.

【0017】硫化カドミウム(CdS)の場合、1×1
-5Torrの真空度で740〜780℃に加熱すると
昇華して蒸着が可能であり、セレン化カドミウム(Cd
Se)の場合、上記真空度で720〜760℃に加熱す
ると昇華して蒸着し、酸化第一銅(Cu2 O)の場合、
上記真空度で800〜850℃に加熱すると昇華して蒸
着し、酸化スズ(SnO2 )の場合、上記真空度で80
0〜850℃に加熱すると昇華して蒸着する。
In the case of cadmium sulfide (CdS), 1 × 1
Cadmium selenide (Cd) can be vaporized by sublimation when heated to 740 to 780 ° C at a vacuum degree of 0 -5 Torr.
In the case of Se), when it is heated to 720 to 760 ° C. in the above vacuum degree, it is sublimated and vapor-deposited. In the case of cuprous oxide (Cu 2 O),
When it is heated to 800 to 850 ° C. under the above vacuum degree, it is sublimated and vapor-deposited. In the case of tin oxide (SnO 2 ), the above vacuum degree is 80 degrees.
When heated to 0 to 850 ° C., it sublimates and deposits.

【0018】上記以外の金属または無機物質でも、蒸発
原料となる金属または無機物質の蒸気圧が薄膜形成時の
真空度と同程度の蒸気圧を示す温度まで加熱すれば蒸着
可能である。
Metals or inorganic substances other than those mentioned above can be vapor-deposited by heating them to a temperature at which the vapor pressure of the metal or inorganic substance as the evaporation raw material has a vapor pressure similar to the degree of vacuum during thin film formation.

【0019】上記高分子物質と金属または無機物質を同
時に加熱蒸着するとき、それぞれの加熱温度を調節する
ことにより蒸着速度を制御し、高分子薄膜中での生成微
粒子の大きさ及び薄膜中の微粒子含有率を制御する。例
えば、高分子物質の蒸着速度を遅くして、金属または無
機物質の蒸着速度を速くした場合、生成微粒子のサイズ
は比較的に大きくなり、微粒子含有率は高くなる。逆に
高分子物質の蒸着速度を速くして、金属または無機物質
の蒸着速度を遅くした場合、微粒子のサイズは比較的に
小さくなり、微粒子含有率は低くなる。微粒子サイズに
関するこれらの傾向は金属や無機物質を単独で蒸着した
場合とは必ずしも一致しない。
When the above-mentioned polymer substance and metal or inorganic substance are simultaneously vapor-deposited, the vapor deposition rate is controlled by adjusting the respective heating temperatures, and the size of fine particles produced in the polymer thin film and the fine particles in the thin film are controlled. Control the content rate. For example, when the vapor deposition rate of the polymer substance is slowed and the vapor deposition rate of the metal or the inorganic substance is fast, the size of the produced fine particles becomes relatively large and the fine particle content rate becomes high. On the contrary, when the deposition rate of the polymer substance is increased and the deposition rate of the metal or the inorganic substance is decreased, the size of the fine particles becomes relatively small and the content rate of the fine particles becomes low. These tendencies with respect to the particle size do not always coincide with the case where a metal or an inorganic substance is vapor-deposited alone.

【0020】蒸着源の加熱方法については、抵抗線加
熱,電子ビーム加熱,レーザー加熱などが使用可能であ
るが、精密な温度制御が必要であることから抵抗線加熱
が好ましい。この場合、高分子物質の蒸着源と金属また
は無機物質の蒸着源との温度差が大きいことから、真空
蒸着装置内での輻射熱による影響を避けるため、装置内
の蒸発源を仕切り板等で分離し、両者の加熱温度の影響
をできるだけ少なくすることが好ましい。
As a method of heating the vapor deposition source, resistance wire heating, electron beam heating, laser heating and the like can be used, but resistance wire heating is preferable because precise temperature control is required. In this case, since the temperature difference between the vapor deposition source of the polymer substance and the vapor deposition source of the metal or inorganic substance is large, the evaporation source in the device is separated by a partition plate, etc. to avoid the influence of radiant heat in the vacuum vapor deposition device. However, it is preferable to minimize the influence of the heating temperature of both.

【0021】蒸発源容器は高分子物質の場合、パイレッ
クス,ガラス,石英ガラス,セラミックス容器等400
℃程度まで加熱可能な容器ならば使用可能である。金属
または無機物の加熱容器としては、通常の真空蒸着で使
用されるタングステンバスケット,タングステンボー
ト、白金ボート等が使用可能であり、蒸発原料と反応し
ない材質ならば特に制限はない。
If the evaporation source container is a polymer material, Pyrex, glass, quartz glass, ceramics container, etc. 400
Any container that can be heated up to about ℃ can be used. As a heating container for a metal or an inorganic material, a tungsten basket, a tungsten boat, a platinum boat, or the like used in ordinary vacuum deposition can be used, and there is no particular limitation as long as it is a material that does not react with the evaporation raw material.

【0022】基板の素材については特に制限はなく、ガ
ラス,無機結晶,セラミック,金属,高分子等を使用す
ることができる。
The material of the substrate is not particularly limited, and glass, inorganic crystals, ceramics, metals, polymers and the like can be used.

【0023】また、蒸着時の基板温度が高分子物質の加
熱温度より高いと、蒸着した薄膜が再蒸発する恐れがあ
ることから、基板温度は高分子の加熱温度より50℃か
ら100℃程度低い温度以下とすることが好ましい。さ
らに、金属あるいは無機物質の微粒子のサイズを再現性
よく安定させるためにはマイグレーション(基板上での
蒸着原子の移動)を抑制する意味で、基板温度を室温程
度以下に保つことが好ましい。
If the substrate temperature during vapor deposition is higher than the heating temperature of the polymer substance, the vapor-deposited thin film may re-evaporate. Therefore, the substrate temperature is lower than the heating temperature of the polymer by about 50 ° C. to 100 ° C. It is preferable that the temperature is not higher than the temperature. Further, in order to stabilize the size of fine particles of a metal or an inorganic substance with good reproducibility, it is preferable to keep the substrate temperature at about room temperature or lower in order to suppress migration (movement of vapor deposition atoms on the substrate).

【0024】[0024]

【作用】本発明では、高分子薄膜中に金属または無機物
質の超微粒子を均一に分散、複合化できることから、原
料高分子物質にはない新しい性質を高分子薄膜に賦与す
ることが可能となった。例えば、ポリエチレンやポリプ
ロピレンのような一般的に絶縁材料である高分子物質と
アルミニウムや銀のような金属を同時加熱蒸着し、高分
子薄膜中に金属の超微粒子を分散複合化することによ
り、バルクの金属に近い導電性を賦与することが可能と
なった。
In the present invention, since ultrafine particles of a metal or an inorganic substance can be uniformly dispersed and composited in a polymer thin film, it is possible to impart a new property to the polymer thin film that the raw polymer does not have. It was For example, a polymer substance that is generally an insulating material such as polyethylene or polypropylene and a metal such as aluminum or silver are simultaneously heated and vapor-deposited, and ultrafine particles of a metal are dispersed and complexed in a polymer thin film to form a bulk. It has become possible to impart conductivity close to that of the metal.

【0025】上記高分子複合薄膜中の金属超微粒子は数
十nmから数nm以下の大きさであり、高分子物質の蒸
着速度を遅くすると微粒子含有率が高くなり、導電率も
3×104 S・cm-1程度まで達した。導電率は半導体
領域から金属領域まで調節可能であった。
The ultrafine metal particles in the polymer composite thin film have a size of several tens nm to several nm or less, and when the deposition rate of the polymer substance is slowed down, the fine particle content increases and the conductivity also becomes 3 × 10 4. It reached about S · cm −1 . The conductivity was adjustable from the semiconductor region to the metal region.

【0026】また、これまで導電性高分子を加熱蒸着す
るだけでは導電率の低い高分子薄膜しか得られていなか
ったが、導電性高分子と無機材料であるドーパントを同
時に蒸着することにより、一工程でほぼ金属並みの導電
率を有する高分子薄膜を形成することが可能となった。
例えば、ポリエチレンとアルミニウムを同時加熱蒸着す
ることにより、導電率が3×104 S・cm-1程度の薄
膜が形成できた。また、導電性高分子であるポリアニリ
ンと塩化リチウムを同時加熱蒸着することにより、導電
率が2×103 S・cm-1程度の導電性高分子複合薄膜
が形成できた。
Further, until now, only a polymer thin film having a low conductivity was obtained only by heating and depositing a conductive polymer, but by simultaneously depositing a conductive polymer and a dopant which is an inorganic material, In the process, it became possible to form a polymer thin film having a conductivity almost equal to that of a metal.
For example, by simultaneously heating and evaporating polyethylene and aluminum, a thin film having a conductivity of about 3 × 10 4 S · cm −1 could be formed. Further, by simultaneously heating and vapor depositing polyaniline which is a conductive polymer and lithium chloride, a conductive polymer composite thin film having a conductivity of about 2 × 10 3 S · cm −1 could be formed.

【0027】上記以外にも無機磁性材料の超微粒子を分
散複合化することにより磁性高分子複合薄膜を形成する
ことも可能である。
In addition to the above, it is also possible to form a magnetic polymer composite thin film by dispersing and compositing ultrafine particles of an inorganic magnetic material.

【0028】[0028]

【実施例】【Example】

(実施例1)市販のポリエチレンペレットとアルミニウ
ム粉末を原料として、真空蒸着装置内で抵抗加熱法によ
り真空度1×10-5Torrの条件下で、ポリエチレン
を320℃に、アルミニウムを1170℃に同時加熱蒸
着し、ガラス基板上に厚み30nmの薄膜を得た。得ら
れた薄膜の導電率を4端子法で測定した結果、3×10
4 S・cm-1となり金属アルミニウムの約1/10の導
電率が得られた。また、得られた薄膜を透過型電子顕微
鏡で観察した結果、微粒子の大きさは約1.5nmから
5nm程度であった。
(Example 1) Using commercially available polyethylene pellets and aluminum powder as raw materials, polyethylene was heated to 320 ° C and aluminum was heated to 1170 ° C at the same time under a condition of a vacuum degree of 1 x 10 -5 Torr in a vacuum vapor deposition apparatus. Heat evaporation was performed to obtain a thin film having a thickness of 30 nm on the glass substrate. As a result of measuring the conductivity of the obtained thin film by the 4-terminal method, 3 × 10
4 S · cm −1 was obtained, and a conductivity about 1/10 that of metallic aluminum was obtained. Moreover, as a result of observing the obtained thin film with a transmission electron microscope, the size of the fine particles was about 1.5 nm to 5 nm.

【0029】(実施例2)酸化重合法により合成したポ
リアニリンと市販の塩化リチウム粉末を原料として、真
空蒸着装置内で抵抗加熱法により真空度1×10-5To
rrの条件下で、ポリアニリンを350℃に、塩化リチ
ウムを670℃に同時加熱蒸着し、ガラス基板上に厚み
40nm程度の薄膜を得た。得られた薄膜の導電率を4
端子法で測定した結果、2×103 S・cm-1となり湿
式法でドーピングしたポリアニリン薄膜の約100倍の
導電率が得られた。
Example 2 Polyaniline synthesized by an oxidative polymerization method and a commercially available lithium chloride powder were used as raw materials, and a vacuum degree of 1 × 10 −5 To was obtained by a resistance heating method in a vacuum vapor deposition apparatus.
Under the condition of rr, polyaniline was simultaneously heated and vapor-deposited at 350 ° C. and lithium chloride at 670 ° C. to obtain a thin film having a thickness of about 40 nm on a glass substrate. The conductivity of the obtained thin film is 4
As a result of measurement by the terminal method, the conductivity was 2 × 10 3 S · cm −1 , which was about 100 times the conductivity of the polyaniline thin film doped by the wet method.

【0030】(実施例3)市販のポリエチレンテレフタ
レートのペレットと粒状金属鉄を原料として、真空蒸着
装置内で抵抗加熱法により真空度1×10-5Torrの
条件下で、ポリエチレンテレフタレートを300℃に、
金属鉄を1350℃に同時加熱蒸着してガラス基板上に
厚み30nmの薄膜を得た。得られた薄膜の飽和磁化は
1.1Wb/m2 (875G,20℃)であり、固体の
金属鉄の飽和磁化2.16Wb/m 2 (1718G,2
0℃)の半分程度であった。保磁力Hcは1700Oe
であった。
Example 3 Commercially available polyethylene terephthalate
Vacuum deposition using rate pellets and granular metallic iron as raw materials
Vacuum degree of 1 × 10 by resistance heating method in the equipment-FiveTorr
Under conditions, polyethylene terephthalate to 300 ℃,
Simultaneous vapor deposition of metallic iron at 1350 ° C on a glass substrate
A thin film having a thickness of 30 nm was obtained. The saturation magnetization of the obtained thin film is
1.1 Wb / m2(875 G, 20 ° C.)
Saturation magnetization of metallic iron 2.16 Wb / m 2(1718G, 2
It was about half of that at 0 ° C. Coercive force Hc is 1700 Oe
Met.

【0031】(実施例4)市販のポリメタクリル酸メチ
ルのペレットと硫化カドミウム粉末を原料として、真空
蒸着装置内で抵抗加熱法により真空度1×10-5Tor
rの条件下で、ポリメタクリル酸メチルを220℃に、
硫化カドミウムを750℃に同時加熱蒸着してガラス基
板上に厚み20nmの薄膜を得た。得られた薄膜を透過
型電子顕微鏡で観察した結果、微粒子の大きさは約1.
5nmから10nm程度であった。
Example 4 Commercially available pellets of polymethylmethacrylate and cadmium sulfide powder were used as raw materials, and the degree of vacuum was 1 × 10 -5 Tor by a resistance heating method in a vacuum deposition apparatus.
Under the condition of r, polymethylmethacrylate was heated to 220 ° C.,
Cadmium sulfide was vapor-deposited at the same time at 750 ° C. to obtain a thin film having a thickness of 20 nm on a glass substrate. As a result of observing the obtained thin film with a transmission electron microscope, the size of the fine particles was about 1.
It was about 5 nm to 10 nm.

【0032】[0032]

【発明の効果】本発明によれば高分子薄膜中に金属また
は無機物質の超微粒子又は電子状物質を均一に分散複合
化し、原料高分子物質にはない新しい性質を高分子薄膜
に賦与することが可能である。
According to the present invention, ultrafine particles of a metal or an inorganic substance or an electronic substance is uniformly dispersed and complexed in a polymer thin film to impart new properties to the polymer thin film which are not present in the raw polymer. Is possible.

【0033】例えば、絶縁材料である高分子物質と金属
を同時加熱蒸着し、高分子薄膜中に金属の超微粒子を分
散複合化することにより、導電性を賦与することが可能
である。また、導電性高分子物質と無機材料であるバー
パントを同時に蒸着することにより、一工程でほぼ金属
並みの導電率を有する高分子薄膜を形成することが可能
であり、無機磁性材料の超微粒子を分散複合化すること
により磁性高分子複合薄膜を得ることも可能である。
For example, conductivity can be imparted by simultaneously heating and vapor depositing a polymer substance which is an insulating material and a metal, and dispersing and compositing ultrafine particles of the metal in a polymer thin film. Also, by simultaneously depositing a conductive polymer substance and an inorganic material, burpant, it is possible to form a polymer thin film having a conductivity almost equal to that of a metal in one step. It is also possible to obtain a magnetic polymer composite thin film by dispersion-compositing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弦巻 茂 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeru Tsurumaki 1-8-1, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高分子物質を真空中で基板に加熱蒸着す
ると同時に、金属または無機物質を加熱蒸着させること
を特徴とする高分子薄膜中に金属または無機物質の超微
粒子を均一に分散含有する高分子複合薄膜の製造方法。
1. An ultrafine particle of a metal or an inorganic substance is uniformly dispersed and contained in a polymer thin film, which is characterized in that a polymer substance is heated and vapor-deposited on a substrate at the same time as a metal or an inorganic substance is vapor-deposited by heating. Method for producing polymer composite thin film.
JP27266591A 1991-10-21 1991-10-21 Production of composite thin film of polymer Pending JPH05112658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27266591A JPH05112658A (en) 1991-10-21 1991-10-21 Production of composite thin film of polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27266591A JPH05112658A (en) 1991-10-21 1991-10-21 Production of composite thin film of polymer

Publications (1)

Publication Number Publication Date
JPH05112658A true JPH05112658A (en) 1993-05-07

Family

ID=17517084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27266591A Pending JPH05112658A (en) 1991-10-21 1991-10-21 Production of composite thin film of polymer

Country Status (1)

Country Link
JP (1) JPH05112658A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243658A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing film, film, film laminated body, and film component
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article
WO2022209093A1 (en) * 2021-03-30 2022-10-06 ホヤ レンズ タイランド リミテッド Method for producing spectacle lens
WO2022209094A1 (en) * 2021-03-30 2022-10-06 ホヤ レンズ タイランド リミテッド Eyeglass lens, manufacturing method for eyeglass lens, and eyeglasses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243658A (en) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing film, film, film laminated body, and film component
JP2010116448A (en) * 2008-11-11 2010-05-27 Tokai Kogaku Kk Method for producing fluorescent plastic article
WO2022209093A1 (en) * 2021-03-30 2022-10-06 ホヤ レンズ タイランド リミテッド Method for producing spectacle lens
WO2022209094A1 (en) * 2021-03-30 2022-10-06 ホヤ レンズ タイランド リミテッド Eyeglass lens, manufacturing method for eyeglass lens, and eyeglasses

Similar Documents

Publication Publication Date Title
Minami et al. Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field
Minakata et al. Structural studies on highly ordered and highly conductive thin films of pentacene
Addonizio et al. Transport mechanisms of RF sputtered Al-doped ZnO films by H2 process gas dilution
Iwamoto et al. Spatial distribution of charges in ultrathin polyimide Langmuir–Blodgett films
Wieczorek Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes
Ovadyahu et al. Microstructure and Electro‐Optical Properties of Evaporated Indium‐Oxide Films
US5158933A (en) Phase separated composite materials
Raychaudhuri et al. Phase diagram and Hall effect of the electron doped manganite La 1− x Ce x MnO 3
Minakata et al. Electrical properties of highly ordered and amorphous thin films of pentacene doped with iodine
Yamada et al. Donor compensation and carrier-transport mechanisms in tin-doped In2O3 films studied by means of conversion electron 119Sn Mössbauer spectroscopy and Hall effect measurements
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
Zhilova et al. Structure and electrophysical properties of thin-film SnO 2–In 2 O 3 heterostructures
US5380595A (en) Carbon cluster film having electrical conductivity and method of preparing the same
Osada et al. Preparation and electrical properties of plasma-polymerized copper acetylacetonate thin films
GB1580218A (en) Chalcogenated tetracene ion-radical salts their preparation and elements containing them
JPS6039106A (en) Production of ultrafine particle
JPH05112658A (en) Production of composite thin film of polymer
Hymavathi et al. Influence of sputtering power on structural, electrical and optical properties of reactive magnetron sputtered Cr doped CdO thin films
Mandal et al. Electron transport process in discontinuous silver film
Gao et al. Structure and electrical properties of Ag‐ultrafine‐particle–polymer thin films
US3463667A (en) Deposition of thin films
Gunes et al. Microstructure and magnetoresistance of a La0. 67Ca0. 33MnO3 film produced using the dip-coating method
Nakahara et al. Microstructure trends in metal (aluminum, copper, indium, lead, tin)-metal oxide thin films prepared by reactive ion beam sputter deposition
Chaâbane et al. Elaboration and characterization of thin calixarene films
Coburn et al. Sputter deposition of EuO thin films

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010130